
Automated Analysis of Logically Constrained
Rewrite Systems

Jonas Schöpf(�) and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{jonas.schoepf,aart.middeldorp}@uibk.ac.at

Abstract. We present crest, a tool for automatically proving (non-)
confluence and termination of logically constrained rewrite systems. We
compare crest to other tools for logically constrained rewriting. Extensive
experiments demonstrate the promise of crest.

Keywords: Automation · Confluence · Termination · Term Rewriting ·
Logical Constraints.

1 Introduction

Term rewriting is a simple Turing-complete model of computation. Properties
like confluence and termination are of key interest and numerous powerful tools
have been developed for their analysis. Logically constrained term rewrite sys-
tems (LCTRSs for short) constitute a natural extension of term rewrite systems
(TRSs) in which rules are equipped with logical constraints that are handled
by SMT solvers, thereby avoiding the cumbersome encoding of operations on
e.g. integers and bit vectors in term rewriting. LCTRSs, introduced by Kop
and Nishida in 2013 [25], are useful for program analysis [8, 13, 23, 40]. They
also developed Ctrl [26, 27], a tool for LCTRSs specializing in termination anal-
ysis and equivalence testing. Later, techniques for completion [39] and non-
termination [33] analysis were added.

In this paper we describe crest, the Constrained REwriting Software Tool.
The tool crest was first announced in [34] with support for a small number
of confluence techniques. The new version described here includes numerous
extensions:

– more advanced confluence techniques (introduced in [35]),

– automated non-confluence and termination analysis,

– support for fixed-sized bit vectors,

– transformation techniques based on splitting critical pairs and merging con-
strained rewrite rules, to further boost the confluence proving power.

⋆ This research is funded by the Austrian Science Fund (FWF) project I5943.

© The Author(s) 2025
A. Gurfinkel and M. Heule (Eds.): TACAS 2025, LNCS 15696, pp. 124–144, 2025.
https://doi.org/10.1007/978-3-031-90643-5_7

crest⋆Using

https://etaps.org/about/artifact-badges/
https://etaps.org/about/artifact-badges/
mailto:jonas.schoepf@uibk.ac.at
https://orcid.org/0000-0001-5908-8519
https://orcid.org/0000-0001-7366-8464
https://doi.org/10.1007/978-3-031-90643-5_7
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-90643-5_7&domain=pdf

125

Extensive experiments show the strength of crest. The tool is open-source and
available from http://cl-informatik.uibk.ac.at/software/crest.

The remainder of the paper is organized as follows. In the next section we
recall important definitions pertaining to LCTRSs. Section 3 summarizes the
main confluence and termination techniques implemented in crest. Automation
details are presented in Section 4. The new transformation techniques are de-
scribed in Section 5. In Section 6 we present our experiments, before concluding
in Section 7 with suggestions for future extensions. We conclude this introduc-
tory section with mentioning other tools for LCTRSs.

Related Tools. We already mentioned Ctrl1 which until 2023 was the only tool
capable of analyzing confluence and termination of LCTRSs. It supports termi-
nation analysis [24], completion techniques [39], rewriting induction for equiva-
lence testing of LCTRSs [13], and basic confluence analysis [27]. Unfortunately,
it is neither actively maintained nor very well documented, which is one reason
why the development of crest was started. Moreover, a branch2 of the automated
resource analysis tool TcT [4] performs complexity analysis on LCTRSs based
on [40]. RMT by Ciobâcă et al. [7, 8] is a newer tool for program analysis based
on a variation of LCTRSs.

In the 2024 edition of the Confluence Competition 3 the tool CRaris,4 devel-
oped by Nishida and Kojima, made its appearance. The tool implements weak
orthogonality [25] and the Knuth–Bendix criterion for terminating LCTRSs [34].
For termination, it implements the dependency pair framework [24] and the sin-
gleton self-looping removal processor [29] for LCTRSs with bit vectors.

Also in 2024 Guo et al. [14, 15] announced Cora, a new open-source tool
for termination analysis of logically constrained simply-typed term rewrite sys-
tems, which serve as a high-order generalization of LCTRSs. It employs static
dependency pairs [28] with several base methods, including a variant of the
higher-order recursive path order [18].

2 Logically Constrained Term Rewriting

Familiarity with the basic notions of term rewriting [5] is assumed. We assume
a many-sorted signature F = Fte ∪ Fth consisting of term and theory symbols
together with a countably infinite set of variables V. For every sort ι in Fth we
have a non-empty set Valι ⊆ Fth of value symbols, such that all c ∈ Valι are
constants of sort ι. We demand Fte ∩ Fth ⊆ Val where Val =

⋃
ι Valι. The set of

terms constructed from function symbols in F and variables in V is by T (F ,V).
A term in T (Fth,V) is called a logical term. Ground logical terms are mapped to
values by an interpretation J : [[f(t1, . . . , tn)]] = fJ ([[t1]], . . . , [[tn]]). Logical terms
of sort bool are called constraints. A constraint φ is valid if [[φγ]] = ⊤ for all
1 http://cl-informatik.uibk.ac.at/software/ctrl/
2 https://github.com/bytekid/tct-lctrs
3 https://ari-cops.uibk.ac.at/CoCo/2024/competition/LCTRS/
4 https://www.trs.css.i.nagoya-u.ac.jp/craris/

Automated Analysis of LCTRSs Using crest

http://cl-informatik.uibk.ac.at/software/crest
http://cl-informatik.uibk.ac.at/software/ctrl/
https://github.com/bytekid/tct-lctrs
https://ari-cops.uibk.ac.at/CoCo/2024/competition/LCTRS/
https://www.trs.css.i.nagoya-u.ac.jp/craris/

126

substitutions γ such that γ(x) ∈ Val for all x ∈ Var(φ). Positions are sequences
of positive integers to indicate subterms. The root of a term is denoted by the
empty string ϵ. For a term s, its subterm at position p is given by s|p. The set
of positions in s ∈ T (F ,V) is denoted by Pos(s) whereas PosF (s) is restricted
to positions with function symbols in s. We write Var(s) for the set of variables
in s. A constrained rewrite rule is a triple ρ : ℓ → r [φ] where ℓ, r ∈ T (F ,V)
are terms of the same sort such that root(ℓ) ∈ Fte \ Fth and φ is a constraint.
We denote the set Var(φ)∪ (Var(r) \Var(ℓ)) of logical variables in ρ by LVar(ρ).
We write EVar(ρ) for the set Var(r) \ (Var(ℓ) ∪ Var(φ)) of extra variables. A
set of constrained rewrite rules is called an LCTRS. A substitution σ respects
a rule ρ : ℓ → r [φ], denoted by σ ⊨ ρ, if Dom(σ) ⊆ Var(ρ), σ(x) ∈ Val for
all x ∈ LVar(ρ), and φσ is valid. Moreover, a constraint φ is respected by σ,
denoted by σ ⊨ φ, if σ(x) ∈ Val for all x ∈ Var(φ) and φσ is valid. We call
f(x1, . . . , xn)→ y [y = f(x1, . . . , xn)] with a fresh variable y and f ∈ Fth \ Val
a calculation rule. The set of all calculation rules induced by the signature Fth

of an LCTRS R is denoted by Rca and we abbreviate R∪Rca to Rrc. A rewrite
step s →R t satisfies s|p = ℓσ and t = s[rσ]p for some position p, constrained
rewrite rule ρ : ℓ→ r [φ] in Rrc, and substitution σ such that σ ⊨ ρ.

A constrained term is a pair s [φ] consisting of a term s and a constraint φ.
Two constrained terms s [φ] and t [ψ] are equivalent, denoted by s [φ] ∼ t [ψ],
if for every substitution γ ⊨ φ with Dom(γ) = Var(φ) there is some substitution
δ ⊨ ψ with Dom(δ) = Var(ψ) such that sγ = tδ, and vice versa. Let s [φ]
be a constrained term. If s|p = ℓσ for some constrained rewrite rule ρ : ℓ →
r [ψ] ∈ Rrc, position p, and substitution σ such that σ(x) ∈ Val ∪ Var(φ) for
all x ∈ LVar(ρ), φ is satisfiable and φ ⇒ ψσ is valid then s [φ] →R s[rσ]p [φ].
The rewrite relation ∼→R on constrained terms is defined as ∼ · →R · ∼ and
s [φ] ∼→p

R t [ψ] indicates that the rewrite step in ∼→R takes place at position p in
s. Similarly, we write s [φ] ∼→⩾p t [ψ] if the position in the rewrite step is below
position p. We illustrate some of these concepts by means of a simple example
which models the computation of the maximum of two integers.

Example 1. Consider the LCTRS R over the theory Ints with the rules

α : max(x, y)→ x [x ⩾ y] β : max(x, y)→ y [y ⩾ x]

Here x and y are logical variables in both rules. There are no extra variables.
The symbol max is the only term symbol. The theory symbols depend on the
definition of Ints. As the goal is automation this usually consists of non-linear
integer arithmetic as specified in the respective SMT-LIB theory.5

By applying the calculation rule x1+x2 → y [y = x1+x2] with substitution
{x1 7→ 3, x2 7→ 2, y 7→ 5} followed by rule α we obtain

max(3+ 2, 3)→ max(5, 3)→ 5

5 https://smtlib.cs.uiowa.edu/Theories/Ints.smt2

J. Schöpf and A. Middeldorp

https://smtlib.cs.uiowa.edu/Theories/Ints.smt2

127

An example of constrained rewriting is given by

max(3, 3+ x) [x ⩾ 0] ∼→ max(3, z) [x ⩾ 0 ∧ z = 3+ x]
∼→ z [x ⩾ 0 ∧ z = 3+ x]

One-step rewriting, i.e., rewriting a term using a single rule, was introduced
above. The sufficient criteria for confluence, highlighted in the next section, heav-
ily rely on the notation of parallel (∥→) and multi-step (◦→) rewriting following
[35, Definition 3] and [34, Definition 8]. The former is capable of applying several
rules at parallel positions in a step while the latter additionally allows recursive
steps within the used matching substitutions of rules. A rewrite sequence con-
sists of consecutive rewrite steps, independent of which kind. The reflexive and
transitive closure of → is denoted by →∗. Moreover, for arbitrary terms s and
t we write s ↔ t if s (←∪→) t and s ↓ t if there exists a term u such that
s→∗ u ∗← t.

3 Confluence and Termination

Termination and confluence are well-known properties in static program analy-
sis. Both properties are in general undecidable. With respect to (logically con-
strained) term rewriting, a program is terminating whenever it does not admit
an infinite rewrite sequence. Confluence states that s ↓ t whenever t ∗← s→∗ u,
for all terms s, t and u. Naively checking the properties is obviously not feasible.
In (logically constrained) term rewriting there exist sufficient criteria that guar-
antee that these properties are satisfied for a given program. In the following
we highlight key components of confluence and termination analysis for logically
constrained rewrite systems.

The confluence methods implemented in crest are based on (parallel) critical
pairs. These are defined as follows. Given a constrained rewrite rule ρ, we write
ECρ for

∧
{x = x | x ∈ EVar(ρ)}. An overlap of an LCTRS R is a triple

⟨ρ1, p, ρ2⟩ with rules ρ1 : ℓ1 → r1 [φ1] and ρ2 : ℓ2 → r2 [φ2], satisfying the
following conditions: (1) ρ1 and ρ2 are variable-disjoint variants of rewrite rules
inRrc, (2) p ∈ PosF (ℓ2), (3) ℓ1 and ℓ2|p unify with mgu σ such that σ(x) ∈ Val∪V
for all x ∈ LVar(ρ1) ∪ LVar(ρ2), (4) φ1σ ∧ φ2σ is satisfiable, and (5) if p = ϵ
then ρ1 and ρ2 are not variants, or Var(r1) ⊈ Var(ℓ1). In this case we call
ℓ2σ[r1σ]p ≈ r2σ [φ1σ ∧ φ2σ ∧ ψσ] a constrained critical pair (CCP) obtained
from the overlap ⟨ρ1, p, ρ2⟩. Here ψ = ECρ1 ∧ ECρ2 . The peak

ℓ2σ[r1σ]p [Φ]← ℓ2σ [Φ]→ϵ r2σ [Φ]

with Φ = (φ1 ∧ φ2 ∧ ψ)σ, from which the constrained critical pair originates, is
called a constrained critical peak. The set of all constrained critical pairs of R
is denoted by CCP(R). A constrained equation s ≈ t [φ] is trivial if sσ = tσ
for every substitution σ with σ ⊨ φ. The trivial equations from ECρ are used
in order to prevent loosing the information which (extra) variables are logical
variables in the underlying rules of a CCP.

Automated Analysis of LCTRSs Using crest

128

Example 2. Let us extend the LCTRS R from Example 1 with an additional
rule modeling the commutativity of max:

max(x, y)→ x [x ⩾ y] max(x, y)→ y [y ⩾ x] max(x, y)→ max(y, x)

There are six constrained critical pairs, including the following two:

x ≈ y [x ⩾ y ∧ y ⩾ x] x ≈ max(y, x) [x ⩾ y]

The left one is trivial, the one on the right becomes trivial after one rewrite
step: x ≈ max(y, x) [x ⩾ y] → x ≈ x [x ⩾ y]. The remaining four pairs can be
rewritten similarly.

Restricting the way in which constrained critical peaks are rewritten into
trivial ones, yields different sufficient conditions for confluence of (left-)linear
LCTRSs. We state the conditions below but refer to [25, 34, 35] for precise defi-
nitions:

(C1) (weak) orthogonality ([25, Theorem 4]),
(C2) joinable critical pairs for terminating LCTRSs ([34, Corollary 4]).
(C3) strong closedness for linear LCTRSs ([34, Theorem 2]),
(C4) (almost) parallel closedness for left-linear LCTRSs ([34, Theorem 4]),
(C5) (almost) development closedness for left-linear LCTRSs ([35, Corollary 1]).

The final confluence criterion implemented in crest is based on parallel critical
pairs. Let R be an LCTRS, ρ : ℓ→ r [φ] a rule in Rrc, and P ⊆ PosF (ℓ) a non-
empty set of parallel positions. For every p ∈ P let ρp : ℓp → rp [φp] be a variant
of a rule in Rrc. Let ψ = ECρ ∧

∧
p∈P ECρp and Φ = φσ ∧ ψσ ∧

∧
p∈P φpσ. The

peak ℓσ[rpσ]p∈P [Φ] ∥→ℓσ [Φ] →ϵ
R rσ [Φ] forms a constrained parallel critical

pair ℓσ[rpσ]p∈P ≈ rσ [Φ] if the following conditions are satisfied:

1. Var(ρ1) ∩ Var(ρ2) = ∅ for different rules ρ1 and ρ2 in {ρ} ∪ {ρp | p ∈ P },
2. σ is an mgu of {ℓp = ℓ|p | p ∈ P } such that σ(x) ∈ Val ∪ V for all x ∈
LVar(ρ) ∪

⋃
p∈P LVar(ρp),

3. φσ ∧
∧
p∈P φpσ is satisfiable, and

4. if P = {ϵ} then ρϵ is not a variant of ρ or Var(r) ⊈ Var(ℓ).

A constrained peak forming a constrained parallel critical pair is called a con-
strained parallel critical peak. The set of all constrained parallel critical pairs of
R is denoted by CPCP(R). The following sufficient condition for confluence is
reported in ([35, Corollary 2]):

(C6) parallel closedness of parallel critical pairs for left-linear LCTRSs.

Conditions (C5) and (C6) do not subsume each other. Both generalize con-
ditions (C1) – (C4). All these confluence criteria try to find a specific closing
rewrite sequence starting from a constrained (parallel) critical pair—which is
seen as a constrained equation—to a trivial constrained equation. For exam-
ple, parallel closedness in (C4) involves showing that each constrained critical

J. Schöpf and A. Middeldorp

129

pair s ≈ t [φ] can be rewritten into a trivial constrained equation using a sin-
gle parallel step s ≈ t [φ] ∼∥→⩾1 s′ ≈ t [φ]. Note that only the left part (s)
is rewritten here and s′ ≈ t [φ] is a trivial constrained equation. For (finite)
terminating TRSs, confluence is decided by rewriting critical pairs to normal
form [20]. For terminating LCTRSs confluence—even for a decidable theory—is
undecidable [35], but rewriting constrained critical pairs to normal forms is still
of value. This is used in (C2) above. We need however to adapt the notion of
normal form for constrained terms.

Example 3. The LCTRS R over the theory Ints with rewrite rules

f(x)→ g(x) [x ⩾ 1] g(1)→ a h(x)→ a [x ⩽ 1]

f(x)→ h(x) [x ⩽ 2] g(x)→ b [x ⩾ 2] h(x)→ b [x > 1]

g(x)→ c [x < 1]

admits one (modulo symmetry) constrained critical pair:

g(x) ≈ h(x) [x ⩾ 1 ∧ x ⩽ 2]

None of the rules above are applicable, so this non-trivial constrained critical pair
is in normal form with respect to →R, but it would be wrong to conclude that
R is not confluent; all substitutions σ that satisfy the constraint x ⩾ 1 ∧ x ⩽ 2
allow us to rewrite (g(x) ≈ h(x))σ to the trivial equations a ≈ a or b ≈ b.

Definition 1. Given an LCTRS R, a constrained term s [φ] is in normal form
if and only if for all substitutions σ with σ ⊨ φ we have sσ →R t for no term t.

Note that the constrained critical pair in Example 3 is not in normal form
according to this definition. We present a simple sufficient condition for non-
confluence. The easy proof can be found in the appendix of [37].

Lemma 1. An LCTRS is non-confluent if there exists a constrained critical
pair that rewrites to a non-trivial constrained equation in normal form.

We will resume the analysis of Example 3 in Section 5. Termination plays
an important role in the analysis of LCTRSs. crest implements the following
methods reported in the papers by Kop and Nishida [24,25]:

(T1) dependency graph ([24, Theorems 4 & 5]),
(T2) recursive path order ([25, Theorem 5]),
(T3) value criterion ([24, Theorem 10]),
(T4) reduction pairs ([24, Theorem 12]).

Method (T1) computes the strongly connected components in the dependency
graph, and transforms the input LCTRS into so-called DP problems, which can
be analyzed independently. It lies at the heart of the dependency pair frame-
work [19] implemented in most termination tools for TRSs. Methods (T2) and
(T4) are LCTRS variants of well-known methods for TRSs [3, 9]. Two further
methods implemented in Ctrl are ported to crest:

Automated Analysis of LCTRSs Using crest

130

(T5) subterm criterion
(T6) special value criterion

While (T5) is a well-known termination method for DP problems originating
from TRSs [17], (T3) and (T6) are specific to LCTRSs. Method (T5) operates
on the syntactic structure of dependency pairs and ignores the constraints. In
method (T3) dependency pair symbols are also projected to a direct argument
but then a strict decrease with respect to the constraint is required. For example,
the rule f(x)→ f(x−1) [x > 0] cannot be handled by (T5), but as x > 0 implies
the strict decrease x ≻ x−1 for a suitable well-founded relation ≻, (T3) applies.
Method (T6) is an extension of (T3) in which linear combinations of arguments
are considered. Methods (T3) and (T6) are adapted to the higher-order LCTRS
setting in [14, Sections 4.2 & 4.3].

4 Automation

Our tool crest is written in Haskell and the current version consists of roughly
12000 lines of code. Core modules like SMT solving use a fork of the simple-smt
package6 and the rewriting modules are inspired by the term-rewriting pack-
age.7 In the following we provide some details of the key components.

Input Format. crest operates on LCTRSs in the new ARI format8 [1] adopted by
the Confluence Competition (CoCo) and also partly by the Termination Compe-
tition.9 Problems in the ARI database are given a unique number which we will
use throughout this paper to address specific LCTRSs. An example problem is
given in Fig. 1. The ARI database format requires sort annotations for variables
appearing as an argument of a polymorphic predicate. If this sort can be inferred
at a different position then this can be ignored for crest. For example, consider
the rule f(x = y, x)→ z [z = x+1] with f : Bool→ Int→ Int, +: Int→ Int→ Int
and =: A→ A→ Bool with a polymorphic sort A. In the ARI database all vari-
ables need concrete sort annotation. For crest no sort annotation is necessary as
all the sorts of variables can be inferred from the sort of f.

Theory symbols are those that are defined in a specific SMT-LIB theory,
however, for fixed-sized bit vectors crest additionally supports function symbols
defined in the SMT-LIB logic QF_BV.10 In addition to LCTRSs also plain TRSs
and many-sorted TRSs are supported.

Pre-Processing. After parsing its input and assigning already known sorts to
function symbols and variables we apply a basic type inference algorithm. Some
function symbols in the core theory, which provides basic boolean functions, like
6 https://hackage.haskell.org/package/simple-smt
7 https://hackage.haskell.org/package/term-rewriting
8 https://project-coco.uibk.ac.at/ARI/lctrs.php
9 https://termination-portal.org/wiki/Termination_Portal

10 https://smt-lib.org/logics-all.shtml#QF_BV

J. Schöpf and A. Middeldorp

https://hackage.haskell.org/package/simple-smt
https://hackage.haskell.org/package/term-rewriting
https://project-coco.uibk.ac.at/ARI/lctrs.php
https://termination-portal.org/wiki/Termination_Portal
https://smt-lib.org/logics-all.shtml#QF_BV

131

(format LCTRS :smtlib 2.6)
(theory Ints)
(fun f (-> Int Int Int))
(fun g (-> Int Int Int))
(fun c (-> Int Int Int))
(fun h (-> Int Int))
(rule (f x y) (h (g y (* 2 2))) :guard (and (<= x y) (= y 2)))
(rule (f x y) (c 4 x) :guard (<= y x))
(rule (g x y) (g y x))
(rule (c x y) (g 4 2) :guard (not (= x y)))
(rule (h x) x)

Fig. 1. ARI file 1528 (without sort annotations and meta information).

“=” have a polymorphic sort. Therefore we need to infer unknown sorts in or-
der to obtain a fully sorted LCTRS. This is required as sort information must
be present for the declaration of variables in the SMT solver. During the pars-
ing phase crest parses the respective theory from an internal representation of
the SMT-LIB specification. Currently the theory of integers, reals, fixed-sized bit
vectors and a combination of integers and reals are supported. Subsequently crest
preprocesses the LCTRS by moving values in the left-hand sides of the rewrite
rules into the constraints (by applying the transformation described in [34, Defi-
nition 13]). Afterwards it merges as many rules as possible following Definition 3
in Section 5.

Rewriting. One of the key components is the rewriting module which provides
functionality to perform rewriting on constrained terms. This module computes
rewrite sequences of arbitrary length, using single steps, parallel rewrite steps [35,
Definition 7] and multisteps [35, Definition 5]. Calculation steps are modeled in
an obvious way; whenever we have a term s[f(s1, . . . , sn)] [φ] with s1, . . . , sn ∈
Val ∪ Var(φ) and f ∈ Fth, then we produce s[x] [φ ∧ x = f(s1, . . . , sn)] for a
fresh variable x. In some cases single rule steps need more care because of the
lack of equivalence steps in rewrite sequences. For rules with variables that do
not occur in the left-hand side, the matching substitution of the left-hand side
does not provide an instantiation. However, those variables are logical and need
to be instantiated with values. This is achieved by adding the constraint of the
rule and its extra variables to the resulting constrained term after it has been
confirmed that for those variables an instantiation exists. We illustrate this in
the following example.

Example 4. Consider the constrained rule ρ : f(x) → y [x ⩾ 0 ∧ x > y], the
constrained term f(z) [z = 2] and the matching substitution {x 7→ z} between
the left-hand side of ρ and f(z). The variable y is not part of the matching
substitution and thus crest rewrites f(z) [z = 2] to y [z = 2 ∧ z ⩾ 0 ∧ z > y].
Using the constrained rule ρ′ : f(x)→ y [x ⩾ 0] from the same constrained term
would give y [z = 2 ∧ z ⩾ 0 ∧ y = y].

Automated Analysis of LCTRSs Using crest

https://ari-cops.uibk.ac.at/ARI/?m=problems&d=ARI&q=1528

132

SMT. SMT solving is a key component in the analysis of LCTRSs and SMT
solvers are heavily used during the analysis. In order for SMT solving to not
form a bottleneck some care is needed. Again, each different analysis method
is equipped with its own SMT solver instance started at the beginning of the
analysis. Afterwards such an instance runs until the method has finished. In be-
tween, it waits for SMT queries, hence we avoid several restarts of this instance.
Constraints are modeled as regular terms of sort boolean and can be checked
for satisfiability and validity. Each of those checks runs in its own context (us-
ing push and pop commands) in order to avoid any interference with previous
queries. Currently crest utilizes Z3 [30] as the default SMT solver, as it turned
out to be the most reliable during development. Nevertheless, crest provides the
(experimental) possibility to use Yices [10] and CVC5 [6].

Confluence. The computation of constrained critical pairs follows the definition
and constrained parallel critical pairs are computed in a bottom up fashion by
collecting all possible combinations of parallel steps. Then the various methods to
conclude confluence are applied on those pairs. If a method fails on a constrained
critical pair then, using Definition 2, the constrained critical pair is split. The
logical constraint used in splitting is taken from a matching rule. The various
methods run concurrently in order to prevent starvation of methods because of
pending SMT solver queries. The first method which succeeds returns the result
and all others, including their SMT solver instances, are terminated. We adopt
heuristics to bound the number of rewrite steps in the closing sequences. The
method that posed the biggest challenge to automation is the 2-parallel closed-
ness [35, Definition 11] needed for (C6) as we cannot simply use an arbitrary
parallel step starting from the right-hand side but need to synthesize a parallel
step over a set of parallel positions that adheres to the variable condition present
in the definition.

Termination. The choices in the parameters of the subterm criterion (T5) and
the recursive path order (T2) are modeled in the SMT encoding. Similarly, for
the value criterion (T3) first all possible projections are computed. Then an SMT
encoding based on the given rules and theory is constructed and a model of the
encoding (if it exists) delivers suitable projections that establish termination. An
explicit boolean flag in the SMT encoding determines if a strict or weak decrease
is achieved. The special variant with projections to suitable linear combinations
(T6) encodes this by attaching unknown constants to the projected arguments
and summing them up. Those unknowns are then determined by the SMT solver.
The (special) value criterion is currently restricted to the theory of integers as
suitable well-founded orderings are required. For the integer theory we use n ≻ m
if n > m ∧ n ⩾ 0 holds.

Method (T4) receives a DP problem as input and tries to transform it into
a smaller one by orienting strictly as many dependency pairs as possible. It is
parameterized by a list of termination methods which are applied on the DP
problem. The first one which succeeds determines the remaining problem to be

J. Schöpf and A. Middeldorp

133

solved. Before trying to solve the latter, (T1) is used to decompose it into smaller
problems.

Features. Via the command-line arguments several features of crest can be ac-
cessed. This includes control over the number of threads in the concurrent setup,
the overall timeout of the analysis, or if proof output and debug output should be
printed. Furthermore, (parallel) critical pairs or the dependency graph approxi-
mation of a given LCTRS problem can be computed. The interface also offers a
way to transform an LCTRS into a fully sorted LCTRS in the ARI format. In
order to alter the default strategy for the analysis, crest offers a very basic strat-
egy language to specify which methods should be used. Detailed information is
provided in the usage information of the supplemented artifact.

5 Improving the Analysis via Transformations

In this section we present new transformations which are especially useful for
confluence analysis. These transformations operate on either rules or constrained
critical pairs and split or unify those based on their constraints.

Splitting Constrained Critical Pairs

If a constrained critical pair has more than one instance, which is almost always
the case, and they cannot all be rewritten by a single rule, then we are not
able to perform any rewrite step. To overcome this problem we propose a simple
method to split constrained critical pairs.

Definition 2. Given an LCTRS R, a constrained critical pair ρ : s ≈ t [φ] ∈
CCP(R) and a constraint ψ ∈ T (Fth,Var(φ)), the set CCP(R)ψρ is defined as
(CCP(R) \ {ρ}) ∪ {s ≈ t [φ ∧ ψ], s ≈ t [φ ∧ ¬ψ]}.

The following key lemma states that after splitting critical pairs, all conflu-
ence methods are still available. The proof is given in the appendix of [37].

Lemma 2. If t R← s→R u then t ↓R u or t↔CCPψρ (R) u.

We illustrate the lemma on the LCTRS in Example 3.

Example 5. Consider the CCP g(x) ≈ h(x) [φ] with φ : x ⩾ 1 ∧ x ⩽ 2 from
Example 3. It is neither in normal form nor trivial. Since the subterm g(x)
matches the left-hand side of the rule g(x) → a [x = 1] (which is how crest
renders the rule g(1)→ a), and the combined constraint φ∧ x = 1 is satisfiable,
the CCP is split into

g(x) ≈ h(x) [φ ∧ x = 1] and g(x) ≈ h(x) [φ ∧ x ̸= 1]

The left one rewrites to the trivial constrained equation a ≈ a [φ∧ x = 1] using
the rules g(x) → a [x = 1] and h(x) → a [x ⩽ 1]. The right one is rewritten

Automated Analysis of LCTRSs Using crest

134

to b ≈ b [φ ∧ x ̸= 1] using the rules g(x) → b [x ⩽ 2] and h(x) → b [x > 1].
Hence the LCTRS R is locally confluent by Lemma 2. Using RPO with the
precedence f > g > h > a > b > c, termination of R is easily shown and hence
R is confluent.

The following example shows that constrained critical pairs may be split
infinitely often before local confluence can be verified.

Example 6. Consider the LCTRS R over the theory Ints consisting of the rules

a→ f(n) [n ⩾ 0] a→ g(n) [n ⩾ 0]

f(n)→ b [n = 0] g(n)→ b [n = 0]

f(n)→ f(m) [n > 0 ∧ 2 ∗m = n] g(n)→ g(m) [n > 0 ∧ 2 ∗m = n]

f(n)→ f(m) [n > 0 ∧ 2 ∗m+ 1 = n] g(n)→ g(m) [n > 0 ∧ 2 ∗m+ 1 = n]

This LCTRS has a constrained critical pair f(n) ≈ g(m) [n ⩾ 0 ∧m ⩾ 0 ∧ n =
n∧m = m] originating from a. To show confluence of R we would need to split
the pair in order to make rules applicable for joining a specific instance. However,
there are infinitely many instances with pairwise different joining sequences.

The next example shows that splitting also helps to prove non-confluence.

Example 7. Consider the LCTRS R in Example 3. By changing the constraint of
the rule f(x)→ g(x) [x ⩾ 1] to [x ⩾ 0] we obtain a non-confluent LCTRS. This
is shown by splitting the constrained critical pair g(x) ≈ h(x) [x ⩾ 0 ∧ x ⩽ 2],
and subsequently showing that g(x) ≈ h(x) [x < 1 ∧ x ⩾ 0 ∧ x ⩽ 2] rewrites to
the non-trivial normal form c ≈ a [x < 1 ∧ x ⩾ 0 ∧ x ⩽ 2].

Merging Constrained Rewrite Rules

Next we discuss the merging of constrained rewrite rules. The idea here is that
rewrite steps may become possible after merging similar rules.

Definition 3. Let ρi : ℓi → ri [φi] for i = 1, 2 be variable-disjoint rewrite rules
in an LCTRS R. Suppose there exists a renaming σ such that ℓ1 = ℓ2σ, r1 = r2σ
and Var(φ1) = Var(φ2σ). The LCTRS Rρ2ρ1 is defined as

(R \ {ρ1, ρ2}) ∪ {ℓ1 → r1 [φ1 ∨ φ2σ]}

The easy proof of the following lemma is omitted.

Lemma 3. The relations →R and →Rρ2
ρ1

coincide.

Example 8. The LCTRS R over the theory Ints consisting of the rewrite rules

f(x)→ 2 [1 ⩽ x ∧ x ⩽ 3] g(x)→ h(x) h(x)→ y [x = 2 ∧ y = x]

f(x)→ g(x) [2 ⩽ x ∧ x ⩽ 4] h(x)→ y [x = 3 ∧ y = 2]

J. Schöpf and A. Middeldorp

135

admits the constrained critical pair 2 ≈ g(x) [1 ⩽ x ∧ x ⩽ 3 ∧ 2 ⩽ x ∧ x ⩽ 4].
After rewriting the subterm g(x) to h(x), no further step is possible because the
rewrite rules for h are not applicable. However, if we merge the two rules for h
into

h(x)→ y [(x = 2 ∧ y = x) ∨ (x = 3 ∧ y = 2)]

we can proceed as 1 ⩽ x∧ x ⩽ 3∧ 2 ⩽ x∧ x ⩽ 4 implies ((x = 2∧ y = x)∨ (x =
3 ∧ y = 2))σ for σ(y) = 2. This is exactly how crest operates.

6 Experimental Evaluation

In this section we show the progress of crest since the start of its development
in early 2023. Initial experiments of an early prototype of crest were reported
in [34]. In the following tables the prototype of [34] is denoted by prototype. Since
then more criteria for (non-)confluence and termination were added, and parts
of the tool infrastructure were completely revised. Detailed results are available
from the website of crest and the artifact of the experiments at the Zenodo
repository [36].

All experiments were performed using the benchexec11 benchmarking frame-
work which is also used in the StarExec cluster. The benchmark hardware
consists of several Intel Xeon E5-2650 v4 CPUs having a base clock speed of
2.20GHz, amounting in total to 64 cores and 128 GB of RAM. As benchmarks
we use the problems in the new ARI database12 in addition to the examples
from this paper.

Tool Setup. Each tool receives an ARI benchmark as input and should return ei-
ther "YES" (property was proved), "NO" (property was disproved) or "MAYBE"
(don’t know) as the first line of its output. In the tables we represent those with
✓, ✗ and ?, respectively. The fourth category depicted by † denotes that the
translation from the ARI format to the input format of the respective tool failed.
In order to have a realistic setup, a tool has 4 cores including 8 GB of RAM
available for each run. Each tool has 60 seconds to solve a problem before it is
killed. Since we have no information about how many threads the other tools
use, in the experiments we use CPU time over wall-clock time in order to have
a fair comparison.

Our tool crest is split into different binaries depending on the analysis. The
most important ones are crest-cr for confluence and crest-sn for termina-
tion. We use those two including an additional flag to allow at most 8 threads
for the concurrent setup. The default strategy for confluence uses all methods
concurrently and where specific methods are tested we restrict to those using our
strategy flag. For the default termination setup we use reduction pairs including

11 https://github.com/sosy-lab/benchexec/
12 https://ari-cops.uibk.ac.at/ARI/

Automated Analysis of LCTRSs Using crest

http://cl-informatik.uibk.ac.at/software/crest
https://github.com/sosy-lab/benchexec/
https://ari-cops.uibk.ac.at/ARI/

136

Table 1. Confluence analysis of examples.

tool 1 2 3 6 7 8

crest ✓ ✓ ✓ ? ✗ ✓

CRaris ? ? ? ? ? ?
Ctrl ✓ ? ? ? ? ?
prototype ✓ ✓ ? ? ? ?

dependency graph analysis, recursive path order, (special) value criterion and
subterm criterion.

Cora, Ctrl and the prototype of [34] do not accept the ARI format as input.
We have developed transformation tools which (try to) transform an ARI bench-
mark into their respective input. This might not always be possible, hence the
transformation tool might fail, which is the reason why we do not distinguish
tool (parse) errors from "MAYBE".

Examples. In Table 1 we compare the LCTRS confluence tools on the examples
in this paper. crest only fails on Example 6, which is a confluent LCTRS, but
for which no automatable method is known.

Confluence Competition. The last (2024) Confluence Competition13 hosted the
first LCTRS category, with crest and CRaris as participants. The former achieved
67 confluence and 26 non-confluence proofs on a total of 100 selected problems
from the ARI database. CRaris, which does not (yet) implement techniques for
non-confluence achieved 54 confluence proofs. Currently, crest is the only tool
utilizing a criterion for non-confluence of LCTRSs.

Confluence. All confluence criteria implemented in crest, except (C2), require
left-linearity. For (C3) right-linearity is also required. Left- and right-linearity
is checked only on the non-logical variables. Table 2 presents a summary of the
confluence methods implemented in crest. The full set of benchmarks consists
13 https://project-coco.uibk.ac.at/2024/index.php

(format LCTRS :smtlib 2.6)
(theory Ints)
(fun f (-> Int Int))
(fun g (-> Int Int Int))
(fun a Int)
(rule (f a) (g 4 4))
(rule a (g (+ 1 1) (+ 3 1)))
(rule (g x y) (f (g z y)) :guard (= z (- x 2)))

Fig. 2. ARI file 1529 (without sort annotations and meta information).

J. Schöpf and A. Middeldorp

https://project-coco.uibk.ac.at/2024/index.php
https://ari-cops.uibk.ac.at/ARI/?m=problems&d=ARI&q=1529

137

Table 2. Confluence analysis using methods in crest on 107 LCTRSs.

criterion solved time (AVG) time (total)

termination and joinable critical pairs (C2) 50 4.55 s 487 s
orthogonality (C1) 62 0.10 s 11 s
weak orthogonality (C1) 65 0.12 s 13 s
strongly closed critical pairs (C3) 56 1.21 s 129 s
parallel closed critical pairs (C4) 66 0.44 s 47 s
almost parallel closed critical pairs (C4) 70 11.03 s 1180 s
development closed critical pairs (C5) 66 0.39 s 42 s
almost development closed critical pairs (C5) 71 2.06 s 220 s
parallel closed parallel critical pairs (C6) 71 13.93 s 1490 s

all confluence methods (C1)–(C6) 72 8.40 s 899 s
non-confluence (Lemma 1) 26 1.96 s 210 s
methods (C1)–(C6) + (Lemma 1) 98 1.84 s 197 s

total solved 98 — —

of the 107 problems in the ARI database. crest can prove in a full run with all
methods enabled 72 confluent and 26 non-confluent. Of the remaining 9 prob-
lems, 2 result in "MAYBE" and 7 in a timeout. Interesting to observe is that
(almost) development closedness is way faster than (almost) parallel closedness,
which may be due to the fact that less multi-steps than parallel steps are needed
to turn a constrained critical pair into a trivial one. The number 72 is explained
by the fact that (C5) and (C6) are incomparable: (C5) succeeds on the problem
in Fig. 1 but fails on the one in Fig. 2, while the opposite holds for (C6).

In Table 3 we compare all confluence tools on the same 107 LCTRS problems.
Ctrl supports only weak orthogonality and CRaris in addition the Knuth–Bendix
criterion. Overall crest is able to solve 92 % of the LCTRS problems in the current
ARI database and this percentage is reached even if the timeout is restricted to

Table 3. Confluence analysis of LCTRS tools on 107 LCTRSs.

tool ✓ ✗ ? † solved time (AVG) time (total)

CRaris 58 0 49 — 54 % 0.13 s 14 s
crest 72 26 9 — 92 % 1.84 s 197 s
Ctrl 54 0 49 4 50 % 0.17 s 18 s
prototype 67 0 37 3 63 % 1.14 s 122 s

total solved 72 26 — — 92 % — —

Automated Analysis of LCTRSs Using crest

138

Table 4. Termination analysis using methods in crest on 107 LCTRSs.

method solved time (AVG) time (total)

DP graph (T1) 9 0.08 s 9 s
recursive path order (T2) 27 0.11 s 12 s
recursive path order (T1), (T2) 28 0.11 s 12 s
subterm criterion (T1), (T5) 12 0.12 s 13 s
value criterion (T1), (T3) 34 0.13 s 14 s
special value criterion (T1), (T6) 70 0.12 s 13 s
reduction pairs no SVC (T1)–(T5) 37 0.14 s 15 s
default (T1)–(T6) 74 0.15 s 16 s

total solved 74 — —

10 seconds. The prototype of [34] supports the methods (C1), (C3), (C4) and
proves 67 (63 %) confluent within 122 seconds.

Termination. In Table 4 we compare the different termination methods in crest.
The "dependency graph" method corresponds to (T1) with a check for the ab-
sence of SCCs, "recursive path order" corresponds to (T2), "subterm criterion"
to (T5), "(special) value criterion" to (T3) ((T6)) and "reduction pairs" to (T4).
The methods annotated with (T1) work on DP problems and are applied after
an initial dependency graph analysis. The method "reduction pairs no SVC"
uses (T2), (T3) and (T5) and "default" includes additionally (T6). The latter
constitutes the current default setup in crest.

We continue the evaluation by comparing crest to other termination tools for
LCTRSs. For this comparison we use the higher-order tool Cora and Ctrl. The
experiments in Table 5 show that the tools are comparable in strength on the
LCTRS benchmarks in the ARI database, which is not that surprising as the
implemented methods are similar. All tools together prove 73 % of the LCTRSs
in the ARI database terminating. All those tools fail on the bit vector problem
in Fig. 3 whereas CRaris is able to prove termination (Naoki Nishida, personal

Table 5. Termination analysis of LCTRS tools on 107 LCTRSs.

tool ✓ ? † solved time (AVG) time (total)

Cora 71 30 6 66 % 2.47 s 264 s
crest 74 33 — 69 % 0.15 s 16 s
Ctrl 74 29 4 69 % 0.96 s 103 s

total solved 78 — — 73 % — —

J. Schöpf and A. Middeldorp

139

(format LCTRS :smtlib 2.6)
(theory FixedSizeBitVectors)
(fun cnt (-> (_ BitVec 4) (_ BitVec 4)))
(fun u1 (-> (_ BitVec 4) (_ BitVec 4) (_ BitVec 4) (_ BitVec 4)))
(rule (cnt x) (u1 x #b0000 #b0000))
(rule (u1 x i z) (u1 x (bvadd i #b0001) (bvadd z #b0001))

:guard (bvult i x)))
(rule (u1 x i z) z :guard (not (bvult i x))))

Fig. 3. ARI file 1605 (without sort annotations and meta information).

communication). A fork of the official version of Ctrl14 implements the technique
of [33] for non-termination of LCTRSs. Initial experiments reveal that it succeeds
to prove non-termination of 8 problems in Table 5.

Term Rewrite Systems. In the final experiment we compare crest with the state-
of-the-art in automated confluence proving for TRSs. After parsing an input
TRS, crest attaches a single sort to all function symbols and variables, and
adds an empty constraint to all rules. At this point the TRS can be analyzed
as an LCTRS. We compare crest to the latest winner of the TRS category in
the Confluence Competition, CSI [32], on the 566 TRS benchmarks in the ARI
database. The results can be seen in Table 6. Keeping in mind that there is
some overhead in the analysis of crest on TRSs as all its methods are geared
towards the constrained setting, the 31 % mark is not a bad result. Here it is
important to note that CSI has been actively developed over a ten-year period
and utilizes many more confluence methods—there is several decades of research
on confluence analysis of TRSs while LCTRS confluence analysis is still in its
infancy.

7 Conclusion and Future Work

In this paper we presented crest, an open-source tool for automatically proving
(non-)confluence and termination of LCTRSs. Detailed experiments were pro-
vided to show the power of crest.
14 https://github.com/bytekid/ctrl

Table 6. Confluence analysis of crest and CSI on 566 TRSs.

tool ✓ ✗ ? solved time (AVG) time (total)

crest 100 73 393 31 % 15.87 s 8980 s
CSI 259 192 115 80 % 6.25 s 3540 s

total solved 259 192 — 80 % — —

Automated Analysis of LCTRSs Using crest

https://ari-cops.uibk.ac.at/ARI/?m=problems&d=ARI&q=1605
https://github.com/bytekid/ctrl

140

(format LCTRS :smtlib 2.6)
(theory Reals)
(fun sumroot (-> Real Real))
(fun sqrt (-> Real Real))
(rule (sumroot x) 0.0 :guard (>= 0.0 x))
(rule (sumroot x) (+ (sqrt x) (sumroot (- x 1.0)))

:guard (not (>= 0.0 x)))

Fig. 4. ARI file 1549 (without meta information).

In order to further strengthen the (non-)confluence analysis in crest we plan
to adapt powerful methods like order-sorted decomposition [12] and redundant
rules [31, 38] for plain term rewriting to the constrained setting. Labeling tech-
niques [41] are also on the agenda. The same holds for termination analysis. Natu-
ral candidates are matrix interpretations [11] as well as the higher-order methods
in [14]. Especially termination problems on real values, like the one in Fig. 4,
should be supported in future. Also non-termination analysis of LCTRSs [33] is
of interest. Completion, which is supported in Ctrl [39], is another topic for a
future release of crest. In a recent paper [2] the semantics of LCTRSs is investi-
gated. In that context, concepts like checking consistency of constrained theories
are relevant, which are worthy to investigate from an automation viewpoint.

Since constrained rewriting is highly complex [35, Section 3], a formalization
of the implemented techniques in a proof assistant like Isabelle/HOL is impor-
tant. The recent advances in the formalization and subsequent certification of
advanced confluence techniques [16,21,22] for plain rewriting in connection with
the transformation in [35, Section 4] make this a realistic goal.

Finally, to improve the user experience we aim at a convenient web interface
and a richer command-line strategy.

Code and Availability Statement. The source code and data that support the
contributions of this work are freely available in the Zenodo repository “crest
- Constrained REwriting Software Tool: Artifact for TACAS 2025” at https:
//doi.org/10.5281/zenodo.13969852 [36]. The authors confirm that the data sup-
porting the findings of this study are available within the paper and the artifact.

Acknowledgments. We thank Fabian Mitterwallner for valuable discussions on au-
tomation. We are grateful to the authors of the tools used in the experiments for their
help in obtaining executables and useful insights about their usage. The insightful com-
ments and suggestions provided by the reviewers greatly improved the presentation of
the paper.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

J. Schöpf and A. Middeldorp

https://ari-cops.uibk.ac.at/ARI/?m=problems&d=ARI&q=1549
https://doi.org/10.5281/zenodo.13969852
https://doi.org/10.5281/zenodo.13969852

141

References

1. Aoto, T., Hirokawa, N., Kim, D., Kojima, M., Middeldorp, A., Mitterwallner, F.,
Nishida, N., Saito, T., Schöpf, J., Shintani, K., Thiemann, R., Yamada, A.: A new
format for rewrite systems. In: Proc. 12th International Workshop on Confluence.
pp. 32–37 (2023), available at http://cl-informatik.uibk.ac.at/iwc/iwc2023.pdf

2. Aoto, T., Nishida, N., Schöpf, J.: Equational theories and validity for logically
constrained term rewriting. In: Rehof, J. (ed.) Proc. 9th International Conference
on Formal Structures for Computation and Deduction. Leibniz International Pro-
ceedings in Informatics, vol. 299, pp. 31:1–31:21 (2024). https://doi.org/10.4230/
LIPIcs.FSCD.2024.31

3. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theoretical Computer Science 236, 133–178 (2000). https://doi.org/10.1016/
S0304-3975(99)00207-8

4. Avanzini, M., Moser, G., Schaper, M.: TcT: Tyrolean Complexity Tool. In:
Chechik, M., Raskin, J.F. (eds.) Proc. 22nd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Lecture Notes
in Computer Science, vol. 9636, pp. 407–423 (2016). https://doi.org/10.1007/
978-3-662-49674-9_24

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

6. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Proc. 28th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. Lecture Notes in Computer Science, vol. 13243, pp. 415–442 (2022). https:
//doi.org/10.1007/978-3-030-99524-9_24

7. Ciobâcă, S., Lucanu, D., Buruiană, A.S.: Operationally-based program equivalence
proofs using LCTRSs. Journal of Logical and Algebraic Methods in Programming
135, 100894 (2023). https://doi.org/10.1016/j.jlamp.2023.100894

8. Ciobâcă, S., Lucanu, D.: A coinductive approach to proving reachability prop-
erties in logically constrained term rewriting systems. In: Galmiche, D., Schulz,
S., Sebastiani, R. (eds.) Proc. 9th International Joint Conference on Automated
Reasoning. Lecture Notes in Artificial Intelligence, vol. 10900, pp. 295–311 (2018).
https://doi.org/10.1007/978-3-319-94205-6_20

9. Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Sci-
ence 17(3), 279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

10. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Proc. 26th International
Conference on Computer Aided Verification. Lecture Notes in Computer Science,
vol. 8559, pp. 737–744 (2014). https://doi.org/10.1007/978-3-319-08867-9_49

11. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. Journal of Automated Reasoning 40(2-3), 195–220
(2007). https://doi.org/10.1007/s10817-007-9087-9

12. Felgenhauer, B., Middeldorp, A., Zankl, H., van Oostrom, V.: Layer systems for
proving confluence. ACM Transactions on Computational Logic 16(2:14), 1–32
(2015). https://doi.org/10.1145/2710017

13. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained
rewriting induction. ACM Transactions on Computational Logic 18(2), 14:1–14:50
(2017). https://doi.org/10.1145/3060143

Automated Analysis of LCTRSs Using crest

http://cl-informatik.uibk.ac.at/iwc/iwc2023.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2024.31
https://doi.org/10.4230/LIPIcs.FSCD.2024.31
https://doi.org/10.4230/LIPIcs.FSCD.2024.31
https://doi.org/10.4230/LIPIcs.FSCD.2024.31
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1016/j.jlamp.2023.100894
https://doi.org/10.1016/j.jlamp.2023.100894
https://doi.org/10.1007/978-3-319-94205-6_20
https://doi.org/10.1007/978-3-319-94205-6_20
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/s10817-007-9087-9
https://doi.org/10.1007/s10817-007-9087-9
https://doi.org/10.1145/2710017
https://doi.org/10.1145/2710017
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143

142

14. Guo, L., Hagens, K., Kop, C., Vale, D.: Higher-order constrained dependency pairs
for (universal) computability. In: Královič, R., Kučera, A. (eds.) Proc. 49th Inter-
national Symposium on Mathematical Foundations of Computer Science. Leib-
niz International Proceedings in Informatics, vol. 306, pp. 57:1–57:15 (2024).
https://doi.org/10.4230/LIPIcs.MFCS.2024.57

15. Guo, L., Kop, C.: Higher-order LCTRSs and their termination. In: Weirich, S. (ed.)
Proc. 33rd European Symposium on Programming. Lecture Notes in Computer Sci-
ence, vol. 14577, pp. 331–357 (2024). https://doi.org/10.1007/978-3-031-57267-8_
13

16. Hirokawa, N., Kim, D., Shintani, K., Thiemann, R.: Certification of confluence-
and commutation-proofs via parallel critical pairs. In: Timany, A., Traytel, D.,
Pientka, B., Blazy, S. (eds.) Proc. 13th ACM SIGPLAN International Conference
on Certified Programs and Proofs. pp. 147–161. ACM (2024). https://doi.org/10.
1145/3636501.3636949

17. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom,
V. (ed.) Proc. 15th International Conference on Rewriting Techniques and Ap-
plications. Lecture Notes in Computer Science, vol. 3091, pp. 249–268 (2004).
https://doi.org/10.1007/978-3-540-25979-4_18

18. Jouannaud, J.P., Rubio, A.: The higher-order recursive path ordering. In: Proc.
14th Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 402–411
(1999). https://doi.org/10.1109/LICS.1999.782635

19. Jürgen, Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Com-
bining techniques for automated termination proofs. In: Baader, F., Voronkov, A.
(eds.) Proc. 11th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning. Lecture Notes in Computer Science, vol. 3452, pp.
301–331 (2005). https://doi.org/10.1007/978-3-540-32275-7_21

20. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Com-
putational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970).
https://doi.org/10.1016/B978-0-08-012975-4.50028-X

21. Kohl, C., Middeldorp, A.: A formalization of the development closedness criterion
for left-linear term rewrite systems. In: Krebbers, R., Traytel, D., Pientka, B.,
Zdancewic, S. (eds.) Proc. 12th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs. pp. 197–210 (2023). https://doi.org/10.1145/3573105.
3575667

22. Kohl, C., Middeldorp, A.: Formalizing almost development closed critical pairs.
In: Naumowicz, A., Thiemann, R. (eds.) Proc. 14th International Conference on
Interactive Theorem Proving. Leibniz International Proceedings in Informatics,
vol. 268, pp. 38:1–38:8 (2023). https://doi.org/10.4230/LIPIcs.ITP.2023.38

23. Kojima, M., Nishida, N.: From starvation freedom to all-path reachability prob-
lems in constrained rewriting. In: Hanus, M., Inclezan, D. (eds.) Proc. 25th In-
ternational Symposium on Practical Aspects of Declarative Languages. Lecture
Notes in Computer Science, vol. 13880, pp. 161–179 (2023). https://doi.org/10.
1007/978-3-031-24841-2_11

24. Kop, C.: Termination of LCTRSs. CoRR abs/1601.03206 (2016). https://doi.
org/10.48550/ARXIV.1601.03206

25. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) Proc. 9th International Symposium on Fron-
tiers of Combining Systems. Lecture Notes in Artificial Intelligence, vol. 8152, pp.
343–358 (2013). https://doi.org/10.1007/978-3-642-40885-4_24

J. Schöpf and A. Middeldorp

https://doi.org/10.4230/LIPIcs.MFCS.2024.57
https://doi.org/10.4230/LIPIcs.MFCS.2024.57
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1145/3636501.3636949
https://doi.org/10.1145/3636501.3636949
https://doi.org/10.1145/3636501.3636949
https://doi.org/10.1145/3636501.3636949
https://doi.org/10.1007/978-3-540-25979-4_18
https://doi.org/10.1007/978-3-540-25979-4_18
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.1109/LICS.1999.782635
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.4230/LIPIcs.ITP.2023.38
https://doi.org/10.4230/LIPIcs.ITP.2023.38
https://doi.org/10.1007/978-3-031-24841-2_11
https://doi.org/10.1007/978-3-031-24841-2_11
https://doi.org/10.1007/978-3-031-24841-2_11
https://doi.org/10.1007/978-3-031-24841-2_11
https://doi.org/10.48550/ARXIV.1601.03206
https://doi.org/10.48550/ARXIV.1601.03206
https://doi.org/10.48550/ARXIV.1601.03206
https://doi.org/10.48550/ARXIV.1601.03206
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24

143

26. Kop, C., Nishida, N.: Automatic constrained rewriting induction towards verifying
procedural programs. In: Garrigue, J. (ed.) Proc. 12th Asian Symposium on Pro-
gramming Languages and Systems. Lecture Notes in Computer Science, vol. 8858,
pp. 334–353 (2014). https://doi.org/10.1007/978-3-319-12736-1_18

27. Kop, C., Nishida, N.: Constrained Term Rewriting tooL. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) Proc. 20th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning. Lecture Notes in
Artificial Intelligence, vol. 9450, pp. 549–557 (2015). https://doi.org/10.1007/
978-3-662-48899-7_38

28. Kusakari, K., Sakai, M.: Enhancing dependency pair method using strong com-
putability in simply-typed term rewriting. Applicable Algebra in Engineering,
Communication and Computing 18(5), 407–431 (2007). https://doi.org/10.1007/
S00200-007-0046-9

29. Matsumi, A., Nishida, N., Kojima, M., Shin, D.: On singleton self-loop removal
for termination of LCTRSs with bit-vector arithmetic. CoRR abs/2307.14094
(2023). https://doi.org/10.48550/arXiv.2307.14094

30. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Proc. 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24

31. Nagele, J., Felgenhauer, B., Middeldorp, A.: Improving automatic confluence
analysis of rewrite systems by redundant rules. In: Fernández, M. (ed.) Proc.
26th International Conference on Rewriting Techniques and Applications. Leib-
niz International Proceedings in Informatics, vol. 36, pp. 257–268 (2015). https:
//doi.org/10.4230/LIPIcs.RTA.2015.257

32. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: New evidence — a progress
report. In: de Moura, L. (ed.) Proc. 26th International Conference on Automated
Deduction. Lecture Notes in Artificial Intelligence, vol. 10395, pp. 385–397 (2017).
https://doi.org/10.1007/978-3-319-63046-5_24

33. Nishida, N., Winkler, S.: Loop detection by logically constrained term rewriting.
In: Piskac, R., Rümmer, P. (eds.) Proc. 10th International Conference on Verified
Software: Theories, Tools, and Experiments. Lecture Notes in Computer Science,
vol. 11294, pp. 309–321 (2018). https://doi.org/10.1007/978-3-030-03592-1_18

34. Schöpf, J., Middeldorp, A.: Confluence criteria for logically constrained rewrite
systems. In: Pientka, B., Tinelli, C. (eds.) Proc. 29th International Conference
on Automated Deduction. Lecture Notes in Artificial Intelligence, vol. 14132, pp.
474–490 (2023). https://doi.org/10.1007/978-3-031-38499-8_27

35. Schöpf, J., Mitterwallner, F., Middeldorp, A.: Confluence of logically constrained
rewrite systems revisited. In: Benzmüller, C., Heule, M.J., Schmidt, R.A. (eds.)
Proc. 12th International Joint Conference on Automated Reasoning. Lecture Notes
in Artificial Intelligence, vol. 14740, pp. 298–316 (2024). https://doi.org/10.1007/
978-3-031-63501-4_16

36. Schöpf, J., Middeldorp, A.: crest - Constrained REwriting Software Tool: Artifact
for TACAS 2025 (Oct 2024). https://doi.org/10.5281/zenodo.13969852

37. Schöpf, J., Middeldorp, A.: Automated analysis of logically constrained rewrite
systems using crest. CoRR abs/2501.05240 (2025). https://doi.org/10.48550/
arXiv.2501.05240

38. Shintani, K., Hirokawa, N.: Compositional confluence criteria. Logical Methods in
Computer Science 20(1) (2024). https://doi.org/10.46298/lmcs-20(1:6)2024

Automated Analysis of LCTRSs Using crest

https://doi.org/10.1007/978-3-319-12736-1_18
https://doi.org/10.1007/978-3-319-12736-1_18
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1007/S00200-007-0046-9
https://doi.org/10.1007/S00200-007-0046-9
https://doi.org/10.1007/S00200-007-0046-9
https://doi.org/10.1007/S00200-007-0046-9
https://doi.org/10.48550/arXiv.2307.14094
https://doi.org/10.48550/arXiv.2307.14094
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/978-3-030-03592-1_18
https://doi.org/10.1007/978-3-030-03592-1_18
https://doi.org/10.1007/978-3-031-38499-8_27
https://doi.org/10.1007/978-3-031-38499-8_27
https://doi.org/10.1007/978-3-031-63501-4_16
https://doi.org/10.1007/978-3-031-63501-4_16
https://doi.org/10.1007/978-3-031-63501-4_16
https://doi.org/10.1007/978-3-031-63501-4_16
https://doi.org/10.5281/zenodo.13969852
https://doi.org/10.5281/zenodo.13969852
https://doi.org/10.48550/arXiv.2501.05240
https://doi.org/10.48550/arXiv.2501.05240
https://doi.org/10.48550/arXiv.2501.05240
https://doi.org/10.48550/arXiv.2501.05240
https://doi.org/10.46298/lmcs-20(1:6)2024
https://doi.org/10.46298/lmcs-20(1:6)2024

144

39. Winkler, S., Middeldorp, A.: Completion for logically constrained rewriting. In:
Kirchner, H. (ed.) Proc. 3rd International Conference on Formal Structures for
Computation and Deduction. Leibniz International Proceedings in Informatics,
vol. 108, pp. 30:1–30:18 (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.30

40. Winkler, S., Moser, G.: Runtime complexity analysis of logically constrained rewrit-
ing. In: Fernández, M. (ed.) Proc. 30th International Symposium on Logic-Based
Program Synthesis and Transformation. Lecture Notes in Computer Science, vol.
12561, pp. 37–55 (2021). https://doi.org/10.1007/978-3-030-68446-4_2

41. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams.
Journal of Automated Reasoning 54(2), 101–133 (2015). https://doi.org/10.1007/
s10817-014-9316-y

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

J. Schöpf and A. Middeldorp

https://doi.org/10.4230/LIPIcs.FSCD.2018.30
https://doi.org/10.4230/LIPIcs.FSCD.2018.30
https://doi.org/10.1007/978-3-030-68446-4_2
https://doi.org/10.1007/978-3-030-68446-4_2
https://doi.org/10.1007/s10817-014-9316-y
https://doi.org/10.1007/s10817-014-9316-y
https://doi.org/10.1007/s10817-014-9316-y
https://doi.org/10.1007/s10817-014-9316-y
http://creativecommons.org/licenses/by/4.0/

	Automated Analysis of Logically Constrained Rewrite Systems using crest
	1 Introduction
	2 Logically Constrained Term Rewriting
	3 Confluence and Termination
	4 Automation
	5 Improving the Analysis via Transformations
	6 Experimental Evaluation
	7 Conclusion and Future Work
	References

