The Hales—Jewett Theorem

Ujkan Sulejmani, Manuel Eberl, Katharina Kreuzer

October 27, 2022

Abstract

This article is a formalisation of a proof of the Hales—Jewett theo-
rem presented in the textbook Ramsey Theory by Graham et al. [1].

The Hales—Jewett theorem is a result in Ramsey Theory which
states that, for any non-negative integers r and ¢, there exists a mini-
mal dimension N, such that any r-coloured N’-dimensional cube over
t elements (with N’ > N) contains a monochromatic line. This theo-
rem generalises Van der Waerden’s Theorem, which has already been
formalised in another AFP entry [2].

Contents

1 Preliminaries 3
1.1 The n-dimensional cube over ¢t elements 3
1.2 Lines e e 4
1.3 Subspaces 6
1.4 Equivalence classeso oL 7

2 Core proofs 19
2.1 Theorem 4. e 19

2.1.1 Base case of Theorem 4 19
2.1.2 Induction step of theorem 4 27
2.2 Theorem 5. e 47
2.3 Corollary 6 52
24 Mainresult 53
2.4.1 Edge cases and auxiliary lemmas 53
2.4.2 Main theorem 54

theory Hales-Jewett
imports Main HOL— Library. Disjoint-Sets HOL— Library. FuncSet
begin

1 Preliminaries

The Hales—Jewett Theorem is at its core a statement about sets of tuples
called the n-dimensional cube over t elements (denoted by C}'); i.e. the
set {0,...,t — 1}", where {0,...,t — 1} is called the base. We represent
tuples by functions f : {0,...,n — 1} — {0,...,t — 1} because they’re
easier to deal with. The set of tuples then becomes the function space
{0,...,t— 1}{0"“’”_1}. Furthermore, r-colourings of the cube are represented
by mappings from the function space to the set {0,...,r — 1}.

1.1 The n-dimensional cube over ¢ elements

Function spaces in Isabelle are supported by the library component FuncSet.
In essence, f € A -y Bmeans a € A = fa € Banda ¢ A = fa =
undefined

The (canonical) n-dimensional cube over ¢ elements is defined in the follow-
ing using the variables:

n: mnat dimension

t: nat number of elements

definition cube :: nat = nat = (nat = nat) set
where cube n t = {..<n} —g {..<t}

For any function f whose image under a set A is a subset of another set B,
there’s a unique function g in the function space B that equals f every-
where in A. The function g is usually written as f|4 in the mathematical
literature.

lemma PiFE-uniqueness: f ‘A C B=— dlgec A
—g B.VacA. ga=fa
using ezl[of \z. x € A -5 BN (Va€A. za = fa)
restrict f A] PiE-ext PiE-iff by fastforce

Any prefix of length j of an n-tuple (i.e. element of C}') is a j-tuple (i.e.
element of CY).

lemma cube-restrict:
assumes j < n
and y € cube n t
shows (\g € {..<j}. y g) € cube j t using assms unfolding cube-def by force

Narrowing down the obvious fact BACCAIBCCtoa specific case for
cubes.

lemma cube-subset: cube n t C cube n (¢t + 1)
unfolding cube-def using PiE-monolof {..<n} Az. {..<t} Az. {.<t+1}]
by simp

A simplifying definition for the 0-dimensional cube.

lemma cube0-alt-def: cube 0t = {\z. undefined}
unfolding cube-def by simp

The cardinality of the n-dimensional over ¢ elements is simply a consequence
of the overarching definition of the cardinality of function spaces (over finite
sets).

lemma cube-card: card ({..<n:nat} —g {.<t:nat}) =t " n
by (simp add: card-PiE)

A simplifying definition for the n-dimensional cube over a single element,
i.e. the single n-dimensional point (0, ..., 0).

lemma cubel-alt-def: cube n 1 = {Aze{..<n}. 0} unfolding cube-def by (simp
add: lessThan-Suc)

1.2 Lines

The property of being a line in C}' is defined in the following using the
variables:

L: nat = nat = nat line

n: nat dimension of cube

t: nat the size of the cube’s base

definition is-line :: (nat = (nat = nat)) = nat =

nat = bool
where is-line Lnt = (L € {.<t} =g cube n t A
(Vi<n. Va<t.Vy<t. Lxj= Lyj)V (Vs<t. Lsj=3s))
ANEFj<n Vs<t. Lsji=ys))))

We introduce an elimination rule to relate lines with the more general defi-
nition of a subspace (see below).

lemma is-line-elim-t-1:
assumes is-line L n t and ¢t = 1
obtains By B;
where Byg U By = {.<n} A BoN By = {} A
Bo#{} N(Vj€ By. Va<t.Vy<t.Lzj=1Ly
)N (Vje By (Vs<t. Lsj=3s))
proof —
define B0 where B0 = {..<n}
define B! where Bl = ({}::nat set)
have B0 U BI = {..<n} unfolding B0-def B1-def by simp
moreover have B0 N Bl = {} unfolding B0-def B1-def by simp
moreover have B0 # {} using assms unfolding B0-def is-line-def by auto

moreover have (Vj € Bl. (Vz<t.Vy<t. Lz j= L yj)) unfolding BI-def by
stmp
moreover have (Vj € B0. (Vs<t. L s j = s)) using assms(1, 2) cubel-alt-def
unfolding BO0-def is-line-def by auto
ultimately show ?thesis using that by simp
qed

The next two lemmas are used to simplify proofs by enabling us to use the
resulting facts directly. This avoids having to unfold the definition of is-line
each time.

lemma line-points-in-cube:
assumes is-line L n t
and s < t
shows L s € cube n t
using assms unfolding cube-def is-line-def
by auto

lemma line-points-in-cube-unfolded:
assumes is-line L n ¢
and s < ¢
and j < n
shows L s j € {..<t}
using assms line-points-in-cube unfolding cube-def by blast

The incrementation of all elements of a set is defined in the following using
the variables:

n: nat increment size

S: nat set set

definition set-incr :: nat = nat set = nat set
where
set-incrn S = (Aa. a + n) “ S

lemma set-incr-disjnt:
assumes disjnt A B
shows disjnt (set-incr n A) (set-incr n B)
using assms unfolding disjnt-def set-incr-def by force

lemma set-incr-disjoint-family:

assumes disjoint-family-on B {..k}

shows disjoint-family-on (\i. set-incr n (B i)) {..k}

using assms set-incr-disjnt unfolding disjoint-family-on-def by (meson dis-
jnt-def)

lemma set-incr-altdef: set-incrn S = (+) n © S
by (auto simp: set-incr-def)

lemma set-incr-image:
assumes (|Jie{..k}. B i) = {..<n}

shows (|Jie{..k}. set-incr m (B 7)) = {m..<m+n}
using assms by (simp add: set-incr-altdef add.commaute flip: image-UN atLeastOLessThan)

Each tuple of dimension k£ + 1 can be split into a tuple of dimension 1 (the
first entry) and a tuple of dimension & (the remaining entries).
lemma split-cube:
assumes z € cube (k+1) ¢
shows (A\y € {.<1}. zy) € cube 1 ¢
and (A\y € {.<k}. z (y + 1)) € cube k t
using assms unfolding cube-def by auto

1.3 Subspaces

The property of being a k-dimensional subspace of C}' is defined in the
following using the variables:

S: (nat = nat) = nat = nat the subspace

k: nat the dimension of the subspace
n: nat the dimension of the cube
t: nat the size of the cube’s base

definition is-subspace
where is-subspace S kn t = (3B f. disjoint-family-on B {..k} A (B *
{kH)={.<ntAN{} ¢ B‘{.<k}) Afe(Bk) —g {.<t}
NS € (cube kt) =g (cubent) N (Vy € cube k t.
(Vie Bk.Syi=fi)AN(Vj<k. Vi€ Bj. (Sy)i=1y}j)))

A k-dimensional subspace of C}* can be thought of as an embedding of the
CF into OF, akin to how a k-dimensional vector subspace of R™ may be
thought of as an embedding of R* into R™.

lemma subspace-inj-on-cube:
assumes is-subspace S kn t
shows inj-on S (cube k t)
proof
fix zxy
assume a: ¢ € cube kty € cubektSx =Sy
from assms obtain B f where Bf-props: disjoint-family-on B {..k} N J(B ¢
[oh}) =
{.<n}AN{} ¢ B{.<k}) Nfe(Bk)—g{.<t} A
S € (cube k t) =g (cube n t) A (Vy € cube k t.
(Vie Bk. Syi=fi)A(Vj<k.Vie Bj. (Sy)i=uyj)
unfolding is-subspace-def by auto
have Vi<k. z i =y i
proof (intro alll implI)
fix j assume j < k
then have B j # {} using Bf-props by auto
then obtain ¢ where i-prop: ¢ € B j by blast
then have y j = S y i using Bf-props a(2) <j < k» by auto
also have ... = § z i using a by simp

also have ... = z j using Bf-props a(1) <j < k> i-prop by blast

finally show z j = y j by simp
qed
then show z = y using a(1,2) unfolding cube-def by (meson PiE-ext less Than-iff)
qed

The following is required to handle base cases in the key lemmas.

lemma dim0-subspace-ex:
assumes t > ()
shows 3 5. is-subspace S 0 n t
proof—
define B where B = (Az::nat. undefined)(0:={..<n})

have {..<t} # {} using assms by auto
then have 3f. f € (B 0) —g {..<t}
by (meson PiE-eq-empty-iff all-not-in-conv)
then obtain f where f-prop: f € (B 0) = {..<t} by blast
define S where S = (Az::(nat = nat). undefined)((Az. undefined):=f)

have disjoint-family-on B {..0} unfolding disjoint-family-on-def by simp
moreover have | J(B ‘{..0}) = {..<n} unfolding B-def by simp
moreover have ({} ¢ B ‘{..<0}) by simp
moreover have S € (cube 0t) =g (cube n t)
using f-prop PiE-I unfolding B-def cube-def S-def by auto
moreover have (Vy € cube 0t. (Vi€ B0. Syi=fi)A
(Vj<0.Vi € Bj. (Sy)i=yj)) unfolding cube-def S-def by force
ultimately have is-subspace S 0 n t using f-prop unfolding is-subspace-def by
blast
then show 3 5. is-subspace S 0 n t by auto
qed

1.4 Equivalence classes

Defining the equivalence classes of cube n (t + 1): {classes n t 0, ..., classes
ntn}

definition classes
where classes nt = (Ai. {z .z € (cuben (t + 1)) A (Vu €

{(n=i).<n}. zu=1t) At ¢z {.<(n—1)}})

lemma classes-subset-cube: classes n t i C cube n (t+1) unfolding classes-def by
blast

definition layered-subspace
where layered-subspace S kn t r x = (is-subspace Skn (t + 1) AN (Vi
€ {..k}. Je<r.Va € classes kti. x (Sx) =c¢)) A x €
cube n (¢t + 1) =g {.<r}

lemma layered-eq-classes:

assumes layered-subspace S kn tr x
shows Vi € {.k}. Vz € classes k t i. Vy € classes k t 1.
x (Sz)=x(Sy)
proof (safe)
fixizy
assume a: | < kx € classes ktiy € classes kt i
then obtain ¢ where ¢ < 7 A x (Sz) = ¢ A x (Sy) = c using assms unfolding
layered-subspace-def by fast
then show x (S z) = x (S y) by simp
qed

lemma dim0-layered-subspace-ex:
assumes x € (cube n (t + 1)) =g {..<r:nat}
shows 3 5. layered-subspace S (0::nat) ntr x
proof—
obtain S where S-prop: is-subspace S (0::nat) n (t+1) using dim0-subspace-ex
by auto
have classes (0::nat) t 0 = cube 0 (t+1) unfolding classes-def by simp
moreover have (Vi € {..0:nat}. Ie<r. Vz € classes (0:nat) ti. x (Sz) = ¢)
proof(safe)
fix ¢
have Vz € classes 0t 0. x (S z) = x (S (Az. undefined)) using cube0-alt-def
using <classes 0t 0 = cube 0 (t + 1)» by auto
moreover have S (Az. undefined) € cube n (t+1) using S-prop cube0-alt-def
unfolding is-subspace-def by auto
moreover have x (S (Az. undefined)) < r using assms calculation by auto
ultimately show 3 c<r. Vzecclasses 0t 0. x (S z) = ¢ by auto
qed
ultimately have layered-subspace S 0 n t r x using S-prop assms unfolding
layered-subspace-def by blast
then show 35. layered-subspace S (0::nat) n t r x by auto
qed

lemma disjoint-family-onl [intro]:
assumes A\mn.me S=neS=m#n
= AmnNnAn=1{}
shows disjoint-family-on A S
using assms by (auto simp: disjoint-family-on-def)

lemma fun-er: a € A= be B=dfc A
—g B. f a=1>
proof—
assume assms: a € A b € B
then obtain g where g-def: g € A — B A g a = b by fast
then have restrict ¢ A € A —g B A (restrict ¢ A) a = b using assms(1) by
auto
then show ?thesis by blast
qed

lemma ex-bij-betw-nat-finite-2:
assumes card A = n
and n > 0
shows 3f. bij-betw f A {..<n}
using assms ex-bij-betw-finite-nat[of A] atLeastOLessThan card-ge-0-finite by auto

lemma one-dim-cube-eq-nat-set: bij-betw (Af. f 0) (cube 1 k) {..<k}
proof (unfold bij-betw-def)
have *: (\f. f 0) ‘ cube 1 k = {..<k}
proof(safe)
fix z f
assume [€ cube 1 k
then show f 0 < k unfolding cube-def by blast
next
fix z
assume z < k
then have z € {..<k} by simp
moreover have 0 € {..<I:nat} by simp
ultimately have 3y € {..<I:nat} —g {..<k}. y 0 = z using
fun-ex[of 0 {..<I:nat} z {..<k}] by auto
then show z € (\f. f 0) ¢ cube 1 k unfolding cube-def by blast
qed
moreover
{
have card (cube 1 k) = k using cube-card by (simp add: cube-def)
moreover have card {..<k} = k by simp
ultimately have inj-on (Af. f 0) (cube 1 k) using x eq-card-imp-inj-on|of cube
1k M. f0]
by force
}

ultimately show inj-on (Af. f 0) (cube 1 k) A (Af. f0) ‘ cube 1 k = {..<k} by
stmp
qed

An alternative introduction rule for the 3!z quantifier, which means "there
exists exactly one x”.

lemma exil-alt: (3z. Pz A Vy. Py — z =1y)) = (3lz. Px)
by auto
lemma nat-set-eq-one-dim-cube: bij-betw (Az. Aye{..<I:nat}.) {..<k:nat} (cube
1k)
proof (unfold bij-betw-def)
have *: (\z. Aye{..<Iunat}. z) ‘{.<k} = cube 1 k
proof (safe)
fix zy
assume y < k
then show (\z€{..<I1}. y) € cube 1 k unfolding cube-def by simp
next
fix z
assume z € cube 1 k

have z = (\z. Aye{..<I:nat}. z) (z 0:nat)
proof
fix j
consider j € {..<1} | j ¢ {..<I:nat} by linarith
then show z j = (Az. Aye{..<I:nat}. z) (z 0::nat) j using <z
€ cube 1 k> unfolding cube-def by auto
qed
moreover have z 0 € {..<k} using (z € cube 1 k> by (auto simp add: cube-def)
ultimately show z € (Az. Aye{..<1}. 2) ‘{..<k} by blast
qged
moreover
{
have card (cube 1 k) = k using cube-card by (simp add: cube-def)
moreover have card {..<k} = k by simp
ultimately have inj-on (Az. A\ye{..<I:nat}. z) {..<k} using *
eq-card-imp-ing-on[of {..<k} Az. Aye{..<I:nat}. z] by force
}

ultimately show inj-on (Az. A\ye{..<I:nat}. z) {..<k} A (Az.
Aye{.<Iunat}. z) “{..<k} = cube I k by blast
qed

A bijection f between domains A; and As creates a correspondence between
functions in A; — B and Ay — B.

lemma bij-domain-PiE:
assumes bij-betw f A1 A2
and g € A2 »-p B
shows (restrict (g o f) A1) € Al g B
using bij-betwE assms by fastforce

The following three lemmas relate lines to 1-dimensional subspaces (in the
natural way). This is a direct consequence of the elimination rule is-line-elim
introduced above.

lemma line-is-dim1-subspace-t-1:
assumes n > 0
and i¢s-line L n 1
shows is-subspace (restrict (A\y. L (y 0)) (cube 1 1)) 1 n 1
proof —
obtain By By where B-props: By U By = {..<n} A By
ﬂBlz{}ABo#{}/\(VjeBl.
(Ve<1.Vy<l.Lzj=Lyj) N (Vj€ By. (Vs<I. L
sj = s)) using is-line-elim-t-1[of L n 1] assms by auto
define B where B = (\i::inat. {}::nat set)(0:=By, 1:=B)
define f where f = (Mi € B1. L 01)
have x: L 0 € {.<n} —F {..<I} using assms(2) unfolding cube-def is-line-def
by auto
have disjoint-family-on B {..1} unfolding B-def using B-props
by (simp add: Int-commute disjoint-family-onl)
moreover have |J (B ‘ {..1}) = {..<n} unfolding B-def using B-props by
auto

10

moreover have {} ¢ B ‘{..<1} unfolding B-def using B-props by auto
moreover have f € B 1 —g {..<1} using * calculation(2) unfolding f-def by
auto
moreover have (restrict (Ay. L (y 0)) (cube 1 1)) € cube 1 1 =g cube n 1
using assms(2) cubel-alt-def unfolding is-line-def by auto
moreover have (Vyccube 1 1. (Vi€B 1. (restrict (A\y. L (y 0)) (cube 1 1)) y i
= f1)
A (Vj<1.VieB j. (restrict (Ay. L (y 0)) (cube 1 1)) yi=1yj))
using cubel-alt-def B-props *x unfolding B-def f-def by auto
ultimately show ¢thesis unfolding is-subspace-def by blast
qed

lemma line-is-dim1-subspace-t-ge-1:
assumes n > 0
and ¢t > 1
and is-line L n t
shows is-subspace (restrict (A\y. L (y 0)) (cube 1 t)) I nt
proof —
let ?B1 = {iznat . i < n AN Va<t.Vy<t. Lzi= Ly}
let B0 = {iznat . i <n A (Vs<t Lsi=s)}
define B where B = (Ai::nat. {}::nat set)(0:=¢B0, 1:=?B1)
let L = (A\y € cube 1t. L (y0))
have ?B0 # {} using assms(3) unfolding is-line-def by simp

have L1: B0 U ?B1 = {..<n} using assms(3) unfolding is-line-def by auto
{

have (Vs < t. Lsi=3s) — ~(Va<t.Vy<t. Lz i =

L y i) if i < n for ¢ using assms(2) less-trans by auto

then have x:i ¢ ?B0 if ¢ € ¢BI for ¢ using that by blast

}

moreover

{

have (Vaz<t. Vy<t. Lzi= Lyi) — -(Vs<t Lsi=ys)
if © < n for i using that calculation by blast
then have xx: Vi € ?B0. i ¢ 7Bl
by blast
}

ultimately have L2: ?B0 N ¢B1 = {} by blast
let 9f = (\i. if i € B 1 then L 0 i else undefined)
have {..1:nat} = {0, 1} by auto
then have |J(B ‘{..1::nat}) = B 0 U B 1 by simp
then have |J (B ‘{..I::nat}) = ?B0 U ?B1 unfolding B-def by simp
then have A1: disjoint-family-on B {..1::nat} using L2
by (simp add: B-def Int-commute disjoint-family-onl)
}

moreover

{

11

have |J(B ‘{..1:nat}) = B 0 U B I unfolding B-def by auto
then have |J (B ‘{..1::nat}) = {..<n} using LI unfolding B-def by simp

}

moreover

have Vi € {..<I:nat}. Bi # {}
using ({i. i < n A (Vs<t. Lsi=s)} #{} fun-upd-same lessThan-iff less-one

unfolding B-def by auto
then have {} ¢ B ‘ {..<I:nat} by blast

moreover

have ?f € (B 1) =g {..<t}
proof
fix ¢
assume asm: i € (B 1)
have Lab e {.<t} if a < t and b < n for a b using assms(3) that unfolding
is-line-def cube-def by auto
then have L 0 i € {..<t} using assms(2) asm calculation(2) by blast
then show ?f i € {..<t} using asm by presburger
qed (auto)

}

moreover

have L € {..<t} =g (cube n t) using assms(3) by (simp add: is-line-def)

then have ?L € (cube 1 t) —g (cube n t)

using bij-domain-PiE[of (Af. f0) (cube 1t) {..<t} L cube n t] one-dim-cube-eq-nat-set|of
t]

}

moreover
{
have Vy € cube 1 t. (Vi€ B1. ?2Lyi= ?fi) AN (Vj< L
Vie Bj. (?Ly)i=yj)
proof
fix y
assume y € cube 1t
then have y 0 € {..<t} unfolding cube-def by blast

by auto

have (Vi € B 1. ?L yi = ?f1)
proof
fix ¢
assume i € B 1
then have ?fi =L 01
by meson
moreover have ?L y i = L (y 0) 7 using <y € cube 1 t» by simp
moreover have L (y 0) i =L 0

12

proof —
have ¢ € ?B1 using «i € B I» unfolding B-def fun-upd-def by presburger
then have (Va<t. Vy<t. L zi= Ly i) by blast
then show L (y 0) i = L 0 i using <y 0 € {..<t}> by blast
qged
ultimately show ?L y i = ?f i by simp
qed

moreover have (7L y) i =y jifj< land i € Bjfor ij
proof—
have i € B 0 using that by blast
then have { € B0 unfolding B-def by auto
then have (Vs < t. L s i = s) by blast
moreover have y 0 < t using «y € cube 1 t» unfolding cube-def by auto
ultimately have L (y 0) i = y 0 by simp
then show 7L y i = y j using that using <y € cube 1 t» by force
qed

ultimately show (Vi€ B 1. ?Lyi= ?fi) A (Vj< 1. Vi
€ Bj. (PLy)i=yj)
by blast
qed

}

ultimately show is-subspace ?L 1 n t unfolding is-subspace-def by blast
qed

lemma line-is-dim1-subspace:
assumes n > 0
and t > 0
and is-line L n t
shows is-subspace (restrict (A\y. L (y 0)) (cube 1t)) I nt
using line-is-dim1-subspace-t-1[of n L] line-is-dim1-subspace-t-ge-1[of n t L] assms
not-less-iff-gr-or-eq by blast

The key property of the existence of a minimal dimension IV, such that for
any r-colouring in C} / (for N > N) there exists a monochromatic line is
defined in the following using the variables:

r: nat the number of colours

t: nat the size of of the base

definition Aj
where hjrt = (AN>0. VN’ > N.Vx. x € (cube N’
t) =g {..<r:inat} — (3 L. Ie<r. is-line L N' t
ANNVyel ‘{.<t}. xy=rc))

The key property of the existence of a minimal dimension N, such that
for any r-colouring in CN' (for N’ > N) there exists a layered subspace of
dimension k is defined in the following using the variables:

13

r: mnat the number of colours
t: nat the size of of the base
k: mat the dimension of the subspace

definition /hj
where lhjrtk= (3N > 0.VN'> N.Vx. x €
(cube N' (¢t + 1)) =g {..<runat} — (38S.
layered-subspace S k N' t r x))

We state some useful facts about 1-dimensional subspaces.

lemma dim1-subspace-elims:
assumes disjoint-family-on B {..1:nat} and |J (B ‘ {..I:nat}) = {.<n} and
{}
¢ B ‘{.<I:nat}) and f € (B 1) —g {.<t} and S € (cube 1
t) =g (cube n t) and (Vy € cube 1 t. (Vi€ B1. Syi
=fi) A (Vj<l.YVie Bj (Sy)i=uyj)
shows BOU B 1 = {..<n}
and BON B1={}
and (Vy € cube 1t. Vie B1. Syi=fi) ANNieB0.(Sy) i
and B 0 # {}
proof —
have {..1} = {0::nat, 1} by auto
then show B 0 U B 1 = {..<n} using assms(2) by simp
next
show B 0 N B 1 = {} using assms(!) unfolding disjoint-family-on-def by simp
next
show (Vy € cube 1 t. (WVie B1. Syi=fi)ANNie B0.(Sy)i=y0)
using assms(6) by simp
next
show B 0 # {} using assms(3) by auto
qed

y 0))

We state some properties of cubes.

lemma cube-props:
assumes s < t
shows JIp € cube 1 t. p 0 =s
and (SOMEp.p€ cube 1t Ap0O=3s)0=s
and (Ase{..<t}. S (SOME p. pecube 1t A p 0 =5)) s =
(Ase{..<t}. S (SOME p. pecube 1t A p 0 =3)) (SOME p. p € cube 1t
Ap0=s)0)
and (SOME p. p€ cube 1t Ap 0 =3s) € cube 1 ¢
proof —
show 1: 3p € cube 1 t. p 0 = s using assms unfolding cube-def by (simp add:
fun-ex)
show 2: (SOME p. p € cube 1 t A p 0 = s) 0 = s using assms 1 somel-ez|of
AT, T
€ cube 1t Az 0= s| by blast
show 3: (Ase{..<t}. S (SOME p. pccube 1t A p 0=3)) s=
(Ase{..<t}. S (SOME p. pecube 1t A p 0 =38)) (SOME p. p € cube 1t

14

A p 0 =s)0) using 2 by simp
show 4: (SOME p. p € cube 1t A p 0 = s) € cube 1 t using 1 somel-ezx[of
Ap. p € cube 1 ¢t A p 0 = s] assms by blast
qed

The following lemma relates 1-dimensional subspaces to lines, thus establish-
ing a bidirectional correspondence between the two together with line-is-dim1-subspace.

lemma dimI1-subspace-is-line:
assumes t > 0
and is-subspace S 1 n t
shows is-line (Ase{..<t}. S (SOME p. pEcube 1 t AN p 0 =3s)) nt
proof—
define L where L = (Ase{..<t}. S (SOME p. pccube 1 t A p 0 = s))
have {..1} = {0:nat, 1} by auto
obtain B f where Bf-props: disjoint-family-on B {..1::nat} A J (B ‘ {..1::nat})

{<n}AN({} & B ‘{.<linat}) ANfe(B1) —g {.<t}
NS € (cube 1t) =g (cube nt) N (Vy € cube 1 t.
(Vie B1. Syi=fi)A(Vj<l.Vie Bj. (Sy)i=uyj)
using assms(2) unfolding is-subspace-def by auto
then have : BOU B 1={..<n} A B0ON B 1= {} using dim1-subspace-elims(1,
2)[of Bn ftS] by simp

have L € {.<t} —g cube nt
proof
fix s assume a: s € {..<t}
then have L s = S (SOME p. pecube 1 t A p 0 = s) unfolding L-def by simp
moreover have (SOME p. pecube 1 t A p 0 = s) € cube 1 t using cube-props(1)
a
somel-ex[of Ap. p € cube 1t A p 0 = s] by blast
moreover have S (SOME p. pEcube 1 t A p 0 = s) € cube n t
using assms(2) calculation(2) is-subspace-def by auto
ultimately show L s € cube n t by simp
next
fix s assume a: s ¢ {..<t}
then show L s = undefined unfolding L-def by simp
qed
moreover have (Vz<t.Vy<t. Lzj=Lyj)V (Vs<t. Lsj=3s)ifj < nforj
proof—
consider j € B0 | j € B 1 using <j < ny 1 by blast
then show (Vz<t. Vy<t. Lzj=Lyj)V (Vs<t. L sj=5s)
proof (cases)
case I
have L s j = sif s < t for s
proof—
have Vy € cube 1 t. (S y) j = y 0 using Bf-props 1 by simp
then show L s j = s using that cube-props(2,4) unfolding L-def by auto
qed
then show ?thesis by blast

15

next
case 2
have Lzj=Lyjifz<tand y < tforzy
proof—
have x: Sy j = fjif y € cube 1t for y using 2 that Bf-props by simp
then have L yj = fj using that(2) cube-props(2,4) less Than-iff restrict-apply
unfolding L-def by fastforce
moreover from x have L zj = fj using that(1) cube-props(2,4) lessThan-iff
restrict-apply unfolding L-def
by fastforce
ultimately show L zj = L y j by simp
qed
then show ?thesis by blast
qed
qed
moreover have (Fj<n. Vs<t. (L sj=s))
proof —
obtain j where j-prop: j € B 0 A j < n using Bf-props by blast
then have (S y) j = y 0 if y € cube 1 ¢ for y using that Bf-props by auto
then have L s j = sif s < ¢t for s using that cube-props(2,4) unfolding L-def
by auto
then show Jj<n. Vs<t. (L s j = s) using j-prop by blast
qed
ultimately show is-line (Ase{..<t}. S (SOME p. pccube 1t ANp 0 =5s)) nt
unfolding L-def is-line-def by auto
qed

lemma bij-unique-inv:
assumes bij-betw f A B
and z € B
shows Jly € A. (the-inv-into A f) z =y
using assms unfolding bij-betw-def inj-on-def the-inv-into-def
by blast

lemma inv-into-cube-props:
assumes s < ¢
shows the-inv-into (cube 1 t) (Af. f0) s € cube 1t
and the-inv-into (cube 1 t) (Af. f0) s 0 =s
using assms bij-unique-inv one-dim-cube-eq-nat-set f-the-inv-into-f-bij-betw
by fastforce+

lemma some-inv-into:
assumes s < t
shows (SOME p. pccube 1t A p 0 = s) = (the-inv-into (cube 1 t) (Af. f0) s)
using inv-into-cube-props|of s t| one-dim-cube-eq-nat-set[of t] assms unfolding
bij-betw-def inj-on-def by auto

lemma some-inv-into-2:
assumes s < t

16

shows (SOME p. pecube 1 (t+1) A p 0 = s) = (the-inv-into (cube 1 t) (Af. f0)
)
proof—
have *: (SOME p. pecube 1 (t+1) A p 0 = s) € cube 1 (t+1) using cube-props
assms by simp
then have (SOME p. pecube 1 (t+1) A p 0 = s) 0 = s using cube-props assms
by simp
moreover
{
have (SOME p. pecube 1 (t+1) A p 0 = s) ‘{..<1} C {..<t} using calculation
assms by force
then have (SOME p. pecube 1 (t+1) A p 0 = s) € cube 1 t using * unfolding
cube-def by auto
}
moreover have inj-on (Af. f 0) (cube 1 t) using one-dim-cube-eq-nat-set[of t]
unfolding bij-betw-def inj-on-def by auto
ultimately show (SOME p. pccube 1 (t+1) A p 0 = s) = (the-inv-into (cube 1
0 (M. £0) 3)
using the-inv-into-f-eq [of Nf. f 0 cube 1 t (SOME p. pEcube 1 (t+1) A p 0 =
s) s] by auto
qed

lemma dim1-layered-subspace-as-line:
assumes t > ()
and layered-subspace S 1 ntr x
shows ¢l 2. ci<r A e2<r A (Vs<t. x (S (SOME p. pEcube 1
(t+1) Ap 0 =35)) =cl) A x (S (SOME p. pecube 1 (t+1) A p 0 = t)) = c2
proof —
have z u < tif z € classes 1t 0 and u < I for z u
proof —
have z € cube 1 (t+1) using that unfolding classes-def by blast
then have z u € {..<t+1} using that unfolding cube-def by blast
then have z v € {..<t} using that
using that less-Suc-eq unfolding classes-def by auto
then show z u < t by simp
qed
then have classes 1 t 0 C cube 1 ¢t unfolding cube-def classes-def by auto
moreover have cube 1 t C classes 1 t 0 using cube-subset[of 1 t] unfolding
cube-def classes-def by auto
ultimately have X: classes 1 t 0 = cube 1 t by blast

obtain c! where cI-prop: ¢1 < r A (Va€classes 1t 0. x (S) = cl) using

assms(2)
unfolding layered-subspace-def by blast

then have (x (S z) = cl) if © € cube 1 t for z using X that by blast

then have x (S (the-inv-into (cube 1 t) (Af. f0) s)) = clif s < t for s

using one-dim-cube-eg-nat-set[of t| by (meson that bij-betwFE bij-betw-the-inv-into
less Than-iff)

then have K1: x (S (SOME p. pecube 1 (t+1) Ap 0 =s)) = clif s < t for s

17

using that some-inv-into-2 by simp

have *: J¢<r. Vo € classes 1t 1. x (Sz) = ¢
using assms(2) unfolding layered-subspace-def by blast

have © 0 = t if © € classes 1 t 1 for z using that unfolding classes-def by
stmp

moreover have 3z € cube I (t+1). z 0 = t using one-dim-cube-eg-nat-set|of
t+1]

unfolding bij-betw-def inj-on-def using inv-into-cube-props(1) inv-into-cube-props(2)
by force

moreover have xx: 3lz. © € classes 1 t 1 unfolding classes-def using calcu-
lation(2) by simp

ultimately have the-inv-into (cube 1 (t+1)) (Af. f0) t € classes 1 ¢ 1

using inv-into-cube-props|of t t+ 1] unfolding classes-def by simp

then have 3¢2. ¢2 < r A x (S (the-inv-into (cube 1 (t+1)) (Af. f0) 1)) = 2
using * xx by blast

then have K2: 3¢2. c2 < r A x (S (SOME p. pecube 1 (t+1) AN p 0 =1t)) = ¢2
using some-inv-into by simp

from K1 K2 show ?thesis
using ci1-prop by blast
qed

lemma dim1-layered-subspace-mono-line:
assumes t >
and layered-subspace S 1 ntr x
shows V s<t. Vi<t. x (S (SOME p. pecube 1 (1+1) A p 0 =s)) =
X (S (SOME p. pecube 1 (t+1) Ap 0=1)) A x (S (SOME p. pecube 1
(t+HN) Ap0=3s))<r
using dim1-layered-subspace-as-line[of t S n r x| assms by auto

definition join :: (nat = ‘a) = (nat = 'a) = nat
= nat = (nat = 'a)
where
join fgnm= (Ax. if € {..<n} then fz else (if z € {n..<n+m} then g
(z — n) else undefined))

lemma join-cubes:
assumes f € cube n (t+1)
and g € cube m (t+1)
shows join f g n m € cube (n+m) (t+1)
proof (unfold cube-def; intro PiE-I)
fix 7
assume i € {..<n+m}
then consider i < n | i > n A i < n+m by fastforce
then show join fgnmi € {.<t + I}
proof (cases)

18

case I
then have join f g n m i = f ¢ unfolding join-def by simp
moreover have fi € {..<t+1} using assms(1) 1 unfolding cube-def by blast
ultimately show ?thesis by simp
next
case 2
then have join f g n m i = g (¢ — n) unfolding join-def by simp
moreover have i — n € {.<m} using 2 by auto
moreover have g (i — n) € {..<t+1} using calculation(2) assms(2) unfolding
cube-def by blast
ultimately show ?thesis by simp
qed
next
fix ¢
assume i ¢ {..<n+m}
then show join f g n m i = undefined unfolding join-def by simp
qed

lemma subspace-elems-embed:
assumes is-subspace S kn t
shows S (cube k t) C cube n t
using assms unfolding cube-def is-subspace-def by blast

2 Core proofs

The numbering of the theorems has been borrowed from the textbook [1].

2.1 Theorem 4

2.1.1 Base case of Theorem 4

lemma hj-imp-lhj-base:
fixes rt
assumes t > ()
and Ar’. hjr't
shows lhj rt 1
proof—
from assms(2) obtain N where N-def: N > 0 A (VN’'> N.Vx. x
€ (cube N' t) —g {..<runat} — (3L. Fe<r.
is-line L N't AN (Vy € L “{..<t}. x y = ¢))) unfolding hj-def by blast

have (3S. is-subspace S 1 N’ (t + 1) A Vi€ {..1}. e < 7.
(Vz € classes 1 ti. x (Sz) = c¢))) if asm: N' > N x € (cube N’
(t+ 1)) =g {..<r:nat} for N' x
proof—
have N'-props: N’ > 0 N (Vx. x € (cube N' t) =g
{.<rinat} — (3L. Fe<r. issline LN 't AN (Vy €
L ‘{.<t}. x y = ¢))) using asm N-def by simp

19

let ?chi-t = Az € cube N’ t. x «
have ?chi-t € cube N' t =g {..<r:nat} using cube-subset asm by auto
then obtain L where L-def: is-line L N' t A (Je<r. (Vy € L ‘{..<t}. Pchi-t
y=c))
using N'-props by blast

have is-subspace (restrict (A\y. L (y 0)) (cube 1 t)) 1 N't using line-is-dim1-subspace
N'-props L-def
using assms(1) by auto

then obtain B f where Bf-defs: disjoint-family-on B {..1} A J(B ‘{..1}) =
{.<N"}

AN{}¢B {.<1i})nfe(BI1 —e{.<t}A

(restrict (A\y. L (y 0)) (cube 1 t)) € (cube 1 t) =g (cube N’ ¢)

A (Vy € cube 1t (Vi€ B 1. (restrict (Ay. L (y 0)) (cube

1) yi=fi)N Vi<l Vie Bj. ((restrict (\y. L (y 0))

(cube 1t)) y) i = yj)) unfolding is-subspace-def by auto

have {..1::nat} = {0, 1} by auto
then have B-props: BOU B 1={.<N'} A(BONB1={})
using Bf-defs unfolding disjoint-family-on-def by auto
define L' where L' = L(t:=()\j. if j € B 1 then L (t — 1) j else (if j €
B 0 then t else undefined)))

S1 is the corresponding 1-dimensional subspace of L’.

define S1 where S1 = restrict (A\y. L' (y (0::nat))) (cube 1 (t+1))
have line-prop: is-line L' N’ (t + 1)
proof—
have A1: L' € {..<t+1} =g cube N’ (t + 1)
proof
fix z
assume asm: ¢ € {..<t + 1}
then show L’ z € cube N’ (t + 1)
proof (cases z < t)
case True
then have L' z = L z by (simp add: L'-def)
then have L’ z € cube N’ t using L-def True unfolding is-line-def by
auto
then show L' z € cube N’ (t + 1) using cube-subset by blast
next
case Fulse
then have z = t using asm by simp
show L'z € cube N' (¢t + 1)
proof(unfold cube-def, intro PiE-I)
fix j
assume j € {.<N'}
have je B1Vje B0V j¢ (B0U B 1) by blast
then show L'z j € {.<t + I}
proof (elim disjE)
assume j € B 1

20

then have L'z j=L (t — 1) j
by (simp add: <x = t» L'-def)
have L (t — 1) € cube N’ t using line-points-in-cube L-def
by (meson assms(1) diff-less less-numeral-extra(1))
then have L (¢t — 1) j < t using ¢j € {..<N'}» unfolding cube-def

by auto
then show L'z j € {.<t + 1} using <L' zj = L (t — 1) j» by simp
next
assume j € B 0
then have j ¢ B I using Bf-defs unfolding disjoint-family-on-def by
auto

then have L'z j =t by (simp add: <j € B 0> <z = t» L’-def)
then show L'z j € {..<t + 1} by simp
next
assume a: j ¢ (B0 U B 1)
have {..1:nat} = {0, 1} by auto
then have B0 U B 1 = (|J(B ‘{..1::nat})) by simp
then have B 0 U B 1 = {..<N'} using Bf-defs unfolding partition-on-def
by simp
then have —(j € {..<N'}) using a by simp
then have Fulse using j € {.<N'}> by simp
then show ?thesis by simp
qed
next
fix j
assume j ¢ {.<N'}
then have j ¢ (B 0) A j ¢ B 1 using Bf-defs unfolding partition-on-def
by auto
then show L’ z j = undefined using «x = ©» by (simp add: L’-def)
qed
qed
next
fix z
assume asm: x ¢ {..<t+1}
then have z ¢ {..<t} A z # t by simp
then show L’ z = undefined using L-def unfolding L’-def is-line-def by
auto
qed
have A2: (Jj<N’. Vs< (t+ 1). L' sj=5))
proof (cases t = 1)
case True
obtain j where j-prop: j € B 0 A j < N' using Bf-defs by blast
then have L' s j = L s j if s < t for s using that by (auto simp: L’-def)
moreover have L s j = 0 if s < t for s using that True L-def j-prop
line-points-in-cube-unfolded[of L N' i
by simp
moreover have L’ s j = s if s < t for s using True calculation that by
simp
moreover have L' t j = t using j-prop B-props by (auto simp: L’-def)

21

ultimately show ?thesis unfolding L’-def using j-prop by auto
next
case Fulse
then show ?thesis
proof—
have (Fj<N’ (Vs < t. L' s j = s)) using L-def unfolding is-line-def by
(auto simp: L'-def)
then obtain j where j-def: j < N’ A (Vs < t. L' s j = s) by blast
have j ¢ B 1
proof
assume a:j € B 1
then have (restrict (A\y. L (y 0)) (cube 1 t)) yj=fjify € cube 1t
for y
using Bf-defs that by simp
then have L (y 0) j = fjif y € cube 1 t for y using that by simp
moreover have 3!i. i < t Ay 0 =i if y € cube 1 t for y
using that one-dim-cube-eg-nat-set]of t] unfolding bij-betw-def by blast
moreover have Jly. y € cube 1t ANy 0 =1iif i <t for i
proof (intro ex1l-alt)
define y where y = (Az::nat. Aye{..<I:nat}. z)
have y i € (cube 1 t) using that unfolding cube-def y-def by simp
moreover have y i 0 = ¢ unfolding y-def by simp
moreover have z = y i if z € cube 1 t and 2z 0 = i for 2
proof (rule ccontr)
assume z # y ¢
then obtain | where [-prop: z [# y i [by blast
consider | € {..<I:nat} | | ¢ {..<I:nat} by blast
then show Fulse
proof cases
case I
then show ?thesis using l-prop that(2) unfolding y-def by auto
next
case 2
then have z | = undefined using that unfolding cube-def by blast
moreover have y i | = undefined unfolding y-def using 2 by auto
ultimately show ?thesis using [-prop by presburger
ged
qed
ultimately show Jy. (y € cube 1 t Ay 0 = 1) A (Vya. ya
€ cube 1t A ya 0=1i— y= ya) by blast
qed

moreover have L i j = fjif i < t for i using that calculation by blast
moreover have (3j<N’. (Vs < t. L s j = s)) using
(Fj<N'. (Vs < t. L'sj=s)) by (auto simp: L'-def)
ultimately show Fulse using Fulse
by (metis (no-types, lifting) L'-def assms(1) fun-upd-apply j-def less-one
nat-neq-iff)
qed

22

then have j € B 0 using «j ¢ B I) j-def B-props by auto

then have L' ¢ j = t using «j ¢ B I by (auto simp: L'-def)
then have L' s j = sif s < t + 1 for s using j-def that by (auto simp:
L'-def)
then show ?thesis using j-def by blast
qged
qed
have A%: (Va<t+1. Vy<t+1. L'xzj= L' yj)V (Vs<t+1. L' sj=3s)ifj
< N'for j
proof—
consider j € B 1| j € B 0 using <j < N> B-props by auto
then show (Va<i+1. Vy<t+1. L'zj= L' yj)V (Vs<t+1. L' sj=s)
proof (cases)
case I
then have (restrict (Ay. L (y 0)) (cube 1 t)) yj=fjify € cube 1t for y
using that Bf-defs by simp
moreover have 3. i < t Ay 0 =1iif y € cube 1t for y
using that one-dim-cube-eq-nat-set[of t] unfolding bij-betw-def by blast
moreover have Jly. y € cube 1t ANy 0 =1 if i < t for i
proof (intro exll-alt)
define y where y = (Az:nat. Aye{..<I:nat}. z)
have y i € (cube 1 t) using that unfolding cube-def y-def by simp
moreover have y i 0 = i unfolding y-def by auto
moreover have z = y i if 2 € cube 1 t and 2z 0 = i for 2
proof (rule ccontr)
assume z # y ¢
then obtain [where I-prop: z | # y i | by blast
consider [€ {..<I:nat} | | ¢ {..<I:nat} by blast
then show Fulse
proof cases
case I
then show ?thesis using l-prop that(2) unfolding y-def by auto
next
case 2
then have z [= undefined using that unfolding cube-def by blast
moreover have y i [= undefined unfolding y-def using 2 by auto
ultimately show ?thesis using I-prop by presburger
qed
qed
ultimately show 3y. (y € cube 1t Ay 0 =14) A (Vya. ya
€ cube 1t A ya 0 =1i— y = ya) by blast

qed

moreover have L i j = fjif i < t for ¢ using calculation that by force

moreover have Lij=Laxzjifz < ti<tfor ziusing that calculation
by simp

moreover have L'z j = L z j if < ¢ for z using that fun-upd-other|of
ztlL

23

Aj.ifj € B1then L (t — 1) jelse if j € B 0 then t else undefined)
unfolding L’-def by simp
ultimately have x: L'z j = L' yjif z < t y < t for z y using that by
presburger

have L't j= L' (t — 1) j using <j € B 1> by (auto simp: L’-def)
also have ... = L' z j if z < ¢ for z using * by (simp add: assms(1) that)
finally have *x: L' t j = L' z j if z < ¢ for z using that by auto
have L'zj=L'yjifz <t+ 1y<t+ Iforzy
proof—
consider z < tAy=t|y<tAz=tlz=tAy=t|lz<tANy<t
using <z < t + D> <y < t + 1> by linarith
then show L' zj= L'y}
proof cases
case I
then show ?thesis using *x by auto
next
case 2
then show ?thesis using xx by auto
next
case 3
then show ?thesis by simp
next
case 4
then show ?thesis using * by auto
qed
qed
then show ?thesis by blast
next
case 2
then have Vy € cube 1 t. ((restrict (A\y. L (y 0)) (cube 1 t)) y)j=1y 0
using ¢j € B () Bf-defs by auto
then have Vy € cube 1 t. L (y 0) j = y 0 by auto
moreover have Jly. y € cube 1 t ANy 0 =iif i <t for ¢
proof (intro ex1l-alt)
define y where y = (Az::nat. A\ye{..<I:nat}.)
have y i € (cube 1 t) using that unfolding cube-def y-def by simp
moreover have y i 0 = ¢ unfolding y-def by auto
moreover have z = y i if z € cube 1 t and 2z 0 = i for 2
proof (rule ccontr)
assume z # y ¢
then obtain | where [-prop: z [# y i | by blast
consider [€ {..<I:nat} | | ¢ {..<I:nat} by blast
then show Fulse
proof cases
case I
then show ?thesis using l-prop that(2) unfolding y-def by auto
next
case 2

24

then have z [= undefined using that unfolding cube-def by blast
moreover have y i | = undefined unfolding y-def using 2 by auto
ultimately show ?thesis using I-prop by presburger
qed
qed
ultimately show Jy. (y € cube 1 t Ay 0 = i) A (Vya. ya
€ cube 1t A ya0=1i— y= ya) by blast

qed
ultimately have L s j = s if s < t for s using that by blast
then have L' s j = s if s < t for s using that by (auto simp: L’-def)
moreover have L' t j = t using 2 B-props by (auto simp: L’-def)
ultimately have L’ s j = s if s < t+1 for s using that by (auto simp:
L'-def)
then show “thesis by blast
qged
qed
from A1 A2 A8 show ?thesis unfolding is-line-def by simp
qed
then have FI: is-subspace S1 1 N’ (t + 1) unfolding SI-def
using line-is-dim1-subspace[of N’ t+1] N'-props assms(1) by force
moreover have F2: 3¢ < r. (Vx € classes 1 ti. x (S1z) = c¢)ifi< Ifor i
proof—
have Je < r. (Vy € L’ “*{..<t}. ?chi-t y = c¢) unfolding L’-def using L-def
by fastforce
have Vz € (L ‘{..<t}). € cube N' t using L-def
using line-points-in-cube by blast
then have Vz € (L' ‘ {..<t}). z € cube N’ t by (auto simp: L’-def)
then have x:Vz € (L' ‘{..<t}). x © = %chi-t z by simp
then have ?chi-t ‘(L' ‘{.<t}) = x ‘(L' ‘ {..<t}) by force
then have 3¢ < r. (Vy € L’ ‘{..<t}. x y = ¢) using
Fe<r. (Vye L' “{.<t}. ?chi-t y = c)» by fastforce
then obtain linecol where lc-def: linecol < r AN (Vy € L' “{.<t}. x y =
linecol) by blast
consider i = 0 | i = 1 using «{ < I) by linarith
then show 3¢ < r. (Vz € classes 1 ti. x (51 z) =)
proof (cases)
case 1
assume 7 = 0
have x: Va t. a € {.<t+1} N a # t <— a € {..<(t::nat)} by auto
from «i = 0> have classes 1t 0 = {z . z € (cube 1 (t + 1)) A
(Vu e {((1znat) — 0).<1}. zu=t) ANt ¢ z ‘{.<(1 — (0:nat))}}
using classes-def by simp

also have ... = {z . z € cube 1 (t+1) At ¢ = {..<(I::nat)}} by simp

also have ... = {z . © € cube 1 (t+1) A (z 0 # t)} by blast

also have ... ={z .z € cube I (t+1) A (z 0 € {.<t+1} ANz 0 # t)}
unfolding cube-def by blast

also have ... ={z .z € cube I (t+1) A (z 0 € {..<t})} using x by simp

finally have redef: classes 1t 0 = {x . z € cube 1 (t+1) A (z 0 € {..<t})}

25

by simp

have {z 0 | z . x € classes 1t 0} C {..<t} using redef by auto
moreover have {.<t} C{z 0|z .z € classes 1 t 0}
proof
fix r assume z: z € {..<t}
hence Jaccube 1t. a 0 ==
unfolding cube-def by (intro fun-ex) auto
then show z € {z 0 |z. z € classes 1 t 0}
using z cube-subset unfolding redef by auto
qged
ultimately have xx: {x 0 | x . « € classes 1 t 0} = {..<t} by blast

have x (S1 z) = linecol if z € classes 1 t 0 for z
proof—
have z € cube 1 (t+1) unfolding classes-def using that redef by blast
then have S1 z = L’ (z 0) unfolding S1-def by simp
moreover have z 0 € {..<t} using ** using <z € classes 1 t 0) by blast
ultimately show x (SI1 z) = linecol using lc-def using fun-upd-triv

image-eql by blast

auto

qed
then show ?thesis using lc-def <i = 0 by auto

next

case 2

assume i = I

have classes 1t 1= {z .z € (cube 1 (t + 1)) A (Vu € {0:nat..<1}.
u=1t)At¢az‘{.<0}} unfolding classes-def by simp

also have ... ={z .z € cube 1 (t+1) A Vu € {0}. z u = t)} by simp
finally have redef: classes 1t 1 = {x .z € cube I (t+1) A (z 0 = t)} by

have Vs € {.<t+1}. Iz € cube 1 (t+1). (Ap.
Aye{..<I:nat}. p) s = z using nat-set-eg-one-dim-cube[of t+1]
unfolding bij-betw-def by blast
then have 3!z ecube 1 (t+1). (A\p. Aye{..<I:nat}. p) t = x by auto
then obtain z where z-prop: © € cube 1 (t+1) and (Ap.
Aye{..<I:nat}. p) t = zand Vz € cube 1 (t+1). (Ap.
Aye{..<Iunat}. p) t = 2 — z = x by blast
then have (Ap. \ye{0}.p) t =z A (Vz € cube 1
(t+1). (Ap. \ye{0}. p) t = z — z = z) by force
then have *:((Ap. Aye{0}. p) t) 0 =z 0 A (Vz € cube
1(t+1). (Ap. Aye{0}. p)t =2 — 2= 1)
using z-prop by force

then have Jly € cube 1 (t+ 1). y 0=t

proof (intro ex1l-alt)
define y where y = (Az::nat. Aye{..<I:nat}. z)
have y t € (cube 1 (t + 1)) unfolding cube-def y-def by simp
moreover have y ¢t 0 = t unfolding y-def by auto
moreover have z = y ¢t if z € cube 1 (¢t + 1) and z 0 = t for z
proof (rule ccontr)

26

assume z #£ y ¢
then obtain [where l-prop: z | # y t [by blast
consider | € {..<Iunat} | | ¢ {..<I:nat} by blast
then show Fulse
proof cases
case I
then show %thesis using [-prop that(2) unfolding y-def by auto
next
case 2
then have z [= undefined using that unfolding cube-def by blast
moreover have y t | = undefined unfolding y-def using 2 by auto
ultimately show ?thesis using [-prop by presburger
qed
qed
ultimately show 3y. (y € cube 1 (t + 1) Ay 0 =1t) A (Vya.
ya € cube 1 (t + 1) AN ya 0 =t — y = ya) by blast
qed
then have 3!z € classes 1 t 1. True using redef by simp
then obtain = where z-def: © € classes 1t 1 N (Vy € classes 1 t 1. ¢ =
y) by auto

have x (S1y) < rif y € classes 1t 1 for y
proof—
have y = z using z-def that by auto
then have y (51 y) = x (51 z) by auto
moreover have SI z € cube N’ (t+1) unfolding S1-def is-line-def
using line-prop line-points-in-cube redef z-def by fastforce
ultimately show x (S1 y) < r using asm unfolding cube-def by auto
qged
then show ?thesis using lc-def <i = 1) using z-def by fast
qed
qed
ultimately show (3 5. is-subspace S 1 N' (t + 1) N (Vi € {..1}.
Je<r. (Vo € classes 1 ti. x (Sz) = c))) by blast
qed
then show ?thesis using N-def unfolding layered-subspace-def lhj-def by auto
qed

2.1.2 Induction step of theorem 4
The proof has four parts:

1. We obtain two layered subspaces of dimension 1 and k (respectively),
whose existence is guaranteed by the assumption lhj (i.e. the induction
hypothesis). Additionally, we prove some useful facts about these.

2. We construct a k+ I-dimensional subspace with the goal of showing
that it is layered.

3. We prove that our construction is a subspace in the first place.

27

4. We prove that it is a layered subspace.

lemma hj-imp-lhj-step:
fixes rk
assumes t > 0
and k > 1
and True
and (A\r k" k' < k= Ilhjrtk’)
and r > 0
shows [hj rt (k+1)
proof—
obtain m where m-props: (m > 0 A VM’ > m. Vx. x € (cube
M (t+ 1) —g {.<r:nat} — (3. layered-subspace S k
M’ tr x))) using assms(4)[of k r] unfolding lhj-def by blast
define s where s = r((¢t + 1) "m)
obtain n’ where n’-props: (n’> 0N (VN > n’. Vx. x €
(cube N (t + 1)) =g {..<s:nat} — (3 5. layered-subspace
S 1Ntsx))) using assms(2) assms(4)[of 1 s| unfolding Ihj-def by auto

have (3 T. layered-subspace T (k + 1) (M’) t r x) if x-prop: x € cube
M'(t+ 1) - {.<r} and M -prop: M' > n’ + m for x M’
proof —
define d where d = M’ — (n' + m)
define n where n = n’ + d
have n > n’ unfolding n-def d-def by simp
have n + m = M’ unfolding n-def d-def using M’-prop by simp
have line-subspace-s: 3S. layered-subspace S 1 nts x N is-line
(Ase{..<t+1}. S (SOME p. pecube 1 (t+1) A p 0 = s)) n (t+1) if x
€ (cube n (t + 1)) =g {..<s:nat} for x
proof—
have 3 5. layered-subspace S 1 n t s x using that n’-props <n > n’y by blast
then obtain L where layered-subspace L 1 n t s x by blast
then have is-subspace L 1 n (t+1) unfolding layered-subspace-def by simp
then have is-line (Ase{..<t+1}. L (SOME p. pecube 1 (t+1) A p 0 = 3s)) n
(t+ 1)
using dim1-subspace-is-line[of t+1 L n] assms(1) by simp
then show 35. layered-subspace S 1 nt s x A is-line (As€{..<t
+ 1}. S (SOME p. p € cube 1 (t+1) A p 0 = s)) n (t + 1) using
layered-subspace L 1 n t s x» by auto
qed

Part 1: Obtaining the subspaces L and S

Recall that lhj claims the existence of a layered subspace for any colour-
ing (of a fixed size, where the size of a colouring refers to the number of
colours). Therefore, the colourings have to be defined first, before the lay-
ered subspaces can be obtained. The colouring x L here is x* in the book [1],
an s-colouring; see the fact s-coloured a couple of lines below.

define xL where xL = (Az € cube n (t+1). (A\y € cube m

28

(t + 1). x (join 5 y n m)))
have A: Vz € cube n (t+1). Vy € cube m (t+1). x (join z y n m) € {..<r}
proof(safe)

fix zy

assume z € cube n (t+1) y € cube m (t+1)

then have join © y n m € cube (n+m) (t+1) using join-cubes[of x n t y m|

by simp

then show x (join z y n m) < r using x-prop <n + m = M’ by blast
qed
have xL-prop: xL € cube n (t+1) =g cube m (t+1) —p {..<r}

using A by (auto simp: xL-def)

have card (cube m (t+1) —p {..<r}) = (card {..<r}) ~ (card (cube m (t+1)))

using card-PiE[of cube m (t + 1) A-. {..<r}] by (simp add: cube-def finite-PiE)
also have ... = r 7 (card (cube m (t+1))) by simp
also have ... = r 7 ((t+1) "m) using cube-card unfolding cube-def by simp
finally have card (cube m (t+1) —g {.<r}) =r " ((t+1)"m) .
then have s-coloured: card (cube m (t+1) —g {..<r}) = s unfolding s-def
by simp
have s > 0 using assms(5) unfolding s-def by simp
then obtain ¢ where -prop: bij-betw ¢ (cube m (t+1) —g {..<r}) {..<s}
using assms(5) ex-bij-betw-nat-finite-2[of cube m (t+1) — g {..<r} s] s-coloured
by blast
define xL-s where xL-s = (Az€cube n (t+1). ¢ (xL z))
have xL-s € cube n (t+1) —g {..<s}
proof
fix x assume a: z € cube n (t+1)
then have yL-s z = ¢ (xL z) unfolding xL-s-def by simp
moreover have xL z € (cube m (t+1) —g {..<r})
using a xL-def xL-prop unfolding xL-def by blast
moreover have ¢ (xL z) € {..<s} using p-prop calculation(2) unfolding
bij-betw-def by blast
ultimately show xL-s z € {..<s} by auto
qed (auto simp: x L-s-def)

L is the layered line which we obtain from the monochromatic line guaran-
teed to exist by the assumption hj s t.

then obtain L where L-prop: layered-subspace L 1 nt s xL-s using line-subspace-s

by blast
define L-line where L-line = (As€{..<t+1}. L (SOME p. pccube 1 (t+1) A p
0=2s))

have L-line-base-prop: Vs € {..<t+1}. L-line s € cube n (t+1)
using assms(1) dimI-subspace-is-line[of t+1 L n] L-prop line-points-in-cube|of
L-line n t+1]
unfolding layered-subspace-def L-line-def by auto
Here, xS is x** in the book [1], an r-colouring.

define xS where xS = (Ay€cube m (t+1). x (join (L-line 0) y n m))

29

have xS € (cube m (t + 1)) —g {..<r:nat}
proof
fix © assume a: z € cube m (t+1)
then have xS z = x (join (L-line 0) x n m) unfolding x S-def by simp
moreover have L-line 0 = L (SOME p. p€cube 1 (t+1) A p 0 = 0)
using L-prop assms(1) unfolding L-line-def by simp
moreover have (SOME p. pccube 1 (t+1) A p 0 = 0) € cube 1 (t+1) using
cube-props(4)[of 0 t+1]
using assms(1) by auto
moreover have L € cube I (t+1) —g cube n (t+1)
using L-prop unfolding layered-subspace-def is-subspace-def by blast
moreover have L (SOME p. pccube 1 (t+1) A p 0 = 0) € cube n (t+1)
using calculation (3,4) unfolding cube-def by auto
moreover have join (L-line 0) x n m € cube (n + m) (t+1) using join-cubes
a calculation(2, 5) by auto
ultimately show xS z € {..<r} using A4 a by fasiforce
qed (auto simp: xS-def)

S is the k-dimensional layered subspace that arises as a consequence of the
induction hypothesis. Note that the colouring is x.5, an r-colouring.

then obtain S where S-prop: layered-subspace S k m t r xS using assms(4)
m-props by blast

Remark: L-Line ¢ returns the i-th point of the line.

Part 2: Constructing the (k + 1)-dimensional subspace T

Below, Tset is the set as defined in the book [1]. It represents the (k4 1)-
dimensional subspace. In this construction, subspaces (e.g. T') are functions
whose image is a set. See the fact im-T-eq-Tset below.

Having obtained our subspaces S and L, we define the (k 4 1)-dimensional
subspace very straightforwardly Namely, T = L xS. Since we represent
tuples by function sets, we need an appropriate operator that mirrors the
Cartesian product x for these. We call this join and define it for elements
of a function set.

define Tset where Tset = {join (L-linei) snm|is.i€ {.<t+1} As€e S
“(cube k (t+1))}
define T’ where T’ = (Az € cube 1 (t+1). Ay € cube k (t+1). join
(L-line (z 0)) (S y) n m)
have T'-prop: T' € cube 1 (t+1) =g cube k (t+1) =g cube (n + m) (t+1)
proof
fix © assume a: x € cube 1 (t+1)
show T’z € cube k (t + 1) =g cube (n + m) (¢t + 1)
proof
fix y assume b: y € cube k (t+1)
then have T’ z y = join (L-line (z 0)) (S y) n m using « unfolding T’-def
by simp

30

moreover have L-line (z 0) € cube n (t+1) using a L-line-base-prop
unfolding cube-def by blast
moreover have Sy € cube m (t+1)
using subspace-elems-embed[of S k m t+1] S-prop b unfolding lay-
ered-subspace-def by blast
ultimately show T/ z y € cube (n + m) (¢t + 1) using join-cubes by
presburger
next
qed (unfold T'-def; use a in simp)
qed (auto simp: T'-def)

define T where T = (\z € cube (k + 1) (t+1). T' (\y € {.<1}. =z
y) Oy € <k} 2 (y + 1))
have T-prop: T € cube (k+1) (t+1) —g cube (n+m) (t+1)
proof
fix r assume a: z € cube (k+1) (t+1)
then have Tz = T' (\y € {.<1}. zy) (\y € {..<k}. z (y + 1)) unfolding
T-def by auto
moreover have (A\y € {.<I}. z y) € cube I (t+1) using a unfolding
cube-def by auto
moreover have (\y € {.<k}. z (y + 1)) € cube k (t+1) using a unfolding
cube-def by auto
moreover have T' (Ay € {.<1}. zy) (\y € {.<k}. z (y + 1)) € cube (n +
m) (t+1)
using T’-prop calculation unfolding T'-def by blast
ultimately show T z € cube (n + m) (¢t+1) by argo
qed (auto simp: T-def)

have im-T-eq-Tset: T ¢ cube (k+1) (t+1) = Tset
proof
show T ‘ cube (k + 1) (t + 1) C Tset
proof
fix x assume z € T ‘ cube (k+1) (t+1)
then obtain y where y-prop: y € cube (k+1) (t+1) A z = T y by blast
then have Ty = T/ (\i € {.<1}. y i) (\i € {.<k}. y (i + 1)) unfolding
T-def by simp
moreover have (Ai € {..<I}. y i) € cube 1 (t41) using y-prop unfolding
cube-def by auto
moreover have (\i € {.<k}. y (i + 1)) € cube k (t+1) using y-prop
unfolding cube-def by auto
moreover have T'(\i e {.<I}. yi) (Mie {..<k} y(i+ 1) =
join (L-line (Mi € {.<1}. y9) 0)) (S(Nie{.<k}.y(i+ 1)) nm
using calculation unfolding T’-def by auto
ultimately have x: T y = join (L-line (\i € {..<1}. y i) 0))
(S (Nie{.<k} y(i+ 1)) nm by simp

have (\i € {..<1}. y i) 0 € {..<t+1} using y-prop unfolding cube-def by

auto
moreover have S (Ai € {.<k}. y (i + 1)) € S ‘ (cube k (t+1))

31

using «(Aie{..<k}. y (i + 1)) € cube k (¢t + 1)» by blast
ultimately have T y € Tset using * unfolding Tset-def by blast
then show z € Tset using y-prop by simp
qed

show Tset C T ‘cube (k+ 1) (t + 1)
proof
fix z assume z € Tset
then obtain ¢ sz szinv where isz-prop: © = join (L-line i) st n m A i €
{.<t+1}
A sz €S “(cube k (t+1)) A sxinv € cube k (t+1) A S szinv = sz
unfolding Tset-def by blast
let 2f1 = (\j € {..<I:nat}. i)
let 2f2 = sxinv
have ?f1 € cube I (t+1) using isz-prop unfolding cube-def by simp
moreover have ?f2 € cube k (t+1) using isz-prop by blast
moreover have z = join (L-line (?f1 0)) (S 2f2) n m by (simp add:
isT-prop)
ultimately have x: z = T’ 2f1 ?f2 unfolding T'-def by simp

define f where f = (\j € {I..<k+1}. 22 (j — 1))(0:=9)
have f € cube (k+1) (t+1)
proof (unfold cube-def; intro PiE-I)
fix j assume j € {.<k+1}
then consider j = 0 | j € {1..<k+1} by fastforce
then show fj € {.<t+1}
proof (cases)
case I
then have fj = ¢ unfolding f-def by simp
then show ?thesis using isz-prop by simp
next
case 2
then have j — 1 € {..<k} by auto
moreover have fj = 9f2 (j — 1) using 2 unfolding f-def by simp
moreover have /2 (j — 1) € {..<t+1} using calculation(1) isz-prop
unfolding cube-def by blast
ultimately show ¢thesis by simp
qed
qed (auto simp: f-def)
have ?f1 = (\j € {..<1}. fj) unfolding f-def using isz-prop by auto
moreover have 22 = (\je{..<k}. f (j+1))
using calculation isz-prop unfolding cube-def f-def by fastforce
ultimately have T' 2f1 2f2 = T f using «f € cube (k+1) (t+1)) unfolding
T-def by simp
then show z € T ‘ cube (k +
using «f € cube (k + 1) (¢t +
qed

1) (t + 1) using *
1)) by blast

32

qed
have Tset C cube (n + m) (t+1)
proof
fix z assume a: z€ Tset
then obtain i sz where isz-props: = join (L-line i) st n m A i € {..<t+1}

sz € S ¢ (cube k (t41)) unfolding Tset-def by blast

then have L-line i € cube n (t+1) using L-line-base-prop by blast

moreover have sz € cube m (t+1)

using subspace-elems-embed[of S k m t+1] S-prop isz-props unfolding

layered-subspace-def by blast

ultimately show z € cube (n + m) (t+1) using join-cubes[of L-line i n t sz
m] isz-props by simp

qed

Part 3: Proving that T is a subspace

To prove something is a subspace, we have to provide the B and f satisfy-
ing the subspace properties. We construct BT and fT from BS, fS and BL,
fL, which correspond to the k-dimensional subspace S and the 1-dimensional
subspace (i.e. line) L, respectively.

obtain BS fS where BfS-props: disjoint-family-on BS {.k} | (BS ‘{..k}) =
fo<m} (0}
¢ BS ‘{.<k}) fS € (BSk) =g {.<t+1} S € (cube k (t+1))
—g (cube m (t+1)) (Vy € cube k (t+1). (Vi € BS k.
Syi=fSi) N Vj<k.Vie BSj. (Sy)i=yj)) using S-prop
unfolding layered-subspace-def is-subspace-def by auto

obtain BL fL where BfL-props: disjoint-family-on BL {..1} |J(BL ‘{..1}) =
{.<n}
({} ¢ BL ‘{.<1}) fL € (BL 1) =g {.<t+1} L € (cube 1
(t+1)) =g (cube n (t+1)) (Vy € cube 1 (t+1). (Vi €
BL1.Lyi=fLi)N(Nj<l.Vi€ BLj. (Ly)i=yj)) using L-prop
unfolding layered-subspace-def is-subspace-def by auto

define Bstat where Bstat = set-incr n (BS k) U BL 1

define Bvar where Bvar = (Ai:nat. (if i = 0 then BL 0 else set-incr n (BS
(i — 1))

define BT where BT = (\i € {..<k+1}. Bvar i)((k+1):=Bstat)

define fT where fT = (Az. (if z € BL 1 then fL z else (if x € set-incr n

(BS k) then fS (x — n) else undefined)))

have factl: set-incr n (BS k) N BL 1 = {} wusing BfL-props BfS-props
unfolding set-incr-def by auto
have fact2: BL 0 N (Ji€{..<k}. set-incr n (BS ©)) = {}
using BfL-props BfS-props unfolding set-incr-def by auto
have fact3: Vi € {..<k}. BL 0 N set-incr n (BS i) = {}
using BfL-props BfS-props unfolding set-incr-def by auto
have factf: Vi € {.<k+1}.Vje {.<k+1}. i #j

33

— set-incr n (BS ©) N set-incr n (BS j) = {}
using set-incr-disjoint-family[of BS k] BfS-props unfolding disjoint-family-on-def
by simp
have fact5: Vi € {..<k+1}. Bvar i N Bstat = {}
proof
fix ¢ assume a: ¢ € {..<k+1}
show Buvar i N Bstat = {}
proof (cases 1)
case ()
then have Bvar ¢ = BL 0 unfolding Bvar-def by simp
moreover have BL 0 N BL 1 = {} using BfL-props unfolding dis-
joint-family-on-def by simp
moreover have set-incr n (BS k) N BL 0 = {} using BfL-props BfS-props
unfolding set-incr-def by auto
ultimately show ?thesis unfolding Bstat-def by blast
next
case (Suc nat)
then have Buar i = set-incr n (BS nat) unfolding Buvar-def by simp
moreover have set-incr n (BS nat) N BL 1 = {} using BfS-props BfL-props
a Suc unfolding set-incr-def
by auto
moreover have set-incr n (BS nat) N set-incr n (BS k) = {} using a Suc
fact4 by simp
ultimately show ?thesis unfolding Bstat-def by blast
qed
qged

The facts F1, ..., F'5 are the disjuncts in the subspace definition.

have Bvar ‘{..<k+1} = BL ‘{..<1} U Bvar ‘ {1..<k+1} unfolding Bvar-def
by force
also have ... = BL ‘{..<1} U {set-incr n (BS %) | i . i € {..<k}} unfolding
Buar-def by fastforce
moreover have {} ¢ BL ‘{..<1} using BfL-props by auto
moreover have {} ¢ {set-incr n (BS i) | i . { € {..<k}} using BfS-props(2,
3) set-incr-def by fastforce
ultimately have {} ¢ Buvar ‘ {..<k+1} by simp
then have FI: {} ¢ BT ‘ {..<k+1} unfolding BT-def by simp
moreover
{
have F2-auz: disjoint-family-on Bvar {..<k+1}
proof (unfold disjoint-family-on-def; safe)
fix mnzassume a: m < k+ In<k+ 1m#nx e Bvar mx € Bvar n
show z € {}
proof (cases n)
case (
then show ?thesis using a fact3 unfolding Buvar-def by auto
next
case (Suc nnat)
then have x: n = Suc nnat by simp

34

then show ?thesis
proof (cases m)
case (
then show ?thesis using a fact3 unfolding Bvar-def by auto
next
case (Suc mnat)
then show ?thesis using a fact * unfolding Buvar-def by fastforce
qed
qed
qed

have F2: disjoint-family-on BT {..k+1}
proof
fix m n assume a: me{..k+1} ne{..k+1} m # n
have Vz.z € BT mN BT n — z € {}
proof (intro alll impI)
fix z assume b: x € BT m N BT n
have m<k+ IAn<k+1IVm=k+IAn=k+1Vm<k+1
An=k+1Vm=k+ 1An<k+ 1using a le-eq-less-or-eq by auto
then show z € {}
proof (elim disjE)
assume c: m < k+ 1 An<k+1
then have BT m = Bvar m A BT n = Bvar n unfolding BT-def by
stmp
then show z € {} using a b ¢ fact/ F2-auz unfolding Buvar-def
disjoint-family-on-def by auto
qed (use a b facts in <auto simp: BT-def»)
qed
then show BT m N BT n = {} by auto
qed
}
moreover have F3: |J(BT ‘{.k+1}) = {.<n + m}
proof
show |J (BT ‘{..k+ 1}) C {.<n + m}
proof
fix r assume z € |J (BT ‘ {.k + 1})
then obtain ¢ where i-prop: ¢ € {..k+1} A x € BT i by blast
then consider i = k +1 | i € {..<k+1} by fastforce
then show z € {..<n + m}
proof (cases)
case I
then have = € Bstat using i-prop unfolding BT-def by simp
then have z € BL 1V z € set-incr n (BS k) unfolding Bstat-def by
blast
then have z € {..<n} V z € {n..<n+m} using BfL-props BfS-props(2)
set-incr-imagelof BS k m n)
by blast
then show ?thesis by auto
next

35

case 2
then have x € Bvar i using i-prop unfolding BT-def by simp
then have z € BL 0 V z € set-incr n (BS (i — 1)) unfolding Bvar-def
by presburger
then show ?thesis
proof (elim disjE)
assume z € BL 0
then have z € {..<n} using BfL-props by auto
then show z € {..<n + m} by simp
next
assume a: ¢ € set-incr n (BS (i — 1))
then have 71 — 1 < k
by (meson atMost-iff i-prop le-diff-conv)
then have set-incr n (BS (i — 1)) C {n..<n+m} using set-incr-image|of
BS k m n] BfS-props

by auto
then show z € {..<n+m} using a by auto
qed
qed
qed
next
show {.<n + m} C|J (BT ‘{..k + 1})
proof

fix x assume z € {..<n + m}
then consider z € {..<n} | z € {n..<n+m} by fastforce
then show z € |J (BT ‘{..k + 1})
proof (cases)
case I
have x: {..1::nat} = {0, I::nat} by auto
from 1 have z € |J (BL ‘{..1::nat}) using BfL-props by simp
then have x € BL 0 V z € BL 1 using * by simp
then show ?thesis
proof (elim disjF)
assume z € BL 0
then have z € Bvar 0 unfolding Bvar-def by simp
then have z € BT 0 unfolding BT-def by simp
then show z € |J (BT ‘{..k + 1}) by auto
next
assume z € BL 1
then have z € Bstat unfolding Bstat-def by simp
then have z € BT (k+1) unfolding BT-def by simp
then show z € |J (BT ‘{..k + 1}) by auto
qed
next
case 2
then have z € (|Ji<k. set-incr n (BS 1)) using set-incr-image[of BS k
m n] BfS-props by simp
then obtain ¢ where i-prop: i < k A z € set-incr n (BS i) by blast
then consider i = k | i < k by fastforce

36

then show ?thesis

proof (cases)
case I
then have = € Bstat unfolding Bstat-def using i-prop by auto
then have z € BT (k+1) unfolding BT-def by simp
then show ?thesis by auto

next
case 2
then have € Buvar (i + 1) unfolding Bvar-def using i-prop by simp
then have z € BT (i + 1) unfolding BT-def using 2 by force
then show ?thesis using 2 by auto

qed

qed
qed
qed

moreover have Fy: fT € (BT (k+1)) —g {..<t+1}
proof
fix assume z € BT (k+1)
then have = € Bstat unfolding BT-def by simp
then have z € BL 1 V z € set-incr n (BS k) unfolding Bstat-def by auto
then show [Tz € {.<t + 1}
proof (elim disjE)
assume z € BL 1
then have fT z = fL z unfolding fT-def by simp
then show [T x € {..<t+1} using BfL-props <x € BL 1 by auto
next
assume a: z € set-incr n (BS k)
then have fT z = fS (z — n) using fact! unfolding fT-def by auto
moreover have © — n € BS k using a unfolding set-incr-def by auto
ultimately show fT z € {..<t+1} using BfS-props by auto
qed
qed(auto simp: BT-def Bstat-def fT-def)
moreover have I'5: (Vi€ BT (k+ 1). Tyi= fTi) N (Vji<k+1
Vie BTj. (Ty)i=yj)ify € cube (k+ 1) (t+ 1) for y
proof(intro conjl alll impl balll)
fix ¢ assume ¢ € BT (k + 1)
then have i € Bstat unfolding BT-def by simp
then consider ¢ € set-incr n (BS k) | ¢ € BL 1 unfolding Bstat-def by
blast
then show T yi= T 1
proof (cases)
case I
then have 3s<m. i = n + s unfolding set-incr-def using BfS-props(2)
by auto
then obtain s where s-prop: s < m A @i = n + s by blast
then have x: ¢ € {n..<n+m} by simp
have i ¢ BL 1 using 1 fact! by auto
then have fT i = fS (i — n) using I unfolding fT-def by simp

37

then have xx: fT' i = fS s using s-prop by simp

have XX: (A\z € {.<k}. y (# + 1)) € cube k (t+1) using split-cube that by
stmp
have XY: s € BS k using s-prop 1 unfolding set-incr-def by auto

from that have Ty i = (T' Az € {.<1}. yz) (Az e {.<k}. y (24 1))
unfolding T-def by auto

also have ... = (join (L-line (Az € {..<1}. y 2) 0)) (S (Az €

{.<k}. y (z + 1)) n m) i using split-cube that unfolding T’'-def by simp

also have ... = (join (L-line (y 0)) (S (Az € {.<k}. y (z + 1))) nm) { by
stmp

also have ... = (S (Az € {..<k}. y (z + 1))) s using * s-prop unfolding
join-def by simp

also have ... = fS s using XX XY BfS-props(6) by blast

finally show ?thesis using *x by simp

next

case 2

have XZ: y 0 € {..<t+1} using that unfolding cube-def by auto

have XVY: i € {..<n} using 2 BfL-props(2) by blast

have XX: (A\z € {..<1}. y 2) € cube 1 (t+1) using that split-cube by simp

have some-eg-restrict: (SOME p. pecube 1 (t+1) A p 0 = ((A\z € {..<1}.
yz) 0) = Aze{.<I} y2)
proof
show restrict y {..<1} € cube 1 (t + 1) A restrict y {..<1} 0 = restrict y
{.<1} 0
using XX by simp
next
fix p
assume p € cube 1 (t+1) A p 0 = restrict y {..<1} 0
moreover have p u = restrict y {..<1} v if u ¢ {..<1} for u
using that calculation XX unfolding cube-def
using PiE-arb[of restrict y {..<1} {..<1} Az. {.<t + 1} u]
PiE-arblof p {..<1} Az. {..<t + 1} u] by simp
ultimately show p = restrict y {..<1} by auto
qged

from that have Tyi= (T' Az € {.<1}. yz) (Aze { <k}l y(z2+ 1))
unfolding T-def by auto

also have ... = (join (L-line (A\z € {.<1}. y 2) 0)) (S (A\z € {.<k}. y (=
+ 1)) nm)i
using split-cube that unfolding T’-def by simp
also have ... = (L-line ((Az € {..<1}. y z) 0)) 7 using XY unfolding
join-def by simp
also have ... = L (SOME p. pecube 1 (t+1) A p 0 = (Az € {.<1}. y 2)

0)) i
using X7 unfolding L-line-def by auto
also have ... = L (Az € {..<1}. y 2) i using some-eq-restrict by simp

38

also have ... = fL i using BfL-props(6) XX 2 by blast
also have ... = fT ¢ using 2 unfolding fT-def by simp
finally show ?thesis .

qed

next

fix jiassume j < k+ 1i€ BTj

then have i-prop: i € Bvar j unfolding BT-def by auto

consider j = 0 | j > 0 by auto

then show Tyi=yj

proof cases
case I
then have i € BL 0 using i-prop unfolding Buvar-def by auto
then have XY: ¢ € {..<n} using ! BfL-props(2) by blast
have XX: (Az € {.<1}. y 2) € cube 1 (t+1) using that split-cube by simp
have XZ: y 0 € {..<t+1} using that unfolding cube-def by auto

have some-eg-restrict: (SOME p. pecube 1 (t+1) A p 0 = (A\z € {..<1}.
yz) 0) = Aze{.<1} y2)
proof
show restrict y {..<1} € cube 1 (t + 1) A restrict y {..<1} 0 = restrict y
{..<1} 0 using XX by simp
next
fix p
assume p € cube 1 (t+1) A p 0 = restrict y {..<1} 0
moreover have p u = restrict y {..<1} v if u ¢ {..<I} for u
using that calculation XX unfolding cube-def
using PiE-arb|of restrict y {..<1} {..<1} Az. {.<t + 1} u]
PiE-arblof p {..<1} Az. {..<t + 1} u] by simp
ultimately show p = restrict y {..<1} by auto
qed

from that have Tyi= (T' Az € {.<1}.yz) Mze{. <k} y(z+ 1)) 4
unfolding T-def by auto

also have ... = (join (L-line (A\z € {..<1}. y 2) 0)) (S (A\z € {..<k}. y (2
+ 1)) nm) i
using split-cube that unfolding T’-def by simp
also have ... = (L-line ((A\z € {..<1}. y z) 0)) i using XY unfolding
join-def by simp
also have ... = L (SOME p. pccube 1 (t+1) A p 0 = ((Az € {..<1}. y 2)
0)) @
using XZ unfolding L-line-def by auto
also have ... = L (A\z € {..<I}. y 2) i using some-eq-restrict by simp
also have ... = (A\z € {..<1}. y 2) j using BfL-props(6) XX 1 «i € BL O»
by blast
also have ... = (Az € {..<1}. y) 0 using 1 by blast
also have ... = y 0 by simp
also have ... = y j using I by simp
finally show ?thesis .
next

39

case 2

then have ¢ € set-incr n (BS (j — 1)) using i-prop unfolding Buvar-def
by simp

then have Js<m. n + s = ¢ using BfS-props(2) <j < k + 1> unfolding
set-incr-def by force

then obtain s where s-prop: s < m ¢ = s + n by auto

then have *: ¢ € {n..<n+m} by simp

have XX: (A\z € {.<k}. y (# + 1)) € cube k (t+1) using split-cube that by
stmp
have XY: s € BS (j — 1) using s-prop 2 «i € set-incr n (BS (j — 1))
unfolding set-incr-def by force

from that have Ty i = (T' (Az e {.<I}. y2) Mze { <k} y(z+ 1)) i
unfolding T-def by auto
also have ... = (join (L-line (A\z € {.<1}. y 2) 0)) (S (\z € {.<k}. y (=
+ 1)) nm) i
using split-cube that unfolding T'-def by simp
also have ... = (join (L-line (y 0)) (S (A\z € {.<k}. y (z+ 1))) nm) i by
simp

also have ... = (S (Az € {.<k}. y (z + 1))) s using * s-prop unfolding
join-def by simp
also have ... = (Az € {.<k}. y (z + 1)) (j—1)
using XX XY BfS-props(6) 2 <j < k + I» by auto
also have ... = y j using 2 (j < k + 1> by force
finally show ?thesis .
qed
qed

ultimately have subspace-T: is-subspace T (k+1) (n+m) (t+1) unfolding
is-subspace-def using T-prop by metis

Part 4: Proving T is layered
The following redefinition of the classes makes proving the layered prop-
erty easier.

define T-class where T-class = (Aje{..k}. {join (L-line i) snm | is. i
e {.<t} Nse€ S ‘(classes k t j)})(k+1:= {join (L-line t) (SOME s. s € S ¢
(cube m (t+1))) n m})
have classprop: T-class j = T * classes (k + 1) t j if j-prop: j < k for j
proof
show T-class j C T * classes (k + 1) t j
proof
fix z assume z € T-class j
from that have T-class j = {join (L-linei) snm|is.i€ {.<t} Ns€ S
“(classes k t j)}
unfolding T-class-def by simp
then obtain i s where is-defs: © = join (L-linei) snmAi<tAse S’
(classes k t 7)

40

using <z € T-class j» unfolding T-class-def by auto
moreover have x:classes k t j C cube k (t4+1) unfolding classes-def by
stmp
moreover have Fly. y € classesktjNs= Sy
using subspace-inj-on-cube[of S k m t+1] S-prop inj-onD[of S cube k (t+1)]
calculation
unfolding layered-subspace-def inj-on-def by blast
ultimately obtain y where y-prop: y € classes ktjNs= Sy A
(Vz€eclasses ktj. s =Sz — y = z) by auto

define p where p = join (A\ge{..<1}. i) y 1 k

have (Age{..<1}. i) € cube 1 (t+1) using is-defs unfolding cube-def by
stmp

then have p-in-cube: p € cube (k + 1) (t+1)

using join-cubes[of (Ag€{..<1}. i) 1ty k] y-prop = unfolding p-def by

auto

then have xx: p 0 = i A (VI < k. p (I + 1) = y l) unfolding p-def join-def
by simp

have t ¢ y ‘ {..<(k — j)} using y-prop unfolding classes-def by simp
then have Vu < k — j. y u # t by auto
then have Vu < k — j. p (u + 1) # t using xx by simp
moreover have p 0 # t using is-defs *x by simp
moreover have Vu <k —j+ I.pu#t

using calculation by (auto simp: algebra-simps less-Suc-eq-0-disj)
ultimately have Vu < (k + 1) — j. p u # t using that by auto
then have A1: t ¢ p “ {..<((k+1) — j)} by blast

have pu = tifu € {k — j + 1.<k+1} for u
proof —
from that have u — 1 € {k — j..<k} by auto
then have y (u — 1) = t using y-prop unfolding classes-def by blast
then show p u = ¢ using *x that <u — 1 € {k — j..<k}» by auto
qed
then have A2: Vue{(k+1) — j..<k+1}. p u = t using that by auto

from A1 A2 p-in-cube have p € classes (k+1) t j unfolding classes-def by
blast

moreover have z = T p
proof—
have loc-useful:(Ay € {.<k}. p (y + 1)) = (Az € {..<k}. y 2z) using =x
by auto
have Tp=T'(Aye {.<1}.py) Ay € {.<k}. p (y + 1))
using p-in-cube unfolding T-def by auto

have T' (A\y € {.<1}.py) Dy e {.<k}. p(y+ 1))
= join (L-line (A\y € {.<1}.py) 0)) (S(Aye {.<k}.p(y+ 1)) n

41

using split-cube p-in-cube unfolding T'-def by simp
also have ... = join (L-line (p 0)) (S (\y € {..<k}. p (y + 1))) n m by
stmp
also have ... = join (L-line i) (S (A\y € {.<k}. p (y + 1))) n m by (simp
add: *x)
also have ... = join (L-line 7) (S (Az € {..<k}. y 2)) n m using loc-useful
by simp
also have ... = join (L-line ©) (S y) n m using y-prop x unfolding cube-def
by auto
also have ... = z using is-defs y-prop by simp
finally show z = T p
using «T'p = T/ (restrict p {..<1}) (A\ye{..<k}. p (y + 1))» by presburger
qed
ultimately show z € T ¢ classes (k + 1) t j by blast
qed
next
show T ¢ classes (k + 1) t j C T-class j
proof
fix x assume z € T ‘ classes (k+1) t j
then obtain y where y-prop: y € classes (k+1) t j A T y = z by blast
then have y-props: (Vu € {((k+1)—j)..<k+1}. yu=t) At & y ‘{.<(k+1)
-j}

unfolding classes-def by blast

define z where z = (A\v € {..<k}. y (v+1))
have z € cube k (t+1) using y-prop classes-subset-cube[of k+1 ¢ j] unfolding
z-def cube-def by auto
moreover
{
have z ‘{.<k — j} =y ‘((+) 1 ‘{..<k—j}) unfolding z-def by fastforce
also have ... = y ‘{1..<k—j+1} by (simp add: atLeastLessThanSuc-atLeastAtMost
image-Suc-lessThan)
also have ... = y ‘ {1..<(k+1)—j} using j-prop by auto
finally have z ‘ {.<k — j} C y ‘{..<(k+1)—j} by auto
then have ¢t ¢ z ‘ {..<k — j} using y-props by blast

}

moreover have Vu € {k—j..<k}. z u = t unfolding z-def using y-props
by auto

ultimately have z-in-classes: z € classes k t j unfolding classes-def by
blast

have y 0 # ¢
proof—
from that have 0 € {..<k + I — j} by simp
then show y 0 # t using y-props by blast
qed
then have tr: y 0 < t using y-prop classes-subset-cube[of k+1 ¢ j] unfolding

42

cube-def by fastforce

have (A\g € {..<I}. y g) € cube 1 (t+1)
using y-prop classes-subset-cube[of k+1 t j] cube-restrict[of 1 (k+1) y t+1]
assms(2) by auto
then have Ty = T’/ (\g € {..<1}. y g) 7z using y-prop classes-subset-cube|of
k1t 5]
unfolding T-def z-def by auto
also have ... = join (L-line ((Ag € {..<1}. yg) 0)) (Sz) nm
unfolding T'-def
using «(A\g € {..<1}. y g) € cube 1 (t+1)> <z € cube k (t+1)>

by auto
also have ... = join (L-line (y 0)) (S z) n m by simp
also have ... € T-class j using tr z-in-classes that unfolding T-class-def
by force
finally show z € T-class j using y-prop by simp
qed
qed

The core case ¢ < k. The case i = k + 1 is trivial since k + 1 has only one
point.

have yz=xyAxa<rifai<kzeT*classes (k+1) ti
y € T ‘classes (k+1) tifor iz y
proof—
from a have x: T ‘ classes (k+1) t i = T-class i by (simp add: classprop)
then have z € T-class ¢ using that by simp
moreover have xx: T-class i = {join (L-linel) snm |ls.l € {.<t} As
€S ‘(classes k t 1)}
using a unfolding T-class-def by simp
ultimately obtain xs zi where zdefs: © = join (L-line zi) zsnm A zi < {
A xs € S (classes k t i)
by blast

from * xx obtain ys yi where ydefs: y = join (L-line yi) ysn m A yi < t A
ys € S ‘(classes k t ©)
using a by auto

have (L-line zi) € cube n (t+1) using L-line-base-prop zdefs by simp
moreover have zs € cube m (t+1)
using zdefs S-prop subspace-elems-embed imageF image-subset-iff mem-Collect-eq

unfolding layered-subspace-def classes-def by blast
ultimately have AA1: x x = xL (L-line i) xs using zdefs unfolding x L-def
by simp

have (L-line yi) € cube n (t+1) using L-line-base-prop ydefs by simp

moreover have ys € cube m (t+1)
using ydefs S-prop subspace-elems-embed imageF image-subset-iff mem-Collect-eq

43

unfolding layered-subspace-def classes-def by blast
ultimately have AA2: x y = xL (L-line yi) ys using ydefs unfolding x L-def
by simp

have Vs<t. VI < t. xL-s (L (SOME p. p€cube 1 (t+1) A p 0 = s))
= xL-s (L (SOME p. pecube 1 (t+1) A p 0 = l)) using
dim1-layered-subspace-mono-linelof t L n s xL-s| L-prop assms(1) by blast
then have key-auz: xL-s (L-line s) = xL-s (L-line 1) if s € {.<t} | € {.<t}
for s
using that unfolding L-line-def
by (metis (no-types, lifting) add.commute
lessThan-iff less-Suc-eq plus-1-eq-Suc restrict-apply)
have key: xL (L-line s) = xL (L-line l) if s < t | < t for s |
proof—
have L1: xL (L-line s) € cube m (¢t + 1) =g {..<r} unfolding xL-def
using A L-line-base-prop <s < t» by simp
have L2: xL (L-line l) € cube m (t + 1) —g {..<r} unfolding yL-def
using A L-line-base-prop <l < t» by simp
have ¢ (xL (L-line s)) = xL-s (L-line s) unfolding x L-s-def
using <s < t» L-line-base-prop by simp

also have .. = xL-s (L-line l) using key-auzx <s <t» <l < t» by blast
also have ... = ¢ (xL (L-line l)) unfolding x L-s-def using L-line-base-prop
<t
by simp
finally have ¢ (xL (L-line s)) = ¢ (xL (L-line 1)) by simp
then show yL (L-line s) = xL (L-line I)
using p-prop L-line-base-prop L1 L2 unfolding bij-betw-def inj-on-def by
blast
qed

then have xL (L-line xi) s = xL (L-line 0) zs using zdefs assms(1) by
metis

also have ... = xS zs unfolding x S-def xL-def using xdefs L-line-base-prop
by auto
also have ... = xS ys using zdefs ydefs layered-eq-classes[of S k m t r xS]
S-prop a by blast
also have ... = xL (L-line 0) ys unfolding xS-def xL-def using zdefs
L-line-base-prop
by auto
also have ... = xL (L-line yi) ys using ydefs key assms(1) by metis

finally have core-prop: xL (L-line zi) xs = xL (L-line yi) ys by simp
then have y z = x v using AA1 AA2 by simp
then show yz=xyAxz<r
using zdefs AA1 key assms(1) A
<L-line zi € cube n (¢t + 1)» <xs € cube m (¢t + 1)» by blast
qed
then have Jc<r. Vo € T ‘ classes (k+1) ti. x v = cif ¢ < k for ¢
using that assms(5) by blast

moreover have Je<r. Vo € T ‘ classes (k+1) t (k+1). x z = ¢

44

proof —
have Vz € classes (k+1) t (k+1). Vu < k + 1. z w = t unfolding classes-def
by auto
have (Au. t) ‘{..<k + I} C {..<t + I} by auto
then have 3!y € cube (k+1) (t+1). Vu < k + 1. y u = 1)
using PiE-uniqueness[of (Au. t) {..<k+1} {..<t+1}] unfolding cube-def
by auto
then have 3!y € classes (k+1) t (k+1). Vu <k + 1. yu=1)
unfolding classes-def using classes-subset-cubelof k+1 t k+1] by auto
then have 3ly. y € classes (k+1) t (k+1)
using Vz € classes (k+1) t (k+1).Vu < k + 1. z w = & by auto
have Je<r. Vy € classes (k+1) t (k+1). x (T y) = ¢
proof —
have Vy € classes (k+1) t (k+1). T y € cube (n+m) (t+1) using T-prop
classes-subset-cube
by blast
then have Vy € classes (k+1) t (k+1). x (T y) < r using x-prop
unfolding n-def d-def using M’-prop by auto
then show Jc<r. Vy € classes (k+1) t (k+1). x (T'y) = ¢
using 3ly. y € classes (k+1) t (k+1)» by blast
qed
then show Jce<r. Vo € T ¢ classes (k+1) t (k+1). x z = ¢ by blast
qed
ultimately have Jc<r. Vo € T ‘ classes (k+1) ti. x v =cifi <k + 1for i
using that by (metis Suc-eq-plusl le-Suc-eq)
then have Jc<r. Vz € classes (k+1) ti. x (Tz) =cifi <k + Ifor i
using that by simp
then have layered-subspace T (k+1) (n + m) t r x using subspace-T that(1)
(n+m=M"
unfolding layered-subspace-def by blast
then show ?thesis using <n + m = M’ by blast
qed
then show ?thesis unfolding [hj-def
using m-props
exl[of A\M.YM'>M.Vx. x € cube M' (¢t + 1)
—g {.<r} — (38. layered-subspace S (k + 1) M' ¢ r
x) m|
by blast
qed

theorem hj-imp-lhj:
fixes k
assumes Ar’. hjr’t
shows [hj rt k
proof (induction k arbitrary: r rule: less-induct)
case (less k)
consider k= 0 | k= 1| k > 2 by linarith
then show Zcase
proof (cases)

45

case I
then show ?thesis using dim0-layered-subspace-ex unfolding [hj-def by auto
next
case 2
then show ?thesis
proof (cases t > 0)
case True
then show ?thesis using hj-imp-lhj-base[of t] assms 2 by blast
next
case Fulse
then show ?thesis using assms unfolding hj-def (hj-def cube-def by fastforce
qed
next
case 3
note less
then show ?thesis
proof (cases t > 0 A r > 0)
case True
then show ?thesis using hj-imp-lhj-steplof t k—1 7]
using assms less.IH 8 One-nat-def Suc-pred by fastforce
next
case Fulse
then consider t =0 |t > 0Ar=0]t=0Ar = 0 by fastforce
then show ?thesis
proof cases
case I
then show ?thesis using assms unfolding hj-def lhj-def cube-def by
fastforce
next
case 2
then obtain N where N-props: N > 0 VN'>N.Vx € cube N’ ¢
—g{.<r}. @Lcc<rAislineL N t N (Vy
€ L ‘{.<t}. x y = ¢)) using assms|of r] unfolding hj-def by force
have cube N’ (t + 1) =g {.<r} = {} if N’ > N for N’
proof—
have cube N’ t # {} using N-props(2) that 2 by fastforce
then have cube N’ (¢t + 1) # {} using cube-subset[of N’ t] by blast
then show ?thesis using 2 by blast
qed
then show ?thesis unfolding lhj-def using N-props(1) by blast
next
case 3
then have (3L c. c<r AislineLN' t N (Vye L ‘{.<t}. x y=c))
= Fulse for N’ x by blast
then have Fulse using assms 8 unfolding hj-def cube-def by fastforce
then show ?thesis by blast
qed

qed

46

qed
qed

2.2 Theorem 5

We provide a way to construct a monochromatic line in C{'; from a k-
dimensional k-coloured layered subspace S in C' ;. The idea is to rely on
the fact that there are k + 1 classes in S, but only k£ colours. It thus follows
from the Pigeonhole Principle that two classes must share the same colour.
The way classes are defined allows for a straightforward construction of a line
with points only from those two classes. Thus we have our monochromatic
line.

theorem layered-subspace-to-mono-line:
assumes layered-subspace S kn t k x
and ¢t > 0
shows (3L. Je<k. is-line L n (t+1) N (Vy € L ‘{.<t+1}. x y = ¢))
proof—
define z where z = (Aie{..k}. Aje{..<k}. (ifj < k — i then 0 else t))

have A: z i € cube k (t + 1) if i < k for i using that unfolding cube-def z-def
by simp
then have S (z i) € cube n (t+1) if i < k for i using that assms(1)
unfolding layered-subspace-def is-subspace-def by fast

have x € cube n (t + 1) — g {..<k} using assms unfolding layered-subspace-def
by linarith
then have y ‘ (cube n (t+1)) C {..<k} by blast
then have card (x ‘ (cube n (t+1))) < card {..<k}
by (meson card-mono finite-lessThan)
then have «*: card (x ‘(cube n (t+1))) < k by auto
have k > 0 using assms(1) unfolding layered-subspace-def by auto
have inj-on = {..k}
proof —
have sz i1 (k — i2) # xi2 (k — i2) if 1 < ki2 < kil # i2 i1 < i2 for il i2
using that assms(2) unfolding z-def by auto
have Jj<k. v il j # 12 jif il < ki2 < k il # i2 for il i2
proof (cases il < i2)
case True
then have k£ — i2 < k
using <0 < k» that(3) by linarith
then show ?thesis using that
by (meson True nat-less-le)
next
case Fulse
then have 2 < if by simp
then show ?thesis using that x[of i2 i1] <k > O»
by (metis diff-less gr-implies-not0 le0 nat-less-le)
qed

47

then have z i1 # z 2 if i1 < k2 < kil # i2 il < i2 for i1 i2 using that
by fastforce
then show ?thesis unfolding inj-on-def by (metis atMost-iff linorder-cases)
qed
then have card (z ‘ {..k}) = card {..k} using card-image by blast
then have B: card (z ‘ {..k}) = k+1 by simp
have z ‘ {..k} C cube k (t+1) using A by blast
then have S ‘z ‘ {.k} C § ‘ cube k (t+1) by fast
also have ... C cube n (t+1)
by (meson assms(1) layered-subspace-def subspace-elems-embed)
finally have S ‘z ‘ {..k} C cube n (t+1) by blast
then have x ‘S ‘z ‘{..k} C x ‘ cube n (t+1) by auto
then have card (x ‘S ‘z ‘{..k}) < card (x cube n (t+1))
by (simp add: card-mono cube-def finite-PiE)
also have ... < k using * by blast

also have ... < k + I by auto

also have ... = card {..k} by simp

also have ... = card (z ‘ {..k}) using B by auto
also have ... = card (S ‘=z ‘{..k})

using subspace-inj-on-cube[of S k n t+1] card-imagelof S x * {..k}]
inj-on-subset[of S cube k (t+1) = ‘ {.k}] assms(1) <z ‘ {.k} C cube k (¢t +
1)
unfolding layered-subspace-def by simp
finally have card (x ‘S ‘=z ‘{..k}) < card (S ‘=z ‘ {..k}) by blast
then have —inj-on x (S ‘z ‘ {..k}) using pigeonhole[of x S ‘z ‘{..k}] by blast
then have Jab. ae€ Sz “{Lk}Abe Sz {k} ANa#bAXxa=
x b unfolding inj-on-def by auto
then obtain az bz where ab-props: az € S ‘z ‘{ .k} ANbx € S ‘o {..k} AN ax
%+ bx A
x ax = x br by blast
then have Juv. u e {Lk} Ave {k}Au#vAx (S (zu)=x(S(z
v)) by blast
then obtain v v where uv-props: u € {_.k} Ave {L.k} Au<vAx (S (zu))
= x (S (z v)) by (metis linorder-cases)

let 2f = Xs. (Ai € {..<k}. if i < k — v then 0 else (if i < k — u then s else t))
define y where y = (As € {..t}. S (7f s))

have linel: ?f s € cube k (t+1) if s < t for s unfolding cube-def using that by
auto

have f-cube: ?f j € cube k (t+1) if j < t+1 for j using linel that by simp
have f-classes-u: ?f j € classes k t u if j-prop: j < t for j

using that j-prop uv-props f-cube unfolding classes-def by auto
have f-classes-v: ?f j € classes k t v if j-prop: j = t for j

using that j-prop wv-props assms(2) f-cube unfolding classes-def by auto

obtain B f where Bf-props: disjoint-family-on B {.k} |J (B ‘{..k}) = {..<n}
({} & B “{.<k})

48

fe(Bk) —»g {.<t+1} S € (cube k (t+1)) =g (cube n (t+1))
(Vy € cube k (t+1). (Vi€ Bk. Syi=fi) AN (Vj<k.Vi e Bj.
(Sy)i=yj)

using assms(1) unfolding layered-subspace-def is-subspace-def by auto

have y € {.<t+1} — g cube n (t+1) unfolding y-def using linel «S * cube k
(t+ 1)
C cube n (t + 1)) by auto
moreover have (Vu<t+1. Vo<t+1. yuj=yvj)V (Vs<t+1. ysj=s)
if j-prop: j<n for j
proof—
show (Vu<t+1. Vo<t+l. yuj=yvj)V (Vs<t+1. ysj=25)
proof —
consider j € B k | 3ii<k. j € B ii using Bf-props(2) j-prop
by (metis UN-E atMost-iff le-neg-implies-less less Than-iff)
then have yaj=ybjVvysj=sifa<t+1b<t+ls<t+iforabds
proof cases

case 1
then have y a j = S (?f a) j using that(1) unfolding y-def by auto
also have ... = fj using Bf-props(6) f-cube 1 that(1) by auto
also have ... =S (?fb) j using Bf-props(6) f-cube 1 that(2) by auto
also have ... = y b j using that(2) unfolding y-def by simp
finally show ?thesis by simp

next
case 2

then obtain i where ii-prop: it < k A j € B ii by blast
then consider 4 < k —v | il >k —vANd<k—u|@>k—uNi<k
using not-less
by blast
then show ?thesis
proof cases

case I
then have y a j = S (?f a) j using that(1) unfolding y-def by auto
also have ... = (9f a) ii using Bf-props(6) f-cube that(1) ii-prop by auto
also have ... = 0 using I by (simp add: ii-prop)
also have ... = (9fb) i using 1 by (simp add: ii-prop)
also have ... = S (9f b) j using Bf-props(6) f-cube that(2) ii-prop by
auto
also have ... = y b j using that(2) unfolding y-def by auto
finally show ?thesis by simp
next
case 2
then have y s j = S (?f s) j using that(3) unfolding y-def by auto
also have ... = (?fs) ii using Bf-props(6) f-cube that(3) ii-prop by auto
also have ... = s using 2 by (simp add: i-prop)
finally show ?thesis by simp
next
case &

then have y a j = S (?f a) j using that(1) unfolding y-def by auto

49

also have ... = (%f a) ii using Bf-props(6) f-cube that(1) ii-prop by auto

also have ... = t using & uv-props by auto
also have ... = (?fb) it using 3 uv-props by auto
also have ... = S (2f b) j using Bf-props(6) f-cube that(2) ii-prop by
auto
also have ... = y b j using that(2) unfolding y-def by auto
finally show ?thesis by simp
qed
qed
then show ?thesis by blast
qed
qed
moreover have 3j < n. Vs<t+1.ysj=s
proof —

have k > 0 using uv-props by simp

have k — v < k using uv-props by auto

have k — v < k — u using wv-props by auto

then have B (k — v) # {} using Bf-props(3) uv-props by auto

then obtain j where j-prop: j € B (k — v) A j < n using Bf-props(2) uv-props
by force

then have y s j = s if s<t+1 for s

proof
have y s j = S (?f s) j using that unfolding y-def by auto
also have = (?fs) (k — v) using Bf-props(6) f-cube that j-prop <k — v
< k> by fast
also have ... = s using that j-prop <k — v < k — w» by simp
finally show ?thesis .
qed

then show Jj < n. Vs<t+1. y s j = s using j-prop by blast
qed

ultimately have Z1: is-line y n (t+1) unfolding is-line-def by blast
moreover

have k-colour: x e < kif e € y * {..<t+1} for e
using <y € {.<t+1} =g cube n (t + 1)) <x € cuben (t + 1)
—p {..<k}> that by auto

have y el =x e2 Axel <kifel €y ‘{.<t+1} e2e€y ‘{.<t+1} for el e2
proof

from that obtain i1 i2 where i-props: il <t + 12 < t+ 1el=yil e2
= y i2 by blast
from i-props(1,2) have x (y il) = x (y i2)
proof (induction i1 i2 rule: linorder-wlog)
case (le a b)
then show Zcase
proof (cases a = b)
case True

then show “thesis by blast
next

case Fulse

50

then have a < b using le by linarith
then consider b = t | b < ¢ using le.prems(2) by linarith
then show ?thesis
proof cases
case I
then have y b € S ‘“ classes k t v
proof —
have y b = S (¢f b) unfolding y-def using <b = {» by auto
moreover have ?f b € classes k t v using <b = t» f-classes-v by blast
ultimately show y b € S ¢ classes k t v by blast
qed
moreover have z u € classes k t u
proof —
have z u cord = t if cord € {k — u..<k} for cord using wv-props that
unfolding z-def by simp
moreover
{
have z u cord # t if cord € {..<k — u} for cord
using uv-props that assms(2) unfolding z-def by auto
then have ¢t ¢ z u ‘ {..<k — u} by blast
}
ultimately show z u € classes k t v unfolding classes-def
using <z ‘ {..k} C cube k (¢t + 1)» uv-props by blast
qed
moreover have z v € classes k t v
proof —
have z v cord = t if cord € {k — v..<k} for cord using uv-props that
unfolding z-def by simp
moreover
{
have z v cord # t if cord € {..<k — v} for cord
using uv-props that assms(2) unfolding z-def by auto
then have ¢ ¢ z v ‘ {..<k — v} by blast
}
ultimately show z v € classes k t v unfolding classes-def
using <z ‘ {..k} C cube k (t + 1)> wv-props by blast
qed
moreover have x (y b) = x (S (z v))
using assms(1) calculation(1, 8) unfolding layered-subspace-def by
(metis imageE uv-props)
moreover have y a € S ‘ classes kt u
proof —
have y a = S (?f a) unfolding y-def using <a < b 1 by simp
moreover have ?f a € classes k t v using <a < b 1 f-classes-u by
blast
ultimately show y a € S ‘ classes k t u by blast
qed
moreover have x (y a) = x (S (z u)) using assms(1) calculation(2, 5)
unfolding layered-subspace-def by (metis imageE uv-props)

o1

ultimately have x (y a) = x (v b) using uv-props by simp
then show ?thesis by blast
next
case 2
then have a < ¢ using <a < b less-trans by blast
then have y a € S ‘ classes k t u
proof —
have y a = S (?f a) unfolding y-def using <a < » by auto
moreover have ?f a € classes k t u using <a < t» f-classes-u by blast
ultimately show y a € S ‘ classes k t u by blast
qed
moreover have y b € § ‘ classes k t u
proof —
have y b = S (?f b) unfolding y-def using <b < t» by auto
moreover have ?f b € classes k t u using <b < t» f-classes-u by blast
ultimately show y b € S ‘ classes k t u by blast
qed
ultimately have x (y a) = x (v b) using assms(1) uv-props unfolding
layered-subspace-def
by (metis imageE)
then show ?thesis by blast
qed
qed
next
case (sym a b)
then show ?case by presburger
qed
then show y el = x e2 using i-props(3,4) by blast
qed (use that(1) k-colour in blast)
then have Z2: 3c < k.Vee y ‘{.<t+1}. x e=c¢
by (meson image-eql lessThan-iff less-add-one)
}

ultimately show 3L c. ¢ < k Ais-line Ln (t + 1) A (Vyel ‘{.<t+ 1}. x y

= C)
by blast

qed

2.3 Corollary 6

corollary [hj-imp-hj:
assumes (Ar k. lhjrtk)
and t>0
shows (hj r (t+1))
using assms(1)[of r r] assms(2) unfolding Ihj-def hj-def using layered-subspace-to-mono-line[of
- r - t] by metis

52

2.4 Main result

2.4.1 Edge cases and auxiliary lemmas

lemma single-point-line:
assumes N > 0
shows is-line (Ase{..<1}. Aa€{..<N}. 0) N 1
using assms unfolding is-line-def cube-def by auto

lemma single-point-line-is-monochromatic:

assumes x € cube N1 =g {.<r} N > 0

shows (J¢ < r. is-line (As€{..<1}. Aae{..<N}. O) NI A (Vi€

(Ase{..<1}. hae{..<N}. 0) ‘{.<1}. x i = ¢))
proof —

have is-line (Ase{..<1}. Aae{..<N}. 0) N 1 using assms(2) single-point-line by
blast

moreover have 3¢ < r. x (Ase{..<1}. ae{..<N}. 0) j) = ¢

if (j::nat) < 1 for j using assms line-points-in-cube calculation that unfolding

cube-def by blast

ultimately show %thesis by auto
qed

lemma hj-r-nonzero-t-0:

assumes r > 0

shows hj r 0
proof—

have (3L c. c<r Aisline LN 0N (Vy e L “{.<0:nat}. x y = ¢))

if N> 1x € cube N' 0 =g {..<r} for N’ x using assms is-line-def that(1)

by fastforce

then show ?thesis unfolding hj-def by auto
qed

Any cube over 1 element always has a single point, which also forms the only
line in the cube. Since it’s a single point line, it’s trivially monochromatic.
We show the result for dimension 1.

lemma hj-t-1: hj r 1
unfolding hj-def
proof—
let /N =1
have 3L c. c < r ANisslineL N' 1N (Vyel ‘{.<1l}. xy=c¢)if N'> ?N x €
cube N’ 1 =g {..<r} for N’ x
using single-point-line-is-monochromatic[of x N’ r] that by force
then show IN>0. VN'>N.Vx. x € cube N' I g {.<r} — (3L c.c<rA
is-line L N' 1 AN (VyeL ‘{.<I}. x y = ¢))
by blast
qed

93

2.4.2 Main theorem

We state the main result hj r t. The explanation for the choice of assumption
is offered subsequently.

theorem hales-jewett:

assumes —(r = 0 A t = 0)

shows hj r ¢

using assms
proof (induction t arbitrary: r)

case 0

then show ?case using hj-r-nonzero-t-0[of r] by blast
next

case (Suc t)

then show ?case using hj-t-1[of r| hj-imp-lhjof t] lhj-imp-hj[of t r] by auto
qed

We offer a justification for having excluded the special case r =t = 0 from
the statement of the main theorem hales-jewett. The exclusion is a conse-
quence of the fact that colourings are defined as members of the function set
cube n t —p {..<r}, which for r = t = 0 means there’s a dummy colouring
Az. undefined, even though cube n 0 = {} for n > 0. Hence, in this case,
no line exists at all (let alone one monochromatic under the aforementioned
colouring). This means hj 0 0 = False—but only because of the quirky
behaviour of the FuncSet cube n ¢t —p {..<r}. This could have been cir-
cumvented by letting colourings x be arbitrary functions constraint only by
x ‘cubent C {..<r}. We avoided this in order to have consistency with the
cube’s definition, for which FuncSets were crucial because the proof heavily
relies on arguments about the cardinality of the cube. he constraint z ¢
{..<n} C {..<t} for elements z of C}* would not have sufficed there, as there
are infinitely many functions over the naturals satisfying it.

end

References

[1] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory,
2nd Edition. Wiley-Interscience, March 1990.

[2] K. Kreuzer and M. Eberl. Van der Waerden’s Theorem. Archive of For-
mal Proofs, June 2021. https://isa-afp.org/entries/Van_der_Waerden.
html, Formal proof development.

54

https://isa-afp.org/entries/Van_der_Waerden.html
https://isa-afp.org/entries/Van_der_Waerden.html

	Preliminaries
	The n-dimensional cube over t elements
	Lines
	Subspaces
	Equivalence classes

	Core proofs
	Theorem 4
	Base case of Theorem 4
	Induction step of theorem 4

	Theorem 5
	Corollary 6
	Main result
	Edge cases and auxiliary lemmas
	Main theorem

