
Formalizing Simultaneous Critical Pairs for
Confluence of Left-Linear Rewrite Systems

Christina Kirk
University of Innsbruck

Innsbruck, Austria
christina.kirk@student.uibk.ac.at

Aart Middeldorp
University of Innsbruck

Innsbruck, Austria
aart.middeldorp@uibk.ac.at

Abstract
We report on the formalization of a sufficient condition for
confluence of first-order left-linear rewrite systems within
the proof assistant Isabelle/HOL. This criterion, originally
proposed by Okui (1998), is based on simultaneous critical
pairs, which finitely represent peaks consisting of a multi-
step and a normal step. It properly subsumes the formalized
result on development-closed critical pairs.

CCS Concepts: • Theory of computation→ Equational
logic and rewriting; Logic and verification.

Keywords: formalization, term rewriting, confluence

ACM Reference Format:
Christina Kirk and Aart Middeldorp. 2025. Formalizing Simulta-
neous Critical Pairs for Confluence of Left-Linear Rewrite Sys-
tems. In Proceedings of the 14th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs (CPP ’25), January 20–
21, 2025, Denver, CO, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3703595.3705881

1 Introduction
Confluence is one of the most-studied properties of rewrite
systems. Numerous sufficient conditions for (non-)confluence
are known and implemented in software tools that compete
in the annual confluence competition. Recently there has
been an increased activity to formalize confluence condi-
tions in proof assistants. In the past two years three papers
[9, 11, 12] were published, reporting on the Isabelle/HOL
formalization of advanced confluence criteria based on re-
stricted joinability conditions of (parallel) critical pairs for
left-linear rewrite systems: (almost) development closedness
of critical pairs (van Oostrom [26, 27]) and sufficient conflu-
ence conditions based on parallel critical pairs (Gramlich [8],
Toyama [25], Shintani and Hirokawa [22]). Extending this
line of research, the formalization of Okui’s confluence cri-
terion [19] is a natural and significant progression.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CPP ’25, January 20–21, 2025, Denver, CO, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1347-7/25/01
https://doi.org/10.1145/3703595.3705881

The general idea of critical pair criteria is the following.
In order to show confluence, for all peaks 𝑠 ∗← 𝑡 →∗ 𝑢 a
common reduct 𝑣 of 𝑠 and 𝑢 must be found. The problem is
that there can be infinitely many peaks. One solution is to
consider only local peaks 𝑠 ← 𝑡 → 𝑢 consisting of two single
steps, and to prove that 𝑠 and𝑢 can be joined in a special way
(e.g., by a parallel or multi-step. Conditions on the rewrite
system (e.g., termination or left-linearity) then ensure that
the joinability of local peaks extends to arbitrary peaks. Criti-
cal pairs provide a finite and computable description of those
local peaks that are critical for confluence.

The starting point of the formalized confluence results in
Hirokawa et al. [9] are local peaks 𝑠 ∥←− 𝑡 → 𝑢 consisting of
a parallel step and a single step, which are finitely character-
ized by so-called parallel critical pairs. In this paper we report
on a formalization of the confluence result of Okui [19], in
which local peaks 𝑠 ◦←− 𝑡 → 𝑢 consisting of a multi-step
and a single step are considered. Simultaneous critical pairs
provide a finite characterization of these. The joinability
condition is 𝑠 →∗ 𝑣 ◦←− 𝑢 and, together with left-linearity,
guarantees confluence. Okui’s result properly generalizes
the earlier results of van Oostrom [26, 27], but it is incompa-
rable to the confluence results based on parallel critical pairs.
One advantage of using multi-steps, which are also called
development steps, is that it opens the way for higher-order
rewriting, an important topic which is, however, beyond cur-
rent formalization efforts. Okui’s result is implemented in
at least two confluence tools (ACP [1] and CSI [15]), and so
our contribution will help close the verification gap in the
confluence competition.1
One of the major challenges we faced when attempting

to formalize Okui’s result is to formally define simultaneous
critical pairs. Okui [19, Section 3] employs residuals and com-
plete developments. Inspired by the successful formalization
[11, 12] of development closed critical pairs [26, 27], it is nat-
ural to use proof terms [24, 28] which effectively represent
multi-steps and have a simple inductive definition. This, how-
ever, is not enough. In contrast to parallel critical pairs [9],
when computing a most general unifier, the individual equa-
tions that make up the unification problem cannot be treated
independently because of nesting, so the order in which we
compose the substitutions to obtain a most general unifier
is crucial. Further, since the same left-hand side can appear

1https://project-coco.uibk.ac.at/

156

https://orcid.org/0000-0002-8470-2485
https://orcid.org/0000-0001-7366-8464
https://doi.org/10.1145/3703595.3705881
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3703595.3705881
https://project-coco.uibk.ac.at/
https://creativecommons.org/licenses/by/4.0/

CPP ’25, January 20–21, 2025, Denver, CO, USA Christina Kirk and Aart Middeldorp

multiple times in the construction of a simultaneous critical
pair, we must take renamings seriously, and the bookkeeping
of these adds another layer of complexity to the formalized
proof. Like parallel critical pairs, each simultaneous critical
pair includes a root step, but unlike in parallel critical pairs,
this root step can occur in either the multi-step or the single
step. The position of the root step significantly influences
the structure of the simultaneous critical pair, necessitating
careful case analysis. This explains why a large part of this
paper is devoted to the formal, proof term based, definition
of simultaneous critical pairs.
The remainder of this paper is structured as follows. We

start with some preliminaries on term rewriting in Section 2.
Then we recap proof terms in Section 3 and introduce some
new definitions and results. In Section 4 we address the
kind of unification problem involved in simultaneous critical
pairs. In Section 5 we present simultaneous critical pairs,
followed by the formalization of Okui’s result in Section 6.
We conclude with a discussion of related work in Section 7
and some final remarks as well as directions for future work
in Section 8.
One of the aims of this paper is to provide a detailed

account of the proof steps involved in formalizing Okui’s
confluence result, in order to facilitate future extensions or
formalizations in other proof assistants. Consequently, some
sections of this paper are quite technical and may not appeal
to all readers. Readers mainly interested in the final result,
may choose to skip the technical details in Sections 3, 4,
and 6.1.

We conclude this section with a motivating example.

Example 1.1. The rewrite system consisting of the rules

g(f (b, 𝑥)) → g(h(h(f (f (h(k(k(𝑥, 𝑥), 𝑥)),
h(k(k(𝑥, 𝑥), 𝑥))), h(k(k(𝑥, 𝑥), 𝑥))))))

f (𝑥, b) → h(f (f (𝑥, 𝑥), 𝑥))
k(𝑥, b) → f (𝑥, b)

has one critical peak starting from the term g(f (b, b)) and
applying either the first or second rule. The results of [9,
26, 27] do not apply, since nested steps from both directions
are needed to close the peak. Okui’s criterion, however, is
readily applicable, as confirmed by ACP and CSI.2

2 Preliminaries
Previous experience with Isabelle is not necessary for fol-
lowing our proof, but familiarity with the basics of term
rewriting [2, 24] will be helpful. Below we recall some defi-
nitions and notations.

2.1 Term Rewriting
A term rewrite system R is a set of directed equations, so-
called rewrite rules, which induces a relation→R on terms.
2https://ari-cops.uibk.ac.at/CoCo/2024/full-run/TRS/?q=464.ari

Let F be a signature (consisting of function symbols 𝑓 , 𝑔,
. . . with associated arities) andV an infinite set of variables
{𝑥,𝑦, . . . } disjoint from F . By T (F ,V) we denote the set of
terms 𝑠 , 𝑡 , . . . overF andV . A context is a term containing ex-
actly one occurrence of the special constant symbol □, which
is called hole. If𝐶 is a context then𝐶 [𝑡] denotes the result of
replacing the hole by 𝑡 . Positions are strings of positive natu-
ral numbers used to address subterm occurrences. The set of
positions of a term 𝑡 is defined as Pos(𝑡) = {𝜖 } if 𝑡 is a vari-
able and as Pos(𝑡) = {𝜖 }∪{𝑖𝑞 | 1 ⩽ 𝑖 ⩽ 𝑛 and 𝑞 ∈ Pos(𝑡𝑖) }
if 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑛). The subterm of 𝑡 at position 𝑝 ∈ Pos(𝑡)
is defined as 𝑡 |𝑝 = 𝑡 if 𝑝 = 𝜖 and as 𝑡 |𝑝 = 𝑡𝑖 |𝑞 if 𝑝 = 𝑖𝑞 and
𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑛). We write 𝑠 [𝑡]𝑝 for the result of replacing
the subterm at position 𝑝 of 𝑠 with 𝑡 . The symbol in 𝑡 at
position 𝑝 ∈ Pos(𝑡) is denoted by 𝑡 (𝑝). We write 𝑞 ⩽ 𝑝 if
𝑞𝑞′ = 𝑝 for some position 𝑞′, in which case 𝑝\𝑞 is defined to
be 𝑞′. Furthermore 𝑞 < 𝑝 if 𝑞 ⩽ 𝑝 and 𝑞 ≠ 𝑝 . Finally, posi-
tions 𝑞 and 𝑝 are parallel, written as 𝑞 ∥ 𝑝 , if neither 𝑞 ⩽ 𝑝

nor 𝑝 < 𝑞. We denote the subset of Pos(𝑡) of non-variable
positions (i.e., the positions 𝑝 ∈ Pos(𝑡) such that 𝑡 |𝑝 ∉ V)
by PosF (𝑡). We writeVar(𝑡) for the set of variables occur-
ring in the term 𝑡 . A term is linear if every variable occurs
at most once in it. Given a linear term 𝑡 , we write var(𝑡)
for the list (𝑥1, . . . , 𝑥𝑛) of variables appearing in 𝑡 in some
fixed order. Moreover, vpos(𝑡) denotes the corresponding
list (𝑝1, . . . , 𝑝𝑛) of positions in 𝑡 where these variables occur.
A substitution is a map 𝜎 fromV to T (F ,V) such that its
domain dom(𝜎) = {𝑥 ∈ V | 𝜎 (𝑥) ≠ 𝑥 } is finite. We write
𝑡𝜎 for the result of applying 𝜎 to the term 𝑡 .

A rewrite rule is a pair of terms (ℓ, 𝑟), written ℓ → 𝑟 , such
that Var(𝑟) ⊆ Var(ℓ) and ℓ is not a variable. A rewrite
rule ℓ → 𝑟 is left-linear if ℓ is linear, it is called erasing if
Var(𝑟) ⊊ Var(ℓ). A variant of a rewrite rule is obtained by
renaming its variables. A term rewrite system (TRS) is a set
of rewrite rules over a signature. In the sequel, signatures are
left implicit. A TRS is left-linear if all its rules are left-linear. A
TRS R induces the relation→R defined on terms as follows:
𝑠 →R 𝑡 if there exists a position 𝑝 ∈ Pos(𝑠), a rewrite rule
ℓ → 𝑟 ∈ R and a substitution 𝜎 such that 𝑠 |𝑝 = ℓ𝜎 and
𝑡 = 𝑠 [𝑟𝜎]𝑝 . The subterm 𝑠 |𝑝 = ℓ𝜎 is called a redex, the pair
(𝑝, ℓ) is called a redex pattern. Replacing ℓ𝜎 by 𝑟𝜎 in 𝑠 is called
contracting the redex ℓ𝜎 . Two redex patterns (𝑝1, ℓ1) and
(𝑝2, ℓ2) overlap if 𝑝1 ⩽ 𝑝2 and 𝑝2\𝑝1 ∈ PosF (𝑙2), or 𝑝2 ⩽ 𝑝1
and 𝑝1\𝑝2 ∈ PosF (𝑙1). Multiple redex-patterns of a term
𝑠 which do not overlap, can be contracted simultaneously
in a multi-step. The multi-step relation ◦−→R is inductively
defined on terms as follows: 𝑥 ◦−→R 𝑥 for all variables 𝑥 ,
𝑓 (𝑠1, . . . , 𝑠𝑛) ◦−→R 𝑓 (𝑡1, . . . , 𝑡𝑛) if 𝑠𝑖 ◦−→R 𝑡𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛,
and ℓ𝜎 ◦−→R 𝑟𝜏 if ℓ → 𝑟 ∈ R and 𝜎 (𝑥) ◦−→R 𝜏 (𝑥) for
all 𝑥 ∈ Var(ℓ). From the definition it easily follows that
→R ⊆ ◦−→R for any TRS R. Whenever the underlying TRS
R is clear from the context, we omit the index in ◦−→R and
simply write ◦−→.

157

https://ari-cops.uibk.ac.at/CoCo/2024/full-run/TRS/?q=464.ari

Formalizing Simultaneous Critical Pairs for Confluence of Left-Linear Rewrite Systems CPP ’25, January 20–21, 2025, Denver, CO, USA

Besides termination, which forbids infinite computations,
confluence has been conceived as one of the central properties
of rewriting. A TRS R is confluent if for all terms 𝑠 , 𝑡 and
𝑢 such that 𝑠 →∗R 𝑡 and 𝑠 →∗R 𝑢 (here →∗R denotes the
transitive reflexive closure of→R) there exists a term 𝑣 such
that 𝑡 →∗R 𝑣 and 𝑢 →∗R 𝑣 . A relation→ is strongly confluent
if← · → ⊆ →∗ · ←. It is well-known that strong confluence
implies confluence and that we can conclude confluence of
→ from confluence of a relation→1 for which→∗1 =→∗.

Lemma 2.1. Let→,→1 and→2 be binary relations.
1. If→ is strongly confluent then→ is confluent.
2. If →1 ⊆ →2 ⊆ →∗1 and →2 is confluent then →1 is

confluent.

When applying this lemma to prove Okui’s confluence
criterion, we will first instantiate→ with ◦−→ and establish
strong confluence of ◦−→. By the first item we then obtain
confluence of ◦−→. Finally, we use the second item with the
property→ ⊆ ◦−→ ⊆ →∗ to obtain confluence of→.

2.2 Isabelle/HOL
Our formalization is developed in the proof assistant Is-
abelle/HOL [18] and is part of the Isabelle Formalization
of Rewriting (IsaFoR),3 a comprehensive library of formal-
ized results for rewriting. Having this robust foundation of
definitions and lemmas related to terms, term rewrite sys-
tems, and proof terms was crucial for the success of the
formalization discussed in this paper. Working with such an
established library poses its own challenges however. De-
signing new definitions in such a way that they fit nicely
into the existing framework is crucial for being able to reuse
facts. Additionally, it is not always easy to find relevant
lemmas for specific goals. Learning to look for the right re-
sults with Isabelle’s search functionality, especially using
type patterns, proved to be an essential skill. Another in-
dispensable tool was Sledgehammer [4, 5], which comes as
part of the Isabelle installation. Sledgehammer enables au-
tomated proof generation by applying theorem provers and
satisfiability-modulo-theories (SMT) solvers to the current
goal using hundreds of facts from the current theory context.
So instead of hand-selecting and applying appropriate facts,
we often leveraged Sledgehammer’s selection heuristic and
the abilities of external provers like E, SPASS, Vampire, and
Zipperposition, as well as the SMT solvers CVC4, veriT, and
Z3.

To formalize Okui’s simultaneous critical pairs, we heavily
utilized Isabelle’s contexts and locales. Contexts allow global
assumptions and variable declarations within a fixed scope.
Locales are named, and therefore reusable, contexts. More-
over, by using locale expressions one can compose locale spec-
ifications, providing even better modularity [3]. These con-
cepts enabled us to group intermediate results with shared

3http://cl-informatik.uibk.ac.at/isafor

preconditions into compact, self-contained modules, improv-
ing code organization and reusability. Further details on this
structure are provided in Section 3.4 and Section 6.2.
HTML versions of the theories relevant to this paper are

provided via the following URL:
http://informatik-protem.uibk.ac.at/Okui/

The HTML versions have Isabelle syntax highlighting and
usages of lemmas are hyperlinked, so one can easily navigate
to the results that a certain lemma depends on. We annotated
important results in this paper by the Isabelle logo which
directly links to the HTML presentation of the corresponding
result.

3 Proof Terms
Proof terms represent computations in term rewriting. They
were introduced by van Oostrom and de Vrijer for first-order
left-linear rewrite systems to study equivalence of reductions
in [28] and [24, Chapter 8]. Proof terms were used in the
formalization of development closed critical pairs [11, 12].
The material in this section extends the description in [11]
with operations and results required for the formalization of
simultaneous critical pairs.
Proof terms are built from function symbols, variables,

and rule symbols. Rule symbols represent rewrite rules and
have a fixed arity which is the number of different variables
in the represented rule. In this way we can represent any
multi-step as a proof term. The special case of a proof term
with only one rule symbol corresponds to a single step and a
proof term without any rule symbols denotes an empty step.
We use Greek letters (𝛼, 𝛽,𝛾, . . .) for rule symbols and

uppercase letters (𝐴, 𝐵,𝐶, . . .) for proof terms. If 𝛼 is a rule
symbol then lhs(𝛼) (rhs(𝛼)) denotes the left-hand (right-
hand) side of the rewrite rule denoted by 𝛼 . Furthermore
var(𝛼) = var(lhs(𝛼)) and similarly vpos(𝛼) = vpos(lhs(𝛼)).
The length of this list is the arity of 𝛼 . Given a rule symbol
𝛼 with var(𝛼) = (𝑥1, . . . , 𝑥𝑛) and terms 𝑡1, . . . , 𝑡𝑛 , we write
⟨𝑡1, . . . , 𝑡𝑛⟩𝛼 for the substitution {𝑥𝑖 ↦→ 𝑡𝑖 | 1 ⩽ 𝑖 ⩽ 𝑛 }. Given
a substitution 𝜎 wewrite 𝛼 (𝜎) to denote 𝛼 (𝜎 (𝑥1), . . . , 𝜎 (𝑥𝑛)).
Given a proof term𝐴, its source src(𝐴) and target tgt(𝐴) are
computed by the following clauses:

src(𝑥) = tgt(𝑥) = 𝑥

src(𝑓 (𝐴1, . . . , 𝐴𝑛)) = 𝑓 (src(𝐴1), . . . , src(𝐴𝑛))
src(𝛼 (𝐴1, . . . , 𝐴𝑛)) = lhs(𝛼)⟨src(𝐴1), . . . , src(𝐴𝑛)⟩𝛼
tgt(𝑓 (𝐴1, . . . , 𝐴𝑛)) = 𝑓 (tgt(𝐴1), . . . , tgt(𝐴𝑛))
tgt(𝛼 (𝐴1, . . . , 𝐴𝑛)) = rhs(𝛼)⟨tgt(𝐴1), . . . , tgt(𝐴𝑛)⟩𝛼

The proof term 𝐴 is a witness of the multi-step src(𝐴) ◦−→
tgt(𝐴). For every multi-step there exists a proof term wit-
nessing it. Proof terms 𝐴 and 𝐵 are said to be co-initial if
they have the same source. The following example illustrates
these concepts.

158

http://cl-informatik.uibk.ac.at/isafor
http://informatik-protem.uibk.ac.at/Okui/

CPP ’25, January 20–21, 2025, Denver, CO, USA Christina Kirk and Aart Middeldorp

Example 3.1. Consider the left-linear TRS R1 consisting of
the rules:

𝜶 : f (g(𝑥), 𝑦) → f (𝑦,𝑦) 𝜷 : g(a) → g(b) 𝜸 : a→ c

and the proof terms

𝐴 = f (g(a), 𝜷) 𝐵 = f (g(𝜸), g(a)) 𝐶 = 𝜶 (a, 𝜷)
𝐴, 𝐵 and 𝐶 are co-initial. 𝐴 and 𝐵 represent single steps

f (g(a), g(a)) → f (g(a), g(b))
f (g(a), g(a)) → f (g(c), g(a))

and 𝐶 represents a multi-step

f (g(a), g(a)) ◦−→ f (g(b), g(b))

We state some simple results about src and tgt.

Lemma 3.2.

Var(src(𝐴)) = Var(𝐴) ⊇ Var(tgt(𝐴))
Moreover, for any proof term 𝐴, 𝐴 is a linear term if and only
if its source src(𝐴) is a linear term.

Note that Var(tgt(𝐴)) = Var(𝐴) does not hold in gen-
eral, since erasing rules can make variables disappear.

In the setting of left-linear TRSs we can extend the defini-
tion of src to contexts of proof terms by adding the clause
src(□) = □. Doing the same for tgt or for arbitrary TRSs
however could lead to more than one hole appearing in the
computation. The following result is an easy consequence
of the idempotence of src and tgt.

Lemma 3.3. For any substitution 𝜎 over proof terms, proof
term context𝐶 , proof term𝐴 and simple terms 𝑠 and 𝑡 we have

1. src(𝐴𝜎) = src(𝐴) · (src ◦ 𝜎)
tgt(𝐴𝜎) = tgt(𝐴) · (tgt ◦ 𝜎)

src(𝑠 [𝐴]𝑝) = 𝑠 [src(𝐴)]𝑝
tgt(𝑠 [𝐴]𝑝) = 𝑠 [tgt(𝐴)]𝑝
src(𝐶 [𝐴]) = src(𝐶 [src(𝐴)]) = src(𝐶) [src(𝐴)])
tgt(𝐶 [𝐴]) = tgt(𝐶 [tgt(𝐴)])

2. if 𝑠 →∗ 𝑡 then tgt(𝐶 [𝑠𝜎]) →∗ tgt(𝐶 [𝑡𝜎]) □

3.1 Operations on Proof Terms
For co-initial proof terms 𝐴 and 𝐵 we define the binary join
(⊔) and residual (/) operations. The residual 𝐴 / 𝐵 is used to
compute which redexes in 𝐴 remain after contracting the
redexes of 𝐵 and 𝐴 ⊔ 𝐵 is used to obtain a single proof term
containing all redexes of 𝐴 and 𝐵. Note that these are partial
operations. The result is defined whenever the redexes of the
two proof terms do not interfere with each other. We use the
binary orthogonality predicate (⊥) to model this condition.4
For working with simultaneous critical pairs we want to
combine an arbitrary number of proof terms into a single
4In contrast to previous works on proof terms [10, 11], we consider two
co-initial proof terms with the same rule symbols to be orthogonal.

proof term, so we extend the usual definition by introducing
an 𝑛-ary join operation (

⊔
) for 𝑛 > 0.

Definition 3.4. Let𝐴 and 𝐵 be proof terms. The orthogonal-
ity predicate 𝐴 ⊥ 𝐵, the residual operation 𝐴 / 𝐵, the binary
join operation 𝐴 ⊔ 𝐵 and the 𝑛-ary join operation

𝑛⊔
𝑖=1

𝐴𝑖 for 𝑛 ⩾ 1

are inductively defined by the clauses in Table 1.

Example 3.5. Consider again the TRS R1 and proof terms
𝐴, 𝐵,𝐶 from Example 3.1.𝐴, 𝐵 and𝐶 are pairwise orthogonal
and

𝐴 ⊔ 𝐵 ⊔𝐶 = 𝐴 ⊔ 𝜶 (𝜸 , 𝜷) = 𝜶 (𝜸 , 𝜷)
Moreover,

f (𝜷, g(a)) ̸⊥ 𝜶 (a, g(a))
𝐴 / 𝐵 = f (g(c), 𝜷) and 𝐵 /𝐶 = f (g(b), g(b))

There exist many interesting algebraic properties of the
residual and join operations. For example ⊔ is commuta-
tive and associative and src is its identity, in the sense that
src(𝐴) ⊔𝐴 = 𝐴 ⊔ src(𝐴) = 𝐴.5 We present a small selection
of results which will be used in the proofs later on.

Lemma 3.6. For any proof terms 𝐴 and 𝐵, substitution 𝜎 and
context 𝐶 :

1. If 𝐴 / 𝐵 and 𝐵 /𝐴 are defined then src(𝐵 /𝐴) = tgt(𝐴)
and tgt(𝐴 / 𝐵) = tgt(𝐵 /𝐴).

2. src(𝐴) = src(𝐵) ∧𝐴𝜎 ⊥ 𝐵𝜎 =⇒ 𝐴 ⊥ 𝐵

𝐶 [𝐴] ⊥ 𝐶 [𝐵] =⇒ 𝐴 ⊥ 𝐵

The first item of Lemma 3.6 has already been formalized
in Isabelle as part of [11], the second item is new and will
be used to show that the result of certain computations with
⊔ is well-defined. As mentioned above, /,⊔ and

⊔
are par-

tial operations. Orthogonality is a necessary and sufficient
condition for definedness, but only the latter is needed in
subsequent proofs and has been formalized in Isabelle.

Lemma 3.7. If 𝐴 and 𝐵 are orthogonal then 𝐴 / 𝐵 and 𝐴 ⊔ 𝐵
are defined. □

Lemma 3.8. If𝑛 > 0 and𝐴𝑖⊔𝐴 𝑗 is defined for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛

then
𝑛⊔
𝑖=1

𝐴𝑖 is defined and

src(
𝑛⊔
𝑖=1

𝐴𝑖) = src(𝐴1) = · · · = src(𝐴𝑛)

We briefly describe the well-definedness proof since it
requires more than just a straightforward induction.

Proof (sketch) for Lemma 3.8. We use induction on 𝑛.
5So proof terms with join form a so-called partial Abelian monoid.

159

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Orthogonal_PT.html#Orthogonal_PT.left_lin_no_var_lhs.orthogonal_subst%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Orthogonal_PT.html#Orthogonal_PT.no_var_lhs.orthogonal_ctxt%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Residual_Join_Deletion.html#Residual_Join_Deletion.left_lin_no_var_lhs.join_list_defined%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Residual_Join_Deletion.html#Residual_Join_Deletion.left_lin_no_var_lhs.source_join_list%7Cthm

Formalizing Simultaneous Critical Pairs for Confluence of Left-Linear Rewrite Systems CPP ’25, January 20–21, 2025, Denver, CO, USA

Table 1. Orthogonality, residual and join of proof terms.

𝑥 ⊥ 𝑥 𝑥 / 𝑥 = 𝑥 𝑥 ⊔ 𝑥 = 𝑥

𝑓 (𝐴1, . . . , 𝐴𝑛) ⊥ 𝑓 (𝐵1, . . . , 𝐵𝑛) ⇐⇒ 𝐴𝑖 ⊥ 𝐵𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛

𝛼 (𝐴1, . . . , 𝐴𝑛) ⊥ lhs(𝛼)⟨𝐵1, . . . , 𝐵𝑛⟩𝛼 ⇐⇒ 𝐴𝑖 ⊥ 𝐵𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛

lhs(𝛼)⟨𝐴1, . . . , 𝐴𝑛⟩𝛼 ⊥ 𝛼 (𝐵1, . . . , 𝐵𝑛) ⇐⇒ 𝐴𝑖 ⊥ 𝐵𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛

𝛼 (𝐴1, . . . , 𝐴𝑛) ⊥ 𝛼 (𝐵1, . . . , 𝐵𝑛) ⇐⇒ 𝐴𝑖 ⊥ 𝐵𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛

𝑓 (𝐴1, . . . , 𝐴𝑛) / 𝑓 (𝐵1, . . . , 𝐵𝑛) = 𝑓 (𝐴1 / 𝐵1, . . . , 𝐴𝑛 / 𝐵𝑛)
𝛼 (𝐴1, . . . , 𝐴𝑛) / 𝛼 (𝐵1, . . . , 𝐵𝑛) = rhs(𝛼)⟨𝐴1 / 𝐵1, . . . , 𝐴𝑛 / 𝐵𝑛⟩𝛼

𝛼 (𝐴1, . . . , 𝐴𝑛) / lhs(𝛼)⟨𝐵1, . . . , 𝐵𝑛⟩𝛼 = 𝛼 (𝐴1 / 𝐵1, . . . , 𝐴𝑛 / 𝐵𝑛)
lhs(𝛼)⟨𝐴1, . . . , 𝐴𝑛⟩𝛼 / 𝛼 (𝐵1, . . . , 𝐵𝑛) = rhs(𝛼)⟨𝐴1 / 𝐵1, . . . , 𝐴𝑛 / 𝐵𝑛⟩𝛼

𝑓 (𝐴1, . . . , 𝐴𝑛) ⊔ 𝑓 (𝐵1, . . . , 𝐵𝑛) = 𝑓 (𝐴1 ⊔ 𝐵1, . . . , 𝐴𝑛 ⊔ 𝐵𝑛)
𝛼 (𝐴1, . . . , 𝐴𝑛) ⊔ 𝛼 (𝐵1, . . . , 𝐵𝑛) = 𝛼 (𝐴1 ⊔ 𝐵1, . . . , 𝐴𝑛 ⊔ 𝐵𝑛)

𝛼 (𝐴1, . . . , 𝐴𝑛) ⊔ lhs(𝛼)⟨𝐵1, . . . , 𝐵𝑛⟩𝛼 = 𝛼 (𝐴1 ⊔ 𝐵1, . . . , 𝐴𝑛 ⊔ 𝐵𝑛)
lhs(𝛼)⟨𝐴1, . . . , 𝐴𝑛⟩𝛼 ⊔ 𝛼 (𝐵1, . . . , 𝐵𝑛) = 𝛼 (𝐴1 ⊔ 𝐵1, . . . , 𝐴𝑛 ⊔ 𝐵𝑛)⊔

(𝐴1, . . . , 𝐴𝑛) =
{
𝐴1 if 𝑛 = 1
𝐴1 ⊔

⊔(𝐴2, . . . , 𝐴𝑛) if 𝑛 > 1

• For 𝑛 = 1 the statement holds by definition:

𝑛⊔
𝑖=1

𝐴𝑖 = 𝐴1

• Assume 𝑛 > 1. We can apply the induction hypothesis
to 𝐴2, . . . , 𝐴𝑛 , yielding a well-defined proof term 𝐴′

which is the result of computing
𝑛⊔
𝑖=2

𝐴𝑖 . It remains to

show that 𝐴1 ⊔𝐴′ is defined. Without more informa-
tion about 𝐴′ this is not possible. So we introduce the
following fact:

If 𝐴 ⊔ 𝐵, 𝐵 ⊔𝐶 , and 𝐴 ⊔𝐶 are defined,
then also 𝐴 ⊔ (𝐵 ⊔𝐶) is defined. (1)

The proof of (1) is by induction on the structure of
𝐴 and exhaustive case analysis. Proceeding with the
main proof, first observe that if 𝑛 = 2 we are imme-
diately done since 𝐴1 ⊔𝐴2 is defined by assumption.
Otherwise, we additionally establish definedness of

𝐴2 ⊔
𝑛⊔
𝑖=3

𝐴𝑖 and 𝐴1 ⊔
𝑛⊔
𝑖=3

𝐴𝑖

by applying the induction hypothesis two times. Then
definedness of

𝑛⊔
𝑖=1

𝐴𝑖 = 𝐴1 ⊔ (𝐴2 ⊔
𝑛⊔
𝑖=3

𝐴𝑖)

follows from (1). □

3.2 Redex Patterns and Overlapping Proof Terms
We introduce definitions which are used to reason about the
redex patterns of a proof term and overlap between the redex
patterns of two proof terms.

Definition 3.9. Given a proof term 𝐴 we compute the set
of redex patterns inductively:

RP(𝑥) = ∅

RP(𝑓 (𝐴1, . . . , 𝐴𝑛)) =
𝑛⋃
𝑖=1
{ (𝛼, 𝑖𝑝) | (𝛼, 𝑝) ∈ RP(𝐴𝑖) }

RP(𝛼 (𝐴1, . . . , 𝐴𝑛)) = { (𝛼, 𝜖) } ∪
𝑛⋃
𝑖=1
{ (𝛽, 𝑝𝑖𝑝) | (𝛽, 𝑝) ∈ RP(𝐴𝑖) }

where vpos(𝛼) = (𝑝1, . . . , 𝑝𝑛) in the last item.

It is easy to see that for a term 𝑠 without rule symbols
we have RP(𝑠) = ∅ and if 𝑝 ∈ Pos(𝑠) then RP(𝑠 [𝐴]𝑝) =
{ (𝛼, 𝑝𝑞) | (𝛼, 𝑞) ∈ RP(𝐴) }. Moreover, the set of redex pat-
terns for proof terms obtained by the join operation can be
computed by the following lemma.

Lemma 3.10. RP(
𝑛⊔
𝑖=1

𝐴𝑖) =
𝑛⋃
𝑖=1

RP(𝐴𝑖) □

Definition 3.11. Let src(𝐴) = 𝑠 and (𝛼, 𝑝) ∈ RP(𝐴) with
vpos(𝛼) = (𝑝1, . . . , 𝑝𝑛). The single rewrite step Δ(𝑠, 𝛼, 𝑝)
corresponding to this redex pattern is defined as

Δ(𝑠, 𝛼, 𝑝) := 𝑠 [𝛼 (𝑠 |𝑝𝑝1 , . . . , 𝑠 |𝑝𝑝𝑛)]𝑝
Two single steps extracted from the same proof term are

either equal or orthogonal.

160

CPP ’25, January 20–21, 2025, Denver, CO, USA Christina Kirk and Aart Middeldorp

Lemma 3.12. If (𝛼, 𝑝), (𝛽, 𝑞) ∈ RP(𝐴) and
Δ1 = Δ(src(𝐴), 𝛼, 𝑝) Δ2 = Δ(src(𝐴), 𝛽, 𝑞)

then Δ1 ⊥ Δ2.

Note that this means that Δ1 ⊔ Δ2 is always defined when
Δ1 and Δ2 have been extracted from the same proof term.
The main proof of Okui’s confluence criterion is based

on a case analysis on the amount of overlap between two
co-initial proof terms. We recap the special labeling of the
source of a proof term introduced in [10], which gives rise
to an inductive definition of the amount of overlap between
two co-initial proof terms.

Definition 3.13. We write lhs♯ (𝛼) for the result of labeling
every function symbol in lhs(𝛼) with𝛼 aswell as the distance
to the root of 𝛼 :

lhs♯ (𝛼) = 𝜑 (lhs(𝛼), 𝛼, 0)
with 𝜑 (𝑡, 𝛼, 𝑖) = 𝑡 if 𝑡 ∈ V and

𝜑 (𝑡, 𝛼, 𝑖) = 𝑓𝛼𝑖 (𝜑 (𝑡1, 𝛼, 𝑖 + 1), . . . , 𝜑 (𝑡𝑛, 𝛼, 𝑖 + 1))
if 𝑡 = 𝑓 (𝑡1, . . . , 𝑡𝑛). The mapping src♯ computes the labeled
source of a proof term: src♯ (𝐴) =

𝐴 if 𝐴 ∈ V
𝑓 (src♯ (𝐴1), . . . , src♯ (𝐴𝑛)) if 𝐴 = 𝑓 (𝐴1, . . . , 𝐴𝑛)
lhs♯ (𝛼)⟨src♯ (𝐴1), . . . , src♯ (𝐴𝑛)⟩𝛼 if 𝐴 = 𝛼 (𝐴1, . . . , 𝐴𝑛)

The function ℓ extracts labels from function symbols: ℓ (𝑓𝛼𝑛) =
𝛼𝑛 . The set of labeled positions for a proof term 𝐴 is defined
as

Pos𝐿 (𝐴) = {𝑝 ∈ Pos(src♯ (𝐴)) | ℓ (src♯ (𝐴) (𝑝)) is defined}

There exists a straightforward connection between src♯ (𝐴)
and RP(𝐴).

Lemma 3.14. (𝛼, 𝑝) ∈ RP(𝐴) ⇐⇒ ℓ (src♯ (𝐴) (𝑝)) = 𝛼0

□

In the lemma below src(𝐴) []𝑝 turns the term src(𝐴) into
a context by replacing the subterm at position 𝑝 into a hole.

Lemma 3.15. If src♯ (𝐴) |𝑝 is unlabeled or ℓ (src♯ (𝐴) (𝑝)) = 𝛼0

then there exists a position 𝑞 ∈ Pos(𝐴) such that

src(𝐴) []𝑝 = src(𝐴[]𝑞) (2)
src(𝐴) |𝑝 = src(𝐴|𝑞) (3)

src♯ (𝐴) = src♯ (𝐴) [src♯ (𝐴|𝑞)]𝑝 (4)

Definition 3.16. For co-initial proof terms 𝐴 and 𝐵 we use
the number of positions that are labeled in both src♯ (𝐴) and
src♯ (𝐵) as a measure for the amount of overlap between 𝐴

and 𝐵:
▲(𝐴, 𝐵) = |Pos𝐿 (𝐴) ∩ Pos𝐿 (𝐵) |

Lemma 3.17. For co-initial proof terms 𝐴 and 𝐵

▲(𝐴, 𝐵) = 0 =⇒ 𝐴 ⊥ 𝐵

Note that the reverse direction of Lemma 3.17 does not
hold since, e.g. 𝐴 ⊥ 𝐴 but ▲(𝐴,𝐴) > 0 if 𝐴 contains rule
symbols.

3.3 Matching for Proof Terms
First consider the problem of matching linear terms in gen-
eral. It is quite obvious that a linear term 𝑡 matches a term 𝑠 if
all function symbols of 𝑡 coincide with the function symbols
of 𝑠 . Then a matching substitution can be easily computed,
as described in the following lemma.

Lemma 3.18. Consider terms 𝑠 and 𝑡 and let

𝜎 = {𝑥 ↦→ 𝑠 |𝑝 | 𝑝 ∈ PosV (𝑡) ∧ 𝑡 |𝑝 = 𝑥 }

If 𝑡 is a linear term and for all 𝑝 ∈ PosF (𝑡) we have 𝑝 ∈
PosF (𝑠) with 𝑡 (𝑝) = 𝑠 (𝑝), then 𝑡𝜎 = 𝑠 . □

Since proof terms are also just first-order terms, this result
directly holds for proof terms. So if all function symbols
and rule symbols of a linear proof term 𝐴 coincide with
the function symbols and rule symbols of a proof term 𝐵,
then 𝐴 matches 𝐵. However, when we want to apply this
result in the main proof later on, it is easier to argue about
the function symbols in the sources of 𝐴 and 𝐵 as well as
about the elements in RP(𝐴) and RP(𝐵). We introduce the
following lemma to facilitate that argument.

Lemma 3.19. Assume that 𝐴 is a linear proof term, src(𝐴)
matches src(𝐵), RP(𝐴) ⊆ RP(𝐵), and if (𝛼, 𝑝) ∈ RP(𝐵) and
𝑝 ∈ Pos(𝐴) \PosV (𝐴) then (𝛼, 𝑝) ∈ RP(𝐴). Then𝐴matches
𝐵 as witnessed by the substitution

𝜎 = {𝑥 ↦→ 𝐵 |𝑝 | 𝑝 ∈ PosV (𝐴) ∧ 𝐴|𝑝 = 𝑥 }

The assumptions in Lemma 3.19 are just an alternative
way of stating the conditions of Lemma 3.18 specifically for
proof terms. They ensure that each rule symbol and each
function symbol of 𝐴 is present at the exact same position
in 𝐵.

3.4 Formalization Details
All results described in this chapter have been formalized in
Isabelle/HOL as part of the IsaFoR library. Proof terms them-
selves and many useful properties are included in the library
since the formalization efforts described in [11]. We only had
to extend the existing theories with some additional results,
like the first part of Lemma 3.6. Moreover, the definition
of RP(𝐴) is new. Its formalized version as well as relevant
lemmas are collected in the file Redex_Patterns.thy. This
is a completely new part of the IsaFoR session on proof terms.
In total, we extended the proof term session with about 4000
lines of new Isabelle code.

Note that, by default, IsaFoR does not enforce the variable
conditions on rewrite rules. This means that variable left-
hand sides and variables that appear only on the right-hand
side are allowed. While many results in term rewriting can

161

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Redex_Patterns.html#Redex_Patterns.left_lin_wf_trs.single_steps_orth%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Labels_and_Overlaps.html#Labels_and_Overlaps.measure_zero_imp_orthogonal%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Redex_Patterns.html#Redex_Patterns.left_lin_no_var_lhs.proof_term_matches%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/Proof_Terms/Redex_Patterns.html

Formalizing Simultaneous Critical Pairs for Confluence of Left-Linear Rewrite Systems CPP ’25, January 20–21, 2025, Denver, CO, USA

be formulated in this more general setting, several key re-
sults concerning proof terms require the strict conditions, as
well as left-linearity of the underlying TRS. The following
examples illustrate this.
• The condition Var(rhs(𝛼)) ⊆ Var(lhs(𝛼)) is cru-
cial whenever residuals are involved, since right-hand
sides need to be instantiated during the residual com-
putation.
• The condition lhs(𝛼) ∉ V plays a role when consid-
ering orthogonality of proof terms. For instance, if
lhs(𝛼) = 𝑥 were allowed, then, according to the defi-
nition, 𝛼 (𝛽) ⊥ 𝛽 for any rule symbol 𝛽 , but 𝛼 (𝛽) ⊔ 𝛽

is undefined.
• Left-linearity is essential when dealing with src♯. Con-
sider for example the non-left-linear TRS consisting of
the rules: 𝜶 : f (𝑥, 𝑥) → g(𝑥, 𝑥), 𝜷 : a→ b and 𝜸 : a→
c. Then ▲(f (𝜷,𝜸),𝜶 (a)) = 0 but f (𝜷,𝜸) ̸⊥ 𝜶 (a).

We aimed to adhere to the philosophy of keeping results
in IsaFoR as general as possible, i.e., require only the con-
ditions that are really necessary. Initially, we stated these
conditions explicitly as assumptions in the corresponding
lemmas. However, this made instantiations of these lem-
mas more tedious, and in particular hindered Sledgeham-
mer’s ability to automatically solve subgoals. To address
this, we introduced locales for each individual condition,
as well as combined locales for cases where multiple condi-
tions are needed. While this approach does improve reusabil-
ity and modularity, it is still not ideal. As can be seen in
Listing 1, the locale left_lin_wf_trs does not directly con-
tain left_lin_no_var_lhs. So when proving results within
left_lin_wf_trs, the conditions from left_lin_no_var_lhs

must still be instantiated explicitly. Furthermore, some proofs
could have been simplified by requiring stricter conditions
upfront. So in hindsight, some complexity could have been
avoided by placing the entire theory on proof terms within
a single locale that enforces all three necessary conditions.
As is often the case, the current structure reflects historical
development.

4 Unification
We reuse the following definition from [11].

Definition 4.1. For linear terms 𝑠 and 𝑡 without common
variables, let vpos(𝑠) = (𝑝1, . . . , 𝑝𝑛), var(𝑠) = (𝑥1, . . . , 𝑥𝑛),
vpos(𝑡) = (𝑞1, . . . , 𝑞𝑚), and var(𝑡) = (𝑦1, . . . , 𝑦𝑚). The sub-
stitution 𝜏 (𝑠, 𝑡) is defined as follows:

𝜏 (𝑠, 𝑡) = {𝑥𝑖 ↦→ 𝑡 |𝑝𝑖 | 1 ⩽ 𝑖 ⩽ 𝑛 and 𝑝𝑖 ∈ Pos(𝑡) }
∪ {𝑦 𝑗 ↦→ 𝑠 |𝑞 𝑗

| 1 ⩽ 𝑗 ⩽ 𝑚 and 𝑞 𝑗 ∈ PosF (𝑠) }

In [11] it was shown that 𝜏 (𝑠, 𝑡) is an mgu of 𝑠 and 𝑡 if 𝑠
and 𝑡 are linear unifiable terms without common variables.
When working with mgus for simultaneous critical pairs,
computing a single substitution 𝜏 like above is not enough.

locale left_lin =
fixes R :: "(’f, ’v) trs"
assumes "left_linear_trs R"

locale no_var_lhs =
fixes R :: "(’f, ’v) trs"
assumes "Ball R (𝜆(l, r). is_Fun l)"

locale var_rhs_subset_lhs =
fixes R :: "(’f, ’v) trs"
assumes "Ball R (𝜆(l, r). vars_term r ⊆ vars_term l)"

locale wf_trs = no_var_lhs + var_rhs_subset_lhs
locale left_lin_no_var_lhs = left_lin + no_var_lhs
locale left_lin_wf_trs = left_lin + wf_trs

Listing 1. Locales for variable conditions on rewrite rules.

We need to unify the 𝑛 left-hand sides appearing in the multi-
step on the left with the single left-hand side of the step on
the right. Moreover, the 𝑛 individual unification problems
are not independent (as is the case for unification in parallel
critical pairs), since the rewrite rules on the left can be nested.
In our case we need an mgu for a set 𝐸 of equations of the
following shape:

𝐸 = {𝑠1 ≈ 𝑡 |𝑝1 , . . . , 𝑠𝑛 ≈ 𝑡 |𝑝𝑛 }

where
𝑠1, . . . , 𝑠𝑛, 𝑡 are linear terms
𝑝1, . . . , 𝑝𝑛 are positions in 𝑡

Var(𝑠𝑖) ∩ Var(𝑠 𝑗) = ∅ for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛

Var(𝑠𝑖) ∩ Var(𝑡) = ∅ for all 1 ⩽ 𝑖 ⩽ 𝑛

(5)

We need to work with a concrete instance of an mgu for the
set 𝐸 later on (Section 6) and will use the composed substitu-
tion 𝜏 (𝑠1, 𝑡 |𝑝1) · · · 𝜏 (𝑠𝑛, 𝑡 |𝑝𝑛) for this purpose. The following
lemma introduces some general properties of this composed
substitution.

Lemma 4.2. Assume we have a set of equations 𝐸 for which
the conditions (5) hold. If 𝜏 = 𝜏1 · · · 𝜏𝑛 where 𝜏𝑖 = 𝜏 (𝑠𝑖 , 𝑡 |𝑝𝑖) for
all 1 ⩽ 𝑖 ⩽ 𝑛 then dom(𝜏) ⊆ Var(𝐸) and, for 𝑥 ∈ dom(𝜏),

1. if 𝑥 = 𝑠𝑖 |𝑝 for some 1 ⩽ 𝑖 ⩽ 𝑛 and 𝑝 ∈ PosV (𝑠𝑖) then
𝜏 (𝑥) = 𝑡 |𝑝𝑖𝑞𝜏𝑖+1 · · · 𝜏𝑛 for some 𝑞 ∈ Pos(𝑡 |𝑝𝑖),

2. if 𝑥 = 𝑡 |𝑞 for some 𝑞 ∈ PosV (𝑡) then 𝜏 (𝑥) = 𝑠𝑖 |𝑝 for
some 1 ⩽ 𝑖 ⩽ 𝑛 and 𝑝 ∈ Pos(𝑠𝑖) with 𝑝𝑖𝑝 = 𝑞.

Note that computing the result of 𝜏 (𝑥) for 𝑥 ∈ Var(𝑠𝑖) is
the more complex of the two cases, since it is possible that
some variables in 𝑡 |𝑝𝑖𝑞 are affected by some of the 𝜏𝑖+1, . . . , 𝜏𝑛
(see Example 4.3). In the case 𝑥 ∈ Var(𝑡), the term 𝜏 (𝑥) =
𝑠𝑖 |𝑝 has distinct variables from all terms 𝑠𝑖+1, . . . , 𝑠𝑛 and 𝑡 ,
and therefore 𝑠𝑖 |𝑝𝜏𝑖+1 · · · 𝜏𝑛 = 𝑠𝑖 |𝑝 .

162

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.tau.apply_tau_ss_var%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.tau.apply_tau_t_var%7Cthm

CPP ’25, January 20–21, 2025, Denver, CO, USA Christina Kirk and Aart Middeldorp

Example 4.3. Consider the terms

𝑠1 = f (𝑥1, 𝑥2) 𝑠2 = g(a) 𝑡 = f (g(𝑦1), 𝑦2)
and positions 𝑝1 = 𝜖 , 𝑝2 = 1. We obtain

𝜏1 = 𝜏 (𝑠1, 𝑡 |𝑝1) = {𝑥1 ↦→ g(𝑦1), 𝑥2 ↦→ 𝑦2 }
𝜏2 = 𝜏 (𝑠2, 𝑡 |𝑝2) = {𝑦1 ↦→ a}

Hence 𝑥1𝜏1𝜏2 = g(𝑦1)𝜏2 = g(a), so the value of 𝑥1 under the
substitution 𝜏 is affected by both 𝜏1 and 𝜏2. Moreover, the or-
der in which the individual substitutions are composed is crit-
ical for unification: 𝑠1𝜏1𝜏2 = f (g(a), 𝑦2) = 𝑡𝜏1𝜏2 and 𝑠2𝜏1𝜏2 =
g(a) = 𝑡 |1𝜏1𝜏2 but 𝑠1𝜏2𝜏1 = f (g(𝑦1), 𝑦2) ≠ f (g(a), 𝑦2) = 𝑡𝜏2𝜏1

Now consider a general unification problem 𝐸 = {𝑠1 ≈
𝑡1, . . . , 𝑠𝑛 ≈ 𝑡𝑛 } and assume that 𝜏𝑖 is a unifier for 𝑠𝑖 ≈ 𝑡𝑖 for
all 𝑖 ∈ {1, . . . , 𝑛 }. As shown in Example 4.3, the composition
𝜏 = 𝜏1 · · · 𝜏𝑛 is not necessarily a unifier of 𝐸. By inspecting
the unification algorithm in [2, Chapter 4] we see that a
composition of this shape is an mgu of 𝐸 if each new variable
binding, introduced in an Eliminate step, has no effect on the
remaining equations. This condition is satisfied whenever
𝑠1, . . . , 𝑠𝑛, 𝑡1, . . . , 𝑡𝑛 are linear terms with pairwise disjoint
variables. This was one of the key properties used to show
that 𝜏 (𝑠, 𝑡) is an mgu of two unifiable, linear and variable
disjoint terms 𝑠, 𝑡 in [11, Lemma 6.2]. Since we do not have
the luxury of pairwise disjoint variables, we now use the
more general requirementsVar(𝑠𝑖)∩Var(𝑡𝑖) = ∅ and 𝑠 𝑗𝜏𝑖 =
𝑠 𝑗 and 𝑡 𝑗𝜏𝑖 = 𝑡 𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛.

Lemma 4.4. Let 𝐸 = {𝑠1 ≈ 𝑡1, . . . , 𝑠𝑛 ≈ 𝑡𝑛 } where
1. 𝐸 is unifiable
2. 𝑠1, . . . , 𝑠𝑛, 𝑡1, . . . , 𝑡𝑛 are linear terms
3. Var(𝑠𝑖) ∩ Var(𝑡𝑖) = ∅ for all 1 ⩽ 𝑖 ⩽ 𝑛

4. 𝑠 𝑗𝜏 (𝑠𝑖 , 𝑡𝑖) = 𝑠 𝑗 and 𝑡 𝑗𝜏 (𝑠𝑖 , 𝑡𝑖) = 𝑡 𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛

Then the unification algorithm yields 𝜏 (𝑠1, 𝑡1) · · · 𝜏 (𝑠𝑛, 𝑡𝑛) as
an mgu for 𝐸.

Proof (sketch). The proof is an extension of the proof of [11,
Lemma 6.2]. It uses the same structure, i.e., induction over
the definition of the unification algorithm in [2, Chapter
4]. Compared to the proof of [11, Lemma 6.2], the order in
which we look at equations now matters. The main difficulty,
however, lies in showing that the fourth condition remains
true after a decomposition step. □

5 Simultaneous Critical Pairs
We propose a definition of simultaneous critical pairs (SCPs
for short) which is very close to Felgenhauer’s definition
in [6]. It is more suitable to formalizing thanOkui’s definition
in [19]. Considering that the formalization relies heavily
on proof terms, we define an SCP as a pair of proof terms,
not just terms. This has the advantage that the SCP itself
contains all the necessary information about the redexes that
are involved in it. The idea is that an SCP (𝐴, 𝐵) consists of
a proof term 𝐴 representing a non-empty multi-step and a

proof term 𝐵 representing a single step. One of the essential
properties of an SCP (𝐴, 𝐵) is that each redex pattern that
occurs in 𝐴 needs to have overlap with the single redex
pattern occurring in 𝐵. To model this fact we introduce a
function OV which first uses RP to obtain all single steps
𝐴1, . . . , 𝐴𝑛 contained in 𝐴 and then filters out all 𝐴𝑖 which
do not have overlap with 𝐵. Finally, the single steps are
combined into a multi-step again using 𝑛-fold join (

⊔
).

Definition 5.1.

OV(𝐴, 𝐵) =
⊔
{Δ(src(𝐴), 𝛼, 𝑝) | (𝛼, 𝑝) ∈ RP(𝐴)
and ▲(Δ(src(𝐴), 𝛼, 𝑝), 𝐵) ≠ 0}

From Lemma 3.12 and Lemma 3.7(2) we can immediately
conclude that the 𝑛-fold join in this definition is always well-
defined. From Lemma 3.8(3) we infer that src(OV(𝐴, 𝐵)) =
src(𝐴).
Now we have all the ingredients for SCPs. Below, we

present the definition that has been formalized in Isabelle.

Definition 5.2. Let R be a left-linear term rewrite system. A
simultaneous critical pair of R is a pair of proof terms (𝐴, 𝐵)
such that:

1. RP(𝐴) = { (𝛼1, 𝑝1), . . . , (𝛼𝑛, 𝑝𝑛) }
2. RP(𝐵) = { (𝛽, 𝑞) }
3. there are renamings 𝜎𝛼1 , . . . , 𝜎𝛼𝑛 and 𝜎𝛽 such that

Var(lhs(𝛼𝑖)𝜎𝛼𝑖) ∩ Var(lhs(𝛽)𝜎𝛽) = ∅
Var(lhs(𝛼𝑖)𝜎𝛼𝑖) ∩ Var(lhs(𝛼 𝑗)𝜎𝛼 𝑗

) = ∅
for all 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛 and 𝑖 ≠ 𝑗

4. OV(𝐴, 𝐵) = 𝐴

5. 𝑞 = 𝜖 or 𝑝1 = 𝜖

6. ℓ = lhs(𝛼1)𝜎𝛼1 [lhs(𝛽)𝜎𝛽]𝑞
7. the set of equations

{ lhs(𝛼1)𝜎𝛼1 ≈ ℓ |𝑝1), . . . , lhs(𝛼𝑛)𝜎𝛼𝑛 ≈ ℓ |𝑝𝑛 }
is unifiable and 𝜏 is a most general unifier

8. 𝐴 =
𝑛⊔
𝑖=1

𝐴𝑖 where 𝐴𝑖 = ℓ𝜏 [𝛼𝑖 (𝜎𝛼𝑖𝜏)]𝑝𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛

9. 𝐵 = ℓ𝜏 [𝛽 (𝜎𝛽𝜏)]𝑞
Note that 𝑛 ⩾ 1 by item 8 since otherwise the join oper-

ation would be undefined. Moreover, src(𝐴) = src(𝐵) since
src(𝐴𝑖) = ℓ𝜏 for all 1 ⩽ 𝑖 ⩽ 𝑛 and src(𝐵) = ℓ𝜏 . For an SCP
(𝐴, 𝐵) we call the peak tgt(𝐴) ◦←− src(𝐴) = src(𝐵) → tgt(𝐵)
a simultaneous critical peak.

Contrary to Okui, we allow variants of the same rule at the
root. This does not affect the main theorem, since joinability
of critical pairs in such cases is always trivial. However, it
simplifies the formalized proofs, as it eliminates the need
to address this special case separately. As previously men-
tioned, our definition is almost identical to Felgenhauer’s
in [6], the difference being only the use of proof terms to
describe rewrite steps, and a small variation in the way we
define the unification problem. The challenge of formulating

163

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/IsaFoR_1/TRS.Unification_More.html#Unification_More.unify_linear_terms%7Cfact
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.get_overlapping_part%7Cconst

Formalizing Simultaneous Critical Pairs for Confluence of Left-Linear Rewrite Systems CPP ’25, January 20–21, 2025, Denver, CO, USA

a concise description of the unification problem lies in the
fact, that the root step can occur on either the left or the right
side. Felgenhauer addressed this by relying on differences
of positions, we chose to introduce the term ℓ (item 6) to
capture both possibilities.

Example 5.3. Consider the left-linear TRS R2 consisting of
the single rule [13]

𝜶 : f (f (𝑥)) → f (g(f (𝑥), f (𝑥)))
There exists the SCP

(𝐴, 𝐵) =
(
𝜶 (𝜶 (𝑥2)), f (𝜶 (f (𝑥2)))

)
We illustrate how (𝐴, 𝐵) fulfills the 9 conditions in the defi-
nition above.

1. RP(𝐴) = { (𝛼1, 𝜖), (𝛼2, 11) } where 𝛼1 = 𝛼2 = 𝜶
2. RP(𝐵) = { (𝛽, 1) } where 𝛽 = 𝜶
3. We define renamings 𝜎𝛼1 , 𝜎𝛼2 and 𝜎𝛽 :
𝜎𝛼1 = {𝑥 ↦→ 𝑥1 } 𝜎𝛼2 = {𝑥 ↦→ 𝑥2 } 𝜎𝛽 = {𝑥 ↦→ 𝑦 }
4. We have

▲(Δ(src(𝐴),𝜶 , 𝜖), 𝐵) = ▲(𝜶 (f (f (𝑥2))), 𝐵) = 1

▲(Δ(src(𝐴),𝜶 , 11), 𝐵) = ▲(f (f (𝜶 (𝑥2))), 𝐵) = 1

𝜶 (f (f (𝑥2))) ⊔ f (f (𝜶 (𝑥2))) = 𝜶 (𝜶 (𝑥2)) = 𝐴

and hence OV(𝐴, 𝐵) = 𝐴.
5. 𝑝1 = 𝜖

6. ℓ = f (f (f (𝑦)))
7. We compute a most general unifier 𝜏 :
𝜏 = mgu({ f (f (𝑥1)) ≈ f (f (f (𝑦))), f (f (𝑥2)) ≈ f (𝑦) })
= {𝑥1 ↦→ f (𝑦) }{𝑦 ↦→ f (𝑥2) }
= {𝑥1 ↦→ f (f (𝑥2)), 𝑦 ↦→ f (𝑥2) }

8. 𝐴 = 𝐴1 ⊔𝐴2 where
𝐴1 = 𝜶 (𝜎𝛼1𝜏) = 𝜶 (f (f (𝑥2)))
𝐴2 = f (f (𝜶 (𝜎𝛼2𝜏))) = f (f (𝜶 (𝑥2)))

9. 𝐵 = f (𝜷 (𝜎𝛽𝜏))

The number of SCPs for any TRS with a finite number
of rewrite rules is finite (modulo renaming of the variables).
Computing SCPs can, however, be very expensive. There are
at least twice as many SCPs as there are standard critical
pairs, since the root step can occur on both sides.

Example 5.4 ([14]). Consider the TRS R3 consisting of the
two rules
𝜶 : f (𝑥) → g(𝑥, f (𝑥)) 𝜷 : f (f (f (𝑥))) → f (f (g(𝑥, f (𝑥))))

The tool CSI6 computes 26 SCPs. Among them are(
𝜶 (f (f (𝑥))), 𝜷 (𝑥)

)
,
(
𝜷 (𝑥),𝜶 (f (f (𝑥)))

)
,(

𝜶 (f (𝜶 (𝑥))), 𝜷 (𝑥)
)
,
(
f (𝜶 (𝜶 (𝑥))), 𝜷 (𝑥)

)
,(

𝜶 (f (𝜷 (𝑥))), 𝜷 (f (f (𝑥)))
)

6http://cl-informatik.uibk.ac.at/software/csi/

Adding another nested f to the rule 𝜷 increases the number
of SCPs to 58.
This example illustrates why it is extremely beneficial to

be able to automatically verify and certify results that rely
on SCPs. Computing simultaneous critical pairs by hand is
simply not feasible in most cases.

5.1 Formalization Details
For the renamings 𝜎𝛼1 , . . . , 𝜎𝛼𝑛 , 𝜎𝛽 we adopt the renaming
scheme introduced in [9] for parallel critical pairs. I.e., we
simply put the definition of an SCP into a locale where
two appropriate renaming functions ren1 : N × 𝑉 → 𝑉 and
ren2 : 𝑉 → 𝑉 are assumed to exist. The function ren1 can be
instantiated with an index 𝑖 to obtain the renaming 𝜎𝛼𝑖 , while
ren2 is used for 𝜎𝛽 . We opted not to use the wrapper func-
tion mgu_vd_list which is used for parallel critical pairs and
combines unification with renaming. Instead, we explicitly
apply renaming first and then do unification. This approach
allows us to construct the term ℓ using the renamed versions
of lhs(𝛼1) and lhs(𝛽), ensuring that ℓ is a linear term.

6 Confluence via SCPs
Okui has shown in 1998 that a term rewrite system is con-
fluent if all SCPs are strongly closed with respect to the
multi-step relation (◦−→) [19].
Definition 6.1. A simultaneous critical peak 𝑡 ◦←− 𝑠 → 𝑢

is strongly closed (with respect to ◦−→) if 𝑡 →∗ 𝑣 ◦←− 𝑢 for
some term 𝑣 .
Theorem 6.2 (Okui 1998). A left-linear TRS R is confluent if
every SCP of R is strongly closed.

Example 6.3. Consider again Example 5.3. The SCP (𝐴, 𝐵)
is strongly closed. The proof terms

𝐶 = f (g(𝜶 (g(f (𝑥), f (𝑥))),𝜶 (g(f (𝑥), f (𝑥)))))
𝐷 = 𝜶 (g(𝜶 (𝑥),𝜶 (𝑥)))

witness rewrite sequences tgt(𝐴) →∗ 𝑣 and tgt(𝐵) ◦−→ 𝑣

respectively (where 𝑣 = tgt(𝐶) = tgt(𝐷)). In fact all three
(non-trivial) SCPs of R2 are strongly closed, showing that
R2 is confluent.

6.1 A Proof of Okui’s Confluence Criterion
The following result is the key lemma used for Okui’s conflu-
ence criterion. Our proof employs the same overall structure
and concepts as Okui’s original proof in [19]. However, the
details differ significantly, due in part to our use of proof
terms, and also because we explicitly provide substitutions
and intermediate terms, where Okui only roughly sketches
their existence.
Lemma 6.4. Consider a left-linear TRS where each SCP is
strongly closed. For any terms 𝑠 , 𝑡 and 𝑢 there exists some term
𝑣 such that

𝑡 ◦←− 𝑠 → 𝑢 =⇒ 𝑡 →∗ 𝑣 ◦←− 𝑢

164

http://cl-informatik.uibk.ac.at/software/csi/
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.okui_imp_CR%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.ren_wf_trs.okui_strongly_confluent%7Cthm

CPP ’25, January 20–21, 2025, Denver, CO, USA Christina Kirk and Aart Middeldorp

Proof. Suppose 𝑡 ◦←− 𝑠 → 𝑢. Let 𝐴 be a proof term rep-
resenting the multi-step 𝑠 ◦−→ 𝑡 and 𝐵 a proof term rep-
resenting the single step 𝑠 → 𝑢. We prove the claim by
a case distinction on ▲(𝐴, 𝐵). If ▲(𝐴, 𝐵) = 0 then 𝐴 / 𝐵
and 𝐵 / 𝐴 are well-defined and represent the multi-steps
𝑡 ◦−→ tgt(𝐴 / 𝐵) and 𝑢 ◦−→ tgt(𝐵 /𝐴) respectively. Moreover,
tgt(𝐴 / 𝐵) = tgt(𝐵 / 𝐴). If ▲(𝐴, 𝐵) > 0 the idea is to use
the strongly closedness assumption. Before diving into the
details of the proof, we give a high level overview: First, we
collect all single steps of 𝐴 which have overlap with the sin-
gle step 𝐵, and strip away the surrounding context. Then we
perform unification between all the overlapping left-hand
sides and construct co-initial proof terms 𝐴′ and 𝐵′ which
form an SCP. The SCP (𝐴′, 𝐵′) must be strongly closed, so
we obtain a sequence of steps tgt(𝐴′) →∗ · ◦←− tgt(𝐵′). We
embed these steps into the previously stripped away parts
of 𝐴 to obtain the desired 𝑡 →∗ · ◦←− 𝑢. The context 𝐴[]𝑝′
will account for all parts of 𝐴 which are parallel to, or above
the single step of 𝐵. The substitution 𝜌 will account for all
parts of 𝐴 which occur below the single step of 𝐵.

Below, we divide the necessary details for the proof of the
case ▲(𝐴, 𝐵) > 0 into 10 more digestible steps. Moreover,
Figure 1 gives a visual overview of the proof.

1. Preliminary work on proof term 𝐴. We collect all sin-
gle steps𝐴1, . . . , 𝐴𝑛 from𝐴 which have overlap with 𝐵, start-
ing from leftmost outermost redex positions. I.e., 𝐴1, . . . , 𝐴𝑛

are defined such that {𝐴1, . . . , 𝐴𝑛 } equals
{Δ(𝑠, 𝛼, 𝑝) | (𝛼, 𝑝) ∈ RP(𝐴) ∧▲(Δ(𝑠, 𝛼, 𝑝), 𝐵) ≠ 0}

with 𝐴𝑖 = Δ(𝑠, 𝛼𝑖 , 𝑝𝑖) and vpos(𝛼𝑖) = (𝑝𝑖1, . . . , 𝑝𝑖𝑛𝑖) for all
1 ⩽ 𝑖 ⩽ 𝑛, and 𝑝𝑖 <lex 𝑝 𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛. Note that
𝑛 > 0 since ▲(𝐴, 𝐵) ≠ 0.

2. Preliminary work on proof term 𝐵. Let 𝑞 ∈ Pos(𝑠)
and 𝛽 ∈ R such that

𝐵 = Δ(𝑠, 𝛽, 𝑞)
and let (𝑞1, . . . , 𝑞𝑚) = vpos(𝛽).

3. Rename variables appearing in 𝛼1, . . . , 𝛼𝑛 and 𝛽 . We
assume there exist suitable variable renamings 𝜎𝛼1 , . . . , 𝜎𝛼𝑛
and 𝜎𝛽 . For brevity, we will denote the renamed version of
lhs(𝛼𝑖) by lhs(𝛼𝑖)′, and similarly for lhs(𝛽):

lhs(𝛼𝑖)′ := lhs(𝛼𝑖)𝜎𝛼𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛

lhs(𝛽)′ := lhs(𝛽)𝜎𝛽
4. Set up the unification problem. Define

𝑝 :=

{
𝑞 if 𝑞 < 𝑝1

𝑝1 otherwise
(6)

ℓ := lhs(𝛼1)′ [lhs(𝛽)′]𝑞\𝑝 (7)
𝜏 := 𝜏1 · · · 𝜏𝑛 where 𝜏𝑖 := tau(lhs(𝛼𝑖)′, ℓ |𝑝𝑖\𝑝) (8)

Here tau(·, ·) is defined in Definition 4.1. Note that 𝑝 denotes
the root position of our SCP. Hence, the definition of ℓ and the

equations for the unification problem use positions relative
to 𝑝 (i.e., 𝑞\𝑝 and 𝑝𝑖\𝑝). To establish well-definedness of the
definitions above, we need to prove that

𝑝 ⩽ 𝑞 and 𝑝 ⩽ 𝑝𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛 (9)

We first prove 𝑝 ⩽ 𝑞 and 𝑝 ⩽ 𝑝1 by considering the two
cases for 𝑝:

1. If 𝑞 ⩽ 𝑝1 then by definition 𝑝 = 𝑞. Hence 𝑝 = 𝑞 ⩽ 𝑞

and 𝑝 = 𝑞 ⩽ 𝑝1.
2. Otherwise, we have 𝑝 = 𝑝1. We know that 𝑝1 ∦ 𝑞

since the redexes at 𝑝1 and 𝑞 overlap, which could not
be the case if 𝑝1 and 𝑞 were parallel positions. Hence,
𝑝 = 𝑝1 < 𝑞.

If 1 < 𝑖 ⩽ 𝑛 then 𝑝1 <lex 𝑝𝑖 . If 𝑝1 < 𝑝𝑖 , we are immediately
done. Otherwise, we have 𝑝1 ∥ 𝑝𝑖 . As before, we use the fact
that the redexes at 𝑝1 and 𝑝𝑖 overlap with the redex at 𝑞 and
infer 𝑝1 ∦ 𝑞 and 𝑝𝑖 ∦ 𝑞. Together with 𝑝1 ∥ 𝑝𝑖 it follows that
𝑞 < 𝑝1 and 𝑞 < 𝑝𝑖 which implies 𝑝 = 𝑞 ⩽ 𝑝𝑖 .

Furthermore, since all lhs(𝛼)′ are linear and do not have
common variables, we can prove that ℓ𝜏 is also linear.

Ultimately we want to establish 𝜏 as an mgu of

𝐸 = { lhs(𝛼1)′ ≈ ℓ |𝑝1\𝑝 , . . . , lhs(𝛼𝑛)′ ≈ ℓ |𝑝𝑛\𝑝 }

In order to do that, we first need to verify that the set is indeed
unifiable. The underlying idea is, that this is possible since
𝑠 = src(𝐵) = src(𝐴) = src(𝐴1) = · · · = src(𝐴𝑛). This means
that all terms in the set of equations above match subterms
of 𝑠 . In the next step we introduce an actual witness 𝜎 for
unifiability, which is basically the combination of all these
matching substitutions.

5. Define substitution 𝜎 mapping from left-hand sides
to 𝑠 . Let var(lhs(𝛽)′) = (𝑦1, . . . , 𝑦𝑚) and var(lhs(𝛼𝑖)′) =

(𝑥𝑖1, . . . , 𝑥𝑖𝑛𝑖) for all 1 ⩽ 𝑖 ⩽ 𝑛. Define

𝜎 := {𝑥𝑖 𝑗 ↦→ 𝑠 |𝑝𝑖𝑝𝑖 𝑗 } ∪ {𝑦 𝑗 ↦→ 𝑠 |𝑞𝑞 𝑗
}

and show

lhs(𝛼𝑖)′𝜎 = 𝑠 |𝑝𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛 (10)
lhs(𝛽)′𝜎 = 𝑠 |𝑞 (11)

Similar properties were also established in [11]. The proofs
are relatively straightforward by using 𝐴𝑖 = Δ(𝑠, 𝛼𝑖 , 𝑝𝑖) =
𝑠 [𝛼𝑖 (𝑠 |𝑝𝑖𝑝𝑖,1 , . . . , 𝑠 |𝑝𝑖𝑝𝑖,𝑛)]𝑝𝑖 and src(𝐴𝑖) = 𝑠 to prove (10). For
proving (11) we use 𝐵 = Δ(𝑠, 𝛽, 𝑞) = 𝑠 [𝛽 (𝑠 |𝑞1, . . . , 𝑠 |𝑞𝑚)] and
src(𝐵) = 𝑠 . From (10) and (11) it follows that 𝜎 is a unifier for
the set 𝐸. Moreover, applying Lemma 4.2 together with (10)
to each variable of lhs(𝛽)′ yields lhs(𝛽)′𝜏𝜎 = 𝑠 |𝑞 . Similarly,
applying Lemma 4.2 together with (11) to each variable of
lhs(𝛼𝑖)′ yields lhs(𝛼𝑖)′𝜏𝜎 = 𝑠 |𝑝𝑖 . Finally, we obtain

ℓ𝜏𝜎 = 𝑠 |𝑝 (12)

165

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.overlapping_part.pi_below_q%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.overlapping_part.linear_l_tau%7Cthm

Formalizing Simultaneous Critical Pairs for Confluence of Left-Linear Rewrite Systems CPP ’25, January 20–21, 2025, Denver, CO, USA

𝑡

𝑠 𝑢

𝑣

𝑠 [𝐴′𝜎]𝑝

𝐴[ℓ𝜏𝜌]𝑝′

𝐵 = 𝑠 [𝐵′𝜎]𝑝

𝐷 = 𝐴[𝐷 ′𝜌]𝑝′

∗

Figure 1. Picture for the case ▲(𝐴, 𝐵) > 0 in the proof of Lemma 6.4. Redex patterns of 𝐴 are marked in red. The single redex
pattern of 𝐵 is marked in green. The overlapping triangles form the SCP (𝐴′, 𝐵′). Contracted redex patterns are marked by
shaded triangles. The terms 𝑡 and 𝑣 contain redex patterns contracted by 𝐴[]𝑝′ and 𝜌 (which were originally part of 𝐴). The
term 𝑣 also contains redex patterns contracted by the closing sequence for the SCP (𝐴′, 𝐵′). These are marked in blue. Note
that the blue pattern (and the corresponding white pattern in 𝑡) could also be duplicated by 𝐴[]𝑝′ , but we did not model this
in the picture.

6. Show that 𝜏 is an mgu of 𝐸. The goal is to apply
Lemma 4.4 for the set of equations 𝐸. Note that ℓ |𝑝1\𝑝 may
contain variables of lhs(𝛼1)′ if 𝑝 = 𝑝1 and thereby violating
condition 3. We choose to circumvent this issue by consider-
ing the altered set of equations 𝐸′ below.

𝐸′ = {𝑠1 ≈ lhs(𝛽)′ |𝑝′1 , . . . , 𝑠𝑛 ≈ lhs(𝛽)′ |𝑝′𝑛 }

where 𝑠1 = lhs(𝛼1)′ |𝑞\𝑝 , 𝑝′1 = 𝑝1\𝑝 and

𝑠𝑖 = lhs(𝛼𝑖)′ 𝑝′𝑖 = 𝑝𝑖\𝑞

for 𝑖 ∈ {2, . . . , 𝑛 }. Note that either 𝑝′1 = 𝑝1\𝑝 = 𝜖 or 𝑞\𝑝 = 𝜖 .
Hence

ℓ |𝑝1\𝑝 = lhs(𝛼1)′ [lhs(𝛽)′ |𝑝′1]𝑞\𝑝
Moreover, ℓ |𝑝𝑖\𝑝 = lhs(𝛽)′ |𝑝′

𝑖
for all 𝑖 ∈ {2, . . . , 𝑛 } since

𝑞 ⩽ 𝑝𝑖 for 𝑖 ∈ {2, . . . , 𝑛 } and therefore 𝑝𝑖\𝑝 = (𝑞\𝑝)𝑝′𝑖 .
These equalities guarantee that 𝐸′ and 𝐸 have the same set
of mgus. Moreover, the four conditions of Lemma 4.4 hold
for 𝐸′:

1. In the previous step we showed that 𝐸 (and therefore
𝐸′) is unifiable using 𝜎 .

2. Since R is assumed to be left-linear, we know that
lhs(𝛼1), . . . , lhs(𝛼𝑛), lhs(𝛽) are linear terms.

3. Since the variables of lhs(𝛼𝑖)′ and lhs(𝛽)′ were delib-
erately renamed apart in Step 3 we have Var(𝑠𝑖) ∩
Var(lhs(𝛽)′) = ∅.

4. The first part of this condition is easy to establish.
Assume 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 and let 𝜏𝑖 = 𝜏 (𝑠𝑖 , lhs(𝛽)′ |𝑝′

𝑖
).

Then due to the renamings we have 𝑠 𝑗𝜏𝑖 = 𝑠 𝑗 . Showing
that lhs(𝛽)′ |𝑝′

𝑗
is not affected by 𝜏𝑖 is more tricky. The

proof works by contradiction, assuming that there
exists a variable 𝑦 ∈ dom(𝜏𝑖) and position 𝑟 such that
𝑝′𝑗 ⩽ 𝑟 and lhs(𝛽) |𝑟 = 𝑦. From the definition of 𝜏 (·, ·)
we know that 𝜏𝑖 must contain a binding 𝑦 ↦→ 𝑠𝑖 |𝑟 ′ for
some 𝑟 ′ ∈ PosF (𝑠𝑖) with 𝑟 = 𝑝′𝑖𝑟

′. Let us consider
the case 𝑖 > 1. Since the positions 𝑝1, . . . , 𝑝𝑛 are a
subset of the redex positions of 𝐴, ordered such that
leftmost outermost redexes appear first, we know that
all positions in lhs(𝛼 𝑗) must either be parallel to, or
below any function position of lhs(𝛼𝑖) = 𝑠𝑖 . So 𝑝𝑖𝑟 ′ <
𝑝 𝑗 and therefore 𝑝′𝑖𝑟

′ < 𝑝′𝑗 . Now a contradiction can
be derived from the following chain of inequalities:

𝑟 = 𝑝′𝑖𝑟
′ < 𝑝′𝑗 ⩽ 𝑟

The case 𝑖 = 1 essentially works the same but requires
some additional fiddling with positions.

166

CPP ’25, January 20–21, 2025, Denver, CO, USA Christina Kirk and Aart Middeldorp

So Lemma 4.4 is applicable to 𝐸′ and yields 𝜏 as mgu for 𝐸′
and 𝐸.
Since 𝜏 is an mgu of (subterms of) the left-hand sides

lhs(𝛼𝑖)′ with subterms of lhs(𝛽)′, each function symbol that
appears in the term ℓ𝜏 either belongs to one of the lhs(𝛼𝑖) or
to lhs(𝛽). This allows us to use the following result in Step
8:

𝑟 ∈ PosF (ℓ𝜏) =⇒
𝑝𝑟 ∈ Pos𝐿 (𝐴1) ∪ · · · ∪ Pos𝐿 (𝐴𝑛) ∪ Pos𝐿 (𝐵) (13)

7. Obtain the two proof terms making up the SCP.
Define

𝐴′𝑖 := ℓ𝜏 [𝛼𝑖 (𝜎𝛼𝑖𝜏)]𝑝𝑖\𝑝 𝐴′ :=
𝑛⊔
𝑖=1

𝐴′𝑖

𝐵′ := ℓ𝜏 [𝛽 (𝜎𝛽𝜏)]𝑞\𝑝
From the properties of 𝜏 and 𝜎 it follows that

src(𝐴′𝑖) = ℓ𝜏 and 𝐴𝑖 = 𝑠 [𝐴′𝑖𝜎]𝑝 for all 1 ⩽ 𝑖 ⩽ 𝑛 (14)
src(𝐵′) = ℓ𝜏 and 𝐵 = 𝑠 [𝐵′𝜎]𝑝 (15)

We want to show that 𝐴′ is a well-defined proof term using
Lemma 3.8. Therefore, we need to show that𝐴′𝑖⊔𝐴′𝑗 is defined
for all 𝐴′𝑖 , 𝐴

′
𝑗 ∈ {𝐴′1, . . . , 𝐴′𝑛 }. From Lemma 3.12 we already

know that 𝐴𝑖 ⊔ 𝐴 𝑗 is defined. Then the desired property
follows directly from (14) and Lemma 3.6. Hence, Lemma 3.8
yields

𝐴′ is well-defined and src(𝐴′) = ℓ𝜏 (16)

Moreover, from the definition of𝐴′ and Lemma 3.10 it follows
that

RP(𝐴′) =
𝑛⊔
𝑖=1

RP(𝐴′𝑖) = { (𝛼1, 𝑝1\𝑝), . . . , (𝛼𝑛, 𝑝𝑛\𝑝) } (17)

8. Transform 𝐴′ into 𝐴 using a substitution 𝜌 . From
the definition of 𝑝 we know that either 𝑝 = 𝑝1 or 𝑝 = 𝑞.
In the first case we have ℓ (src♯ (𝐴) |𝑝) = 𝛼0. In the second
case 𝑞 < 𝑝1 and src♯ (𝐴) |𝑝 cannot be labeled, since 𝑝1 is by
definition the smallest position where a redex in 𝐴 overlaps
with 𝐵. Thus, Lemma 3.15 can be applied to obtain a position
𝑝′ such that

src(𝐴[]𝑝′) = 𝑠 []𝑝 and src(𝐴|𝑝′) = 𝑠 |𝑝 (18)

src♯ (𝐴) = src♯ (𝐴) [src♯ (𝐴|𝑝′)]𝑝 (19)

Define

𝜌 := {𝑥 ↦→ 𝐴|𝑝′𝑟 | 𝑥 ∈ Var(𝐴′) ∧𝐴′ |𝑟 = 𝑥 }
Note that 𝐴′ is a linear term according to Lemma 3.2, since
ℓ𝜏 is a linear term (see Step 4) and src(𝐴′) = ℓ𝜏 . Hence, the
substitution 𝜌 is well-defined. We show that the following
key property holds for 𝜌 :

𝐴′𝜌 = 𝐴|𝑝′ (20)

We present a rather detailed account of the formalized proof
of (20), since it shows why some of the intermediate results
we have seen so far are indeed necessary. This proof was

also one of the bigger challenges for the formalization, and
this illustrates why.

We already established linearity of 𝐴′ above. We addition-
ally prove the remaining assumptions needed for Lemma 3.19.

1. Using (16) and (12) we obtain
src(𝐴′)𝜎 = ℓ𝜏𝜎 = 𝑠 |𝑝 = src(𝐴|𝑝′)

2. Assume (𝛼, 𝑟) ∈ RP(𝐴′). From the definition of 𝐴′
we know that there exists an 𝑖 such that 1 ⩽ 𝑖 ⩽ 𝑛

and (𝛼, 𝑟) ∈ RP(𝐴′𝑖). From the definition of 𝐴′𝑖 we
know that RP(𝐴′𝑖) = { (𝛼𝑖 , 𝑝𝑖\𝑝) } and hence, (𝛼, 𝑟) =
(𝛼𝑖 , 𝑝𝑖\𝑝). Moreover, recall that (𝛼𝑖 , 𝑝𝑖) ∈ RP(𝐴). From
(19), Lemma 3.14, and (9) from Step 4 it follows that
ℓ (src♯ (𝐴|𝑝′) (𝑝𝑖\𝑝)) = ℓ (src♯ (𝐴) (𝑝𝑖)) = 𝛼0

𝑖 . By an-
other application of Lemma 3.14 we conclude that
(𝛼𝑖 , 𝑝𝑖\𝑝) = (𝛼, 𝑟) ∈ RP(𝐴|𝑝′).

3. Assume (𝛼, 𝑟) ∈ RP(𝐴|𝑝′) and 𝑟 ∈ PosF (src(𝐴′)).
Like in the previous item,we apply (19) and Lemma 3.14
to obtain (𝛼, 𝑝𝑟) ∈ RP(𝐴). From 𝑟 ∈ PosF (src(𝐴′)) =
PosF (ℓ𝜏) and (13), we know that either 𝑝𝑟 ∈ Pos𝐿 (𝐵)
or 𝑝𝑟 ∈ Pos𝐿 (𝐴𝑖) for some 𝑖 ∈ {1, . . . , 𝑛 }. Hence,
▲(Δ(𝑠, 𝑝𝑟, 𝛼), 𝐵) ≠ 0 and therefore Δ(𝑠, 𝑝𝑟, 𝛼) = 𝐴𝑖

for some 1 ⩽ 𝑖 ⩽ 𝑛. Then 𝐴′𝑖 = ℓ𝜏 [𝛼𝑖 (𝜎𝛼𝑖𝜏)]𝑝𝑖\𝑝 by
definition. Finally, we conclude (𝛼, 𝑟) ∈ RP(𝐴′𝑖) and
thus (𝛼, 𝑟) ∈ RP(𝐴′) = ⋃𝑛

𝑖=1 RP(𝐴′𝑖).
Note that (20) immediately implies

𝐴 = 𝐴[𝐴′𝜌]𝑝′ (21)
Moreover, we obtain

∀𝑥 ∈ Var(ℓ𝜏) : src(𝜌 (𝑥)) = 𝜎 (𝑥) (22)
sinceVar(𝐴′) = Var(src(𝐴′)) = Var(ℓ𝜏) (using Lemma 3.2
and (16)) and

src(𝐴′𝜌) (20)
= src(𝐴|𝑝′)

(18)
= 𝑠 |𝑝

(12)
= ℓ𝜏𝜎

(16)
= src(𝐴′)𝜎

9. Prove that (𝐴′, 𝐵′) is an SCP. We go through the nine
defining properties of an SCP:

1. RP(𝐴′) = { (𝛼1, 𝑝1\𝑝), . . . , (𝛼𝑛, 𝑝𝑛\𝑝) } and 𝑛 > 0 with
𝑝𝑖\𝑝 <lex 𝑝 𝑗\𝑝 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 follows from (17)
and the order on 𝑝1, . . . , 𝑝𝑛 defined in Step 1.

2. RP(𝐵′) = { (𝛽, 𝑞\𝑝) } follows from the definition of 𝐵′.
3. The renamings 𝜎𝛼1 , . . . , 𝜎𝛼𝑛 and 𝜎𝛽 defined in Step 3

fulfill the conditions.
4. Let 𝑖 ∈ {1, . . . , 𝑛 }. Then we have 𝐴𝑖 = 𝑠 [𝐴′𝑖𝜎]𝑝 from

(14) and 𝐵 = 𝑠 [𝐵′𝜎]𝑝 from (15). Moreover, from Step 1
we know that▲(𝐴𝑖 , 𝐵) ≠ 0. It follows that▲(𝐴′𝑖 , 𝐵′) ≠
0. From (17) we know that {Δ(src(𝐴′), 𝛼, 𝑝) | (𝛼, 𝑝) ∈
RP(𝐴′) } = {𝐴′1, . . . , 𝐴′𝑛 } and thus

OV(𝐴′, 𝐵′) =
𝑛⊔
𝑖=1

𝐴′𝑖 = 𝐴′

5. 𝑞\𝑝 = 𝜖 or 𝑝1\𝑝 = 𝜖 follows from the definition of 𝑝
in Step 4.

167

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.overlapping_part.tau_is_mgu%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.overlapping_part.fun_poss_l_tau%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.overlapping_part.A'_rho%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.overlapping_part.A'_B'_sim_cp%7Cthm

Formalizing Simultaneous Critical Pairs for Confluence of Left-Linear Rewrite Systems CPP ’25, January 20–21, 2025, Denver, CO, USA

6. ℓ = lhs(𝛼1)′ [lhs(𝛽)′]𝑞\𝑝 by definition.
7. The set of equations

{ lhs(𝛼1)′ ≈ ℓ |𝑝1\𝑝 , . . . , lhs(𝛼𝑛)′ ≈ ℓ |𝑝𝑛\𝑝 }

is unifiable with mgu 𝜏 , as was shown in Step 6.

8. 𝐴′ =
𝑛⊔
𝑖=1

𝐴′𝑖 follows directly from (16) in the previous
step.

9. 𝐵′ = ℓ𝜏 [𝛽 (𝜎𝛽𝜏)]𝑞\𝑝 by definition.

10. Apply the strongly closedness assumption. By as-
sumption every SCP is strongly closed. Therefore, we obtain
a term 𝑣 ′ such that

tgt(𝐴′) →∗ 𝑣 ′ ◦←− tgt(𝐵′) (23)

Let 𝐷 ′ be the multi-step representing tgt(𝐵′) ◦−→ 𝑣 ′ and
define 𝑣 := tgt(𝐴[𝑣 ′𝜌]𝑝′) and 𝐷 := 𝐴[𝐷 ′𝜌]𝑝′ . We show

𝑡 →∗ 𝑣 (24)
𝑢 ◦−→ 𝑣 (witnessed by 𝐷) (25)

Proof of (24):

𝑡 = tgt(𝐴) = tgt(𝐴[𝐴′𝜌]𝑝′) (21)
= tgt(𝐴[tgt(𝐴′)𝜌]𝑝′) (Lemma 3.3)
→∗ tgt(𝐴[𝑣 ′𝜌]𝑝′) = 𝑣 (Lemma 3.3 and 23)

Proof of (25):

src(𝐷) = src(𝐴) [src(𝐷 ′) (src ◦ 𝜌)]𝑝 (Lemma 3.3)
= 𝑠 [tgt(𝐵′) (src ◦ 𝜌)]𝑝 (definition of 𝐷 ′)
= 𝑠 [tgt(𝐵′)𝜎]𝑝 (22)
= tgt(𝐵) = 𝑢 (Lemma 3.3 and 15)

tgt(𝐷) = tgt(𝐴[tgt(𝐷 ′)𝜌]𝑝′) (Lemma 3.3)
= tgt(𝐴[𝑣 ′𝜌]𝑝′) = 𝑣 (definition of 𝐷 ′)

Note that for the application of (22) we needVar(tgt(𝐵′)) ⊆
Var(ℓ𝜏). This follows from (15) and Lemma 3.2. □

Using Lemma 6.4, it is now easy to prove Theorem 6.2.

Proof of Theorem 6.2. By Lemma 2.1 it suffices to show that
◦−→ is strongly confluent. Assume 𝑡 ◦←− 𝑠 ◦−→ 𝑢. Hence,
𝑠 →𝑛 𝑢 for some 𝑛 ⩾ 0. We show the existence of a term 𝑣

such that 𝑡 ◦−→∗ 𝑣 ◦←− 𝑢 by induction on𝑛. For𝑛 = 0 the proof
is trivial by taking𝑢 = 𝑣 . For𝑛 > 0 we obtain an intermediate
term 𝑢′ such that 𝑠 → 𝑢′ →𝑛−1 𝑢 and using Lemma 6.4 we
obtain a term 𝑣 ′ such that 𝑡 ◦−→∗ 𝑣 ′ ◦←− 𝑢′. Since we have
𝑣 ′ ◦←− 𝑢′ →𝑛−1 𝑢, we can apply the induction hypothesis to
obtain the desired term 𝑣 ′ such that 𝑣 ′ ◦−→∗ 𝑣 ◦←− 𝑢. See also
Figure 2.

𝑠

𝑡

𝑢′

𝑣 ′

𝑢

𝑣

𝑛

∗ ∗

Lemma 6.4 induction hypothesis

Figure 2. Proof of Theorem 6.2.

locale tau =
fixes ss :: "(’f, ’v) term list"

and t :: "(’f, ’v) term"
and ps :: "pos list"

assumes "length ss = length ps"
and "linear_term t"
and "∀s ∈ set ss. linear_term s"
and "∀p ∈ set ps. p ∈ poss t"
and "∀s ∈ set ss. vars_term s ∩ vars_term t = {}"
and "∀i j. i < j ∧ j < length ss −→

vars_term (ss!i) ∩ vars_term (ss!j) = {}"

Listing 2. The locale tau used for the proof of Theorem 6.2.

6.2 Formalization Details
As mentioned in Section 2.2, we relied on Isabelle’s locales to
modularize the main proof with its many intermediate facts.
For instance, the definition and properties of the substitu-
tion 𝜏 of step 4 do not directly depend on the proof terms
𝐴 and 𝐵. Instead, it only matters whether the terms with
which tau(·, ·) is instantiated satisfy specific properties. So
we encapsulated the properties of 𝜏 into a locale called tau

(see Listing 2). This locale is then instantiated appropriately
during the main proof, as described in step 6 of the proof out-
line above. Moreover, in steps 1 and 2 of the outlined proof,
important properties of 𝐴 and 𝐵 are established. The locale
overlapping_part describes a state were these properties are
assumed to hold . Within this locale, we define several
key elements, including:
• the renamed left-hand sides from step 3,
• the position 𝑝 , term ℓ and substitution 𝜏 of step 4,
• the substitution 𝜎 of step 5,
• the proof terms 𝐴′1, . . . , 𝐴

′
𝑛 and 𝐵′ of step 7.

The proof term 𝐴′ of step 7 gets its own subcontext within
overlapping_part. In this subcontext, we assume that 𝐴′
is a well-defined proof term and is the result of

⊔𝑛
𝑖=1𝐴

′
𝑖 .

The existence of the position 𝑝′ in step 8 is handled in an
additional nested context within overlapping_part. Figure 3
illustrates the different nested contexts. The main theorem
okui_imp_CR is stated outside of any locale or context.

168

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.okui_imp_CR%7Cthm
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.overlapping_part%7Clocale
http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_Criterion.html#Okui_Criterion.okui_imp_CR%7Cthm

CPP ’25, January 20–21, 2025, Denver, CO, USA Christina Kirk and Aart Middeldorp

wf_trs + ren
overlapping_part

𝐴′

𝑝′

tau

Figure 3. Sketch of nested locales and contexts used in the
proof of Theorem 6.2.

theorem okui_imp_CR:
assumes "left_lin_wf_trs R"

and "
∧
A B. (A, B) ∈ ren.sim_cp ren R =⇒ ∃ v.

(target A, v) ∈ (rstep R)∗ ∧ (target B, v) ∈ mstep R"
shows "CR (rstep R)"

Listing 3. Statement of the main theorem in Isabelle.

As can bee seen in Listing 3, it has only two assumptions:
1. The TRS R in question adheres to the variable condi-

tions and is left-linear.
2. All simultaneous critical pairs of R (with respect to a

certain renaming function) are strongly closed.
Under these assumptions, the theorem concludes that R is
confluent.

6.3 Okui Subsumes Development-Closedness
Since we did not yet formalize an algorithm for computing
all SCPs of a given TRS, we cannot yet execute code to ver-
ify confluence proofs based on SCPs directly. Verification of
such an algorithm will indeed be another hard task. In the
meantime, one can of course question whether the assump-
tions of the main theorem can be fulfilled in practice. In order
to address such concerns we formalized Okui’s remark, stat-
ing that his criterion subsumes development closedness [19].
I.e., we showed that any development closed TRS indeed has
strongly closed SCPs . Since the development closedness
criterion formalized in IsaFoR has successfully been applied
by CeTA to many TRSs of the ARI-COPS database,7 each of
these TRSs is an example of a TRS fulfilling the conditions
formalized in Okui’s criterion.

7 Related Work
Several confluence criteria have been formalized in differ-
ent proof assistants. The most comprehensive collection is
contained in the IsaFoR library for Isabelle/HOL. This library
includes notable criteria, such as Knuth and Bendix’s join-
ability of critical pairs for terminating TRSs [23], strongly
closed critical pairs for linear TRSs [16], and left-linearity

7https://ari-cops.uibk.ac.at/

with development closed critical pairs [11, 12] (which sub-
sumes the parallel closedness criterion previously formalized
in [16]). Most recently, confluence via parallel critical pairs
has also been formalized in IsaFoR [9]. Additionally, the land-
mark result by Knuth and Bendix has been formalized in
ACL2 [21] and in PVS [7]. Orthogonality as a sufficient crite-
rion for confluence has also been formalized in PVS [20]. To
our knowledge, ours is the first formalization of a confluence
result based on simultaneous critical pairs.

Okui noted in [19] that his confluence result subsumes van
Oostrom’s development closedness, so our result subsumes
the confluence results in [11, 12]. However, these results have
been lifted to commutation of two TRSs. Although it should
be straightforward to extend Okui’s simultaneous critical
pair criterion to commutation as well, this has not yet been
formalized. Notably, confluence via simultaneous critical
pairs is incomparable to the parallel critical pair criteria
in [9].

8 Conclusion and Future Work
Building on recent successful formalizations of critical pair
criteria for confluence, we were able to obtain a formalized
proof of Okui’s simultaneous critical pair criterion for left-
linear TRSs. To achieve this result we have reformulated the
definition of simultaneous critical pairs using proof terms.
While the structure of Okui’s proof in [19] could be essen-
tially followed, the formalization process presented several
challenges.

This result is now part of the IsaFoR library, with over 6000
lines of Isabelle code added, including several new results
on proof terms as well as unification of linear terms.
Currently, an algorithm for computing SCPs has not yet

been verified in IsaFoR. This is a non-trivial task, but as
soon as such a formalized procedure is in place, it will be
possible to certify confluence proofs based on SCPs with the
certifier CeTA [17]. The plan is to adopt a similar certificate
format as for development closedness, requiring only the
maximum number of steps for the closing sequences to be
specified. Preliminary experiments with ACP and CSI on the
ARI-COPS database confirm that this will further reduce the
gap between the number of YES/NO answers by confluence
tools and the number of certified YES/NO answers.

As mentioned in the previous section, it is anticipated that
Theorem 6.2 can be extended to commutation of two TRSs.
A formalization of this extension remains as future work.

Acknowledgments
This research was funded in part by the Austrian Science
Fund (FWF) project I5943 and by a grant of the University
of Innsbruck awarded to Christina Kirk. The pertinent com-
ments by the anonymous reviewers improved the presenta-
tion.

169

http://informatik-protem.uibk.ac.at/Okui/IsaFoR/CR/Okui_subsumes_DC.html#Okui_subsumes_DC.dc_imp_sim_cp_closed%7Cthm
https://ari-cops.uibk.ac.at/

Formalizing Simultaneous Critical Pairs for Confluence of Left-Linear Rewrite Systems CPP ’25, January 20–21, 2025, Denver, CO, USA

References
[1] Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama. 2009. Proving

Confluence of Term Rewriting Systems Automatically. In Proc. 20th In-
ternational Conference on Rewriting Techniques and Applications (LNCS,
Vol. 5595), Ralf Treinen (Ed.). 93–102. https://doi.org/10.1007/978-3-
642-02348-4_7

[2] Franz Baader and Tobias Nipkow. 1998. Term Rewriting and
All That. Cambridge University Press. https://doi.org/10.1017/
CBO9781139172752

[3] Clemens Ballarin. 2003. Locales and Locale Expressions in Isabelle/Isar.
In Proc. 2003 International Workshop on Types for Proofs and Programs
(LNCS, Vol. 3085), Stefano Berardi, Mario Coppo, and Ferruccio Damiani
(Eds.). 34–50. https://doi.org/10.1007/978-3-540-24849-1_3

[4] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson.
2013. Extending Sledgehammer with SMT solvers. Journal of Auto-
mated Reasoning 51, 1 (2013), 109–128. https://doi.org/10.1007/s10817-
013-9278-5

[5] Sascha Böhme and Tobias Nipkow. 2010. Sledgehammer: Judgement
Day. In Proc. 5th International Joint Conference on Automated Reasoning
(LNAI, Vol. 6173), Jürgen Giesl and Reiner Hähnle (Eds.). 107–121.
https://doi.org/10.1007/978-3-642-14203-1_9

[6] Bertram Felgenhauer. 2015. Labeling Multi-Steps for Confluence of
Left-Linear Term Rewrite Systems. In Proc. 4th International Work-
shop on Confluence, Ashish Tiwari and Takahito Aoto (Eds.). 33–37.
Available from http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf.

[7] André Luiz Galdino andMauricio Ayala-Rincón. 2010. A Formalization
of the Knuth-Bendix(-Huet) Critical Pair Theorem. Journal of Auto-
mated Reasoning 45, 3 (2010), 301–325. https://doi.org/10.1007/s10817-
010-9165-2

[8] Bernhard Gramlich. 1996. Confluence without Termination via Parallel
Critical Pairs. In Proc. 21st International Colloquium on Trees in Algebra
and Programming (LNCS, Vol. 1059), Hélène Kirchner (Ed.). 211–225.
https://doi.org/10.1007/3-540-61064-2_39

[9] Nao Hirokawa, Dohan Kim, Kiraku Shintani, and René Thiemann. 2024.
Certification of Confluence- and Commutation-Proofs via Parallel Crit-
ical Pairs. In Proc. 13th International Conference on Certified Programs
and Proofs, Amin Timany, Dmitriy Traytel, Brigitte Pientka, and San-
drine Blazy (Eds.). 147–161. https://doi.org/10.1145/3636501.3636949

[10] Christina Kohl and Aart Middeldorp. 2018. ProTeM: A Proof Term
Manipulator (System Description). In Proc. 3rd International Conference
on Formal Structures for Computation and Deduction (LIPIcs, Vol. 108),
Hélène Kirchner (Ed.). 31:1–31:8. https://doi.org/10.4230/LIPIcs.FSCD.
2018.31

[11] Christina Kohl and Aart Middeldorp. 2023. A Formalization of the
Development Closedness Criterion for Left-Linear Term Rewrite Sys-
tems. In Proc. 12th International Conference on Certified Programs and
Proofs, Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve
Zdancewic (Eds.). 197–210. https://doi.org/10.1145/3573105.3575667

[12] Christina Kohl and Aart Middeldorp. 2023. Formalizing Almost De-
velopment Closed Critical Pairs (Short Paper). In Proc. 14th Inter-
national Joint Conference on Automated Reasoning (LIPIcs, Vol. 268),
Adam Naumowicz and René Thiemann (Eds.). 38:1–38:8. https:
//doi.org/10.4230/LIPIcs.ITP.2023.38

[13] Julian Nagele. 2017. Mechanizing Confluence. Ph. D. Dissertation.
University of Innsbruck.

[14] Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. 2015. Im-
proving Automatic Confluence Analysis of Rewrite Systems by Re-
dundant Rules. In Proc. 26th International Conference on Rewriting

Techniques and Applications (LIPIcs, Vol. 36), Maribel Fernández (Ed.).
257–268. https://doi.org/10.4230/LIPIcs.RTA.2015.257

[15] Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. 2017. CSI:
New Evidence — A Progress Report. In Proc. 26th International Confer-
ence on Automated Deduction (LNAI, Vol. 10395), Leonardo de Moura
(Ed.). 385–397. https://doi.org/10.1007/978-3-319-63046-5_24

[16] Julian Nagele and Aart Middeldorp. 2016. Certification of Classical
Confluence Results for Left-Linear Term Rewrite Systems. In Proc.
7th International Joint Conference on Automated Reasoning (LNCS,
Vol. 9807), Jasmin Christian Blanchette and Stephan Merz (Eds.). 290–
306. https://doi.org/10.1007/978-3-319-43144-4_18

[17] Julian Nagele and René Thiemann. 2014. Certification of Confluence
Proofs using CeTA. In Proc. 3rd International Workshop on Confluence,
Takahito Aoto and Delia Kesner (Eds.). 19–23. Available from http:
//cl-informatik.uibk.ac.at/iwc/iwc2014.pdf.

[18] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL – A Proof Assistant for Higher-Order Logic. LNCS, Vol. 2283.
Springer. https://doi.org/10.1007/3-540-45949-9

[19] Satoshi Okui. 1998. Simultaneous Critical Pairs and Church–Rosser
Property. In Proc. 9th International Conference on Rewriting Techniques
and Applications (LNCS, Vol. 1379), Tobias Nipkow (Ed.). 2–16. https:
//doi.org/10.1007/BFb0052357

[20] Ana Cristina Rocha-Oliveira, André Luiz Galdino, and Mauricio Ayala-
Rincón. 2017. Confluence of Orthogonal Term Rewriting Systems in
the Prototype Verification System. Journal of Automated Reasoning 58,
2 (2017), 231–251. https://doi.org/10.1007/s10817-016-9376-2

[21] José-Luis Ruiz-Reina, José-Antonio Alonso, María-José Hidalgo, and
Francisco-Jesús Martín-Mateos. 2002. Formal Proofs About Rewriting
Using ACL2. Annals of Mathematics and Artificial Intelligence 36, 3
(2002), 239–262. https://doi.org/10.1023/A:1016003314081

[22] Kiraku Shintani and Nao Hirokawa. 2024. Compositional Confluence
Criteria. Logical Methods in Computer Science 20, 1 (2024). https:
//doi.org/10.46298/lmcs-20(1:6)2024

[23] Christian Sternagel and René Thiemann. 2013. Formalizing Knuth–
Bendix Orders and Knuth–Bendix Completion. In Proc. 24th Inter-
national Conference on Rewriting Techniques and Applications (LIPIcs,
Vol. 21), Femke van Raamsdonk (Ed.). 287–302. https://doi.org/10.
4230/LIPIcs.RTA.2013.287

[24] TeReSe (Ed.). 2003. Term Rewriting Systems. Cambridge Tracts in
Theoretical Computer Science, Vol. 55. Cambridge University Press.

[25] Yoshihito Toyama. 1981. On the Church–Rosser Property of Term Rewrit-
ing Systems. Technical Report 17672. NTT ECL Technical Report.

[26] Vincent van Oostrom. 1995. Development Closed Critical Pairs. In Proc.
2nd International Workshop on Higher-Order Algebra, Logic, and Term
Rewriting (LNCS, Vol. 1074), Gilles Dowek, Jan Heering, Karl Meinke,
and Bernhard Möller (Eds.). 185–200. https://doi.org/10.1007/3-540-
61254-8_26

[27] Vincent van Oostrom. 1997. Developing Developments. Theoretical
Computer Science 175, 1 (1997), 159–181. https://doi.org/10.1016/S0304-
3975(96)00173-9

[28] Vincent van Oostrom and Roel de Vrijer. 2002. Four Equivalent Equiva-
lences of Reductions. In Proc. 2nd International Workshop on Reduction
Strategies in Rewriting and Programming (Electronic Notes in Theoretical
Computer Science, Vol. 70(6)), Bernhard Gramlich and Salvador Lucas
(Eds.). 21–61. https://doi.org/10.1016/S1571-0661(04)80599-1

Received 2024-09-06; accepted 2024-11-19

170

https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/978-3-642-14203-1_9
http://cl-informatik.uibk.ac.at/iwc/iwc2015.pdf
https://doi.org/10.1007/s10817-010-9165-2
https://doi.org/10.1007/s10817-010-9165-2
https://doi.org/10.1007/3-540-61064-2_39
https://doi.org/10.1145/3636501.3636949
https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.4230/LIPIcs.ITP.2023.38
https://doi.org/10.4230/LIPIcs.ITP.2023.38
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/978-3-319-43144-4_18
http://cl-informatik.uibk.ac.at/iwc/iwc2014.pdf
http://cl-informatik.uibk.ac.at/iwc/iwc2014.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/BFb0052357
https://doi.org/10.1007/BFb0052357
https://doi.org/10.1007/s10817-016-9376-2
https://doi.org/10.1023/A:1016003314081
https://doi.org/10.46298/lmcs-20(1:6)2024
https://doi.org/10.46298/lmcs-20(1:6)2024
https://doi.org/10.4230/LIPIcs.RTA.2013.287
https://doi.org/10.4230/LIPIcs.RTA.2013.287
https://doi.org/10.1007/3-540-61254-8_26
https://doi.org/10.1007/3-540-61254-8_26
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1016/S1571-0661(04)80599-1

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Term Rewriting
	2.2 Isabelle/HOL

	3 Proof Terms
	3.1 Operations on Proof Terms
	3.2 Redex Patterns and Overlapping Proof Terms
	3.3 Matching for Proof Terms
	3.4 Formalization Details

	4 Unification
	5 Simultaneous Critical Pairs
	5.1 Formalization Details

	6 Confluence via SCPs
	6.1 A Proof of Okui's Confluence Criterion
	6.2 Formalization Details
	6.3 Okui Subsumes Development-Closedness

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

