Logic


Lecturers: Aart Middeldorp, Alexander Montag, Johannes Niederhauser, Daniel Ranalter, Vera Schmitt, Sven Goetzke, Harald Zankl


DateTopicsSlidesExcercisesSolutions
03.03 & 06.03 & 13.03 propositional logic, satisfiability, validity, conjunctive normal forms pdf (x1, x4)  pdf  pdf
10.03 & 20.03 Horn formulas, SAT, Tseitin's transformation pdf (x1, x4)  pdf  pdf
17.03 & 27.03 natural deduction, soundness pdf (x1, x4)  pdf  pdf
24.03 & 03.04 completeness, resolution, binary decision diagrams  pdf (x1, x4)  pdf  pdf
31.03 & 10.04 binary decision diagrams, predicate logic (syntax) pdf (x1, x4)  pdf  pdf
07.04 & 08.05 predicate logic (semantics), natural deduction pdf (x1, x4)  pdf  pdf
28.04 & 08.05 quantifier equivalences, unification, Skolemization  pdf (x1, x4)  pdf  pdf
05.05 & 15.05 resolution, undecidability, algebraic normal forms  pdf (x1, x4)  pdf  pdf
12.05 & 22.05 Post's adequacy theorem, CTL, CTL model-checking algorithm pdf (x1, x4)  pdf  pdf
19.05 & 05.06 symbolic model checking, LTL pdf (x1, x4)  pdf  pdf
26.05 & 12.06 adequacy, fairness, LTL model-checking algorithm pdf (x1, x4)  pdf  pdf
02.06 & 12.06 CTL*, SAT solving, sorting networks pdf (x1, x4)   pdf  pdf
16.06 SAT solving, sorting networks pdf (x1, x4)   pdf  pdf
23.06 1st exam (solution)      
25.09 2nd exam      
26.02 3rd exam      

Literature

The course is largely based on the following book:

  • Michael Huth and Mark Ryan
    Logic in Computer Science (second edition)
    Cambridge University Press, 2007
    ISBN 0-521-54310-X (paperback)

Slides as well as solutions to selected exercises will be made available online.