
The Hales–Jewett Theorem

Ujkan Sulejmani, Manuel Eberl, Katharina Kreuzer

October 27, 2022

Abstract

This article is a formalisation of a proof of the Hales–Jewett theo-
rem presented in the textbook Ramsey Theory by Graham et al. [1].

The Hales–Jewett theorem is a result in Ramsey Theory which
states that, for any non-negative integers r and t, there exists a mini-
mal dimension N , such that any r-coloured N ′-dimensional cube over
t elements (with N ′ ≥ N) contains a monochromatic line. This theo-
rem generalises Van der Waerden’s Theorem, which has already been
formalised in another AFP entry [2].

1

Contents
1 Preliminaries 3

1.1 The n-dimensional cube over t elements 3
1.2 Lines . 4
1.3 Subspaces . 6
1.4 Equivalence classes . 7

2 Core proofs 19
2.1 Theorem 4 . 19

2.1.1 Base case of Theorem 4 19
2.1.2 Induction step of theorem 4 27

2.2 Theorem 5 . 47
2.3 Corollary 6 . 52
2.4 Main result . 53

2.4.1 Edge cases and auxiliary lemmas 53
2.4.2 Main theorem . 54

2

theory Hales-Jewett
imports Main HOL−Library.Disjoint-Sets HOL−Library.FuncSet

begin

1 Preliminaries

The Hales–Jewett Theorem is at its core a statement about sets of tuples
called the n-dimensional cube over t elements (denoted by Cn

t); i.e. the
set {0, . . . , t − 1}n, where {0, . . . , t − 1} is called the base. We represent
tuples by functions f : {0, . . . , n − 1} → {0, . . . , t − 1} because they’re
easier to deal with. The set of tuples then becomes the function space
{0, . . . , t−1}{0,...,n−1}. Furthermore, r-colourings of the cube are represented
by mappings from the function space to the set {0, . . . , r − 1}.

1.1 The n-dimensional cube over t elements

Function spaces in Isabelle are supported by the library component FuncSet.
In essence, f ∈ A →E B means a ∈ A =⇒ f a ∈ B and a /∈ A =⇒ f a =
undefined

The (canonical) n-dimensional cube over t elements is defined in the follow-
ing using the variables:
n: nat dimension
t: nat number of elements

definition cube :: nat ⇒ nat ⇒ (nat ⇒ nat) set
where cube n t ≡ {..<n} →E {..<t}

For any function f whose image under a set A is a subset of another set B,
there’s a unique function g in the function space BA that equals f every-
where in A. The function g is usually written as f |A in the mathematical
literature.
lemma PiE-uniqueness: f ‘ A ⊆ B =⇒ ∃ !g ∈ A
→E B. ∀ a∈A. g a = f a

using exI [of λx. x ∈ A →E B ∧ (∀ a∈A. x a = f a)
restrict f A] PiE-ext PiE-iff by fastforce

Any prefix of length j of an n-tuple (i.e. element of Cn
t) is a j-tuple (i.e.

element of Cj
t).

lemma cube-restrict:
assumes j < n

and y ∈ cube n t
shows (λg ∈ {..<j}. y g) ∈ cube j t using assms unfolding cube-def by force

Narrowing down the obvious fact BA ⊆ CA if B ⊆ C to a specific case for
cubes.

3

lemma cube-subset: cube n t ⊆ cube n (t + 1)
unfolding cube-def using PiE-mono[of {..<n} λx. {..<t} λx. {..<t+1}]
by simp

A simplifying definition for the 0-dimensional cube.
lemma cube0-alt-def : cube 0 t = {λx. undefined}

unfolding cube-def by simp

The cardinality of the n-dimensional over t elements is simply a consequence
of the overarching definition of the cardinality of function spaces (over finite
sets).
lemma cube-card: card ({..<n::nat} →E {..<t::nat}) = t ^ n

by (simp add: card-PiE)

A simplifying definition for the n-dimensional cube over a single element,
i.e. the single n-dimensional point (0, . . ., 0).
lemma cube1-alt-def : cube n 1 = {λx∈{..<n}. 0} unfolding cube-def by (simp
add: lessThan-Suc)

1.2 Lines

The property of being a line in Cn
t is defined in the following using the

variables:
L: nat ⇒ nat ⇒ nat line
n: nat dimension of cube
t: nat the size of the cube’s base

definition is-line :: (nat ⇒ (nat ⇒ nat)) ⇒ nat ⇒
nat ⇒ bool

where is-line L n t ≡ (L ∈ {..<t} →E cube n t ∧
((∀ j<n. (∀ x<t. ∀ y<t. L x j = L y j) ∨ (∀ s<t. L s j = s))
∧ (∃ j < n. (∀ s < t. L s j = s))))

We introduce an elimination rule to relate lines with the more general defi-
nition of a subspace (see below).
lemma is-line-elim-t-1:

assumes is-line L n t and t = 1
obtains B0 B1

where B0 ∪ B1 = {..<n} ∧ B0 ∩ B1 = {} ∧
B0 6= {} ∧ (∀ j ∈ B1. (∀ x<t. ∀ y<t. L x j = L y
j)) ∧ (∀ j ∈ B0. (∀ s<t. L s j = s))

proof −
define B0 where B0 = {..<n}
define B1 where B1 = ({}::nat set)
have B0 ∪ B1 = {..<n} unfolding B0-def B1-def by simp
moreover have B0 ∩ B1 = {} unfolding B0-def B1-def by simp
moreover have B0 6= {} using assms unfolding B0-def is-line-def by auto

4

moreover have (∀ j ∈ B1. (∀ x<t. ∀ y<t. L x j = L y j)) unfolding B1-def by
simp

moreover have (∀ j ∈ B0. (∀ s<t. L s j = s)) using assms(1, 2) cube1-alt-def
unfolding B0-def is-line-def by auto

ultimately show ?thesis using that by simp
qed

The next two lemmas are used to simplify proofs by enabling us to use the
resulting facts directly. This avoids having to unfold the definition of is-line
each time.
lemma line-points-in-cube:

assumes is-line L n t
and s < t

shows L s ∈ cube n t
using assms unfolding cube-def is-line-def
by auto

lemma line-points-in-cube-unfolded:
assumes is-line L n t

and s < t
and j < n

shows L s j ∈ {..<t}
using assms line-points-in-cube unfolding cube-def by blast

The incrementation of all elements of a set is defined in the following using
the variables:
n: nat increment size
S: nat set set

definition set-incr :: nat ⇒ nat set ⇒ nat set
where
set-incr n S ≡ (λa. a + n) ‘ S

lemma set-incr-disjnt:
assumes disjnt A B
shows disjnt (set-incr n A) (set-incr n B)
using assms unfolding disjnt-def set-incr-def by force

lemma set-incr-disjoint-family:
assumes disjoint-family-on B {..k}
shows disjoint-family-on (λi. set-incr n (B i)) {..k}
using assms set-incr-disjnt unfolding disjoint-family-on-def by (meson dis-

jnt-def)

lemma set-incr-altdef : set-incr n S = (+) n ‘ S
by (auto simp: set-incr-def)

lemma set-incr-image:
assumes (

⋃
i∈{..k}. B i) = {..<n}

5

shows (
⋃

i∈{..k}. set-incr m (B i)) = {m..<m+n}
using assms by (simp add: set-incr-altdef add.commute flip: image-UN atLeast0LessThan)

Each tuple of dimension k + 1 can be split into a tuple of dimension 1 (the
first entry) and a tuple of dimension k (the remaining entries).
lemma split-cube:

assumes x ∈ cube (k+1) t
shows (λy ∈ {..<1}. x y) ∈ cube 1 t

and (λy ∈ {..<k}. x (y + 1)) ∈ cube k t
using assms unfolding cube-def by auto

1.3 Subspaces

The property of being a k-dimensional subspace of Cn
t is defined in the

following using the variables:
S: (nat ⇒ nat) ⇒ nat ⇒ nat the subspace
k: nat the dimension of the subspace
n: nat the dimension of the cube
t: nat the size of the cube’s base

definition is-subspace
where is-subspace S k n t ≡ (∃B f . disjoint-family-on B {..k} ∧

⋃
(B ‘

{..k}) = {..<n} ∧ ({} /∈ B ‘ {..<k}) ∧ f ∈ (B k) →E {..<t}
∧ S ∈ (cube k t) →E (cube n t) ∧ (∀ y ∈ cube k t.
(∀ i ∈ B k. S y i = f i) ∧ (∀ j<k. ∀ i ∈ B j. (S y) i = y j)))

A k-dimensional subspace of Cn
t can be thought of as an embedding of the

Ck
t into Cn

t , akin to how a k-dimensional vector subspace of Rn may be
thought of as an embedding of Rk into Rn.
lemma subspace-inj-on-cube:

assumes is-subspace S k n t
shows inj-on S (cube k t)

proof
fix x y
assume a: x ∈ cube k t y ∈ cube k t S x = S y
from assms obtain B f where Bf-props: disjoint-family-on B {..k} ∧

⋃
(B ‘

{..k}) =
{..<n} ∧ ({} /∈ B ‘ {..<k}) ∧ f ∈ (B k) →E {..<t} ∧
S ∈ (cube k t) →E (cube n t) ∧ (∀ y ∈ cube k t.
(∀ i ∈ B k. S y i = f i) ∧ (∀ j<k. ∀ i ∈ B j. (S y) i = y j))
unfolding is-subspace-def by auto

have ∀ i<k. x i = y i
proof (intro allI impI)
fix j assume j < k
then have B j 6= {} using Bf-props by auto
then obtain i where i-prop: i ∈ B j by blast
then have y j = S y i using Bf-props a(2) ‹j < k› by auto
also have ... = S x i using a by simp

6

also have ... = x j using Bf-props a(1) ‹j < k› i-prop by blast
finally show x j = y j by simp

qed
then show x = y using a(1,2) unfolding cube-def by (meson PiE-ext lessThan-iff)
qed

The following is required to handle base cases in the key lemmas.
lemma dim0-subspace-ex:

assumes t > 0
shows ∃S . is-subspace S 0 n t

proof−
define B where B ≡ (λx::nat. undefined)(0:={..<n})

have {..<t} 6= {} using assms by auto
then have ∃ f . f ∈ (B 0) →E {..<t}

by (meson PiE-eq-empty-iff all-not-in-conv)
then obtain f where f-prop: f ∈ (B 0) →E {..<t} by blast
define S where S ≡ (λx::(nat ⇒ nat). undefined)((λx. undefined):=f)

have disjoint-family-on B {..0} unfolding disjoint-family-on-def by simp
moreover have

⋃
(B ‘ {..0}) = {..<n} unfolding B-def by simp

moreover have ({} /∈ B ‘ {..<0}) by simp
moreover have S ∈ (cube 0 t) →E (cube n t)

using f-prop PiE-I unfolding B-def cube-def S-def by auto
moreover have (∀ y ∈ cube 0 t. (∀ i ∈ B 0. S y i = f i) ∧
(∀ j<0. ∀ i ∈ B j. (S y) i = y j)) unfolding cube-def S-def by force
ultimately have is-subspace S 0 n t using f-prop unfolding is-subspace-def by

blast
then show ∃S . is-subspace S 0 n t by auto

qed

1.4 Equivalence classes

Defining the equivalence classes of cube n (t + 1): {classes n t 0, . . ., classes
n t n}
definition classes

where classes n t ≡ (λi. {x . x ∈ (cube n (t + 1)) ∧ (∀ u ∈
{(n−i)..<n}. x u = t) ∧ t /∈ x ‘ {..<(n − i)}})

lemma classes-subset-cube: classes n t i ⊆ cube n (t+1) unfolding classes-def by
blast

definition layered-subspace
where layered-subspace S k n t r χ ≡ (is-subspace S k n (t + 1) ∧ (∀ i
∈ {..k}. ∃ c<r . ∀ x ∈ classes k t i. χ (S x) = c)) ∧ χ ∈
cube n (t + 1) →E {..<r}

lemma layered-eq-classes:

7

assumes layered-subspace S k n t r χ
shows ∀ i ∈ {..k}. ∀ x ∈ classes k t i. ∀ y ∈ classes k t i.
χ (S x) = χ (S y)

proof (safe)
fix i x y
assume a: i ≤ k x ∈ classes k t i y ∈ classes k t i
then obtain c where c < r ∧ χ (S x) = c ∧ χ (S y) = c using assms unfolding

layered-subspace-def by fast
then show χ (S x) = χ (S y) by simp

qed

lemma dim0-layered-subspace-ex:
assumes χ ∈ (cube n (t + 1)) →E {..<r ::nat}
shows ∃S . layered-subspace S (0::nat) n t r χ

proof−
obtain S where S-prop: is-subspace S (0::nat) n (t+1) using dim0-subspace-ex

by auto
have classes (0::nat) t 0 = cube 0 (t+1) unfolding classes-def by simp
moreover have (∀ i ∈ {..0::nat}. ∃ c<r . ∀ x ∈ classes (0::nat) t i. χ (S x) = c)
proof(safe)

fix i
have ∀ x ∈ classes 0 t 0. χ (S x) = χ (S (λx. undefined)) using cube0-alt-def

using ‹classes 0 t 0 = cube 0 (t + 1)› by auto
moreover have S (λx. undefined) ∈ cube n (t+1) using S-prop cube0-alt-def

unfolding is-subspace-def by auto
moreover have χ (S (λx. undefined)) < r using assms calculation by auto
ultimately show ∃ c<r . ∀ x∈classes 0 t 0. χ (S x) = c by auto

qed
ultimately have layered-subspace S 0 n t r χ using S-prop assms unfolding

layered-subspace-def by blast
then show ∃S . layered-subspace S (0::nat) n t r χ by auto

qed

lemma disjoint-family-onI [intro]:
assumes

∧
m n. m ∈ S =⇒ n ∈ S =⇒ m 6= n

=⇒ A m ∩ A n = {}
shows disjoint-family-on A S
using assms by (auto simp: disjoint-family-on-def)

lemma fun-ex: a ∈ A =⇒ b ∈ B =⇒ ∃ f ∈ A
→E B. f a = b
proof−

assume assms: a ∈ A b ∈ B
then obtain g where g-def : g ∈ A → B ∧ g a = b by fast
then have restrict g A ∈ A →E B ∧ (restrict g A) a = b using assms(1) by

auto
then show ?thesis by blast

qed

8

lemma ex-bij-betw-nat-finite-2:
assumes card A = n

and n > 0
shows ∃ f . bij-betw f A {..<n}
using assms ex-bij-betw-finite-nat[of A] atLeast0LessThan card-ge-0-finite by auto

lemma one-dim-cube-eq-nat-set: bij-betw (λf . f 0) (cube 1 k) {..<k}
proof (unfold bij-betw-def)

have ∗: (λf . f 0) ‘ cube 1 k = {..<k}
proof(safe)

fix x f
assume f ∈ cube 1 k
then show f 0 < k unfolding cube-def by blast

next
fix x
assume x < k
then have x ∈ {..<k} by simp
moreover have 0 ∈ {..<1::nat} by simp
ultimately have ∃ y ∈ {..<1::nat} →E {..<k}. y 0 = x using

fun-ex[of 0 {..<1::nat} x {..<k}] by auto
then show x ∈ (λf . f 0) ‘ cube 1 k unfolding cube-def by blast

qed
moreover
{

have card (cube 1 k) = k using cube-card by (simp add: cube-def)
moreover have card {..<k} = k by simp
ultimately have inj-on (λf . f 0) (cube 1 k) using ∗ eq-card-imp-inj-on[of cube

1 k λf . f 0]
by force

}
ultimately show inj-on (λf . f 0) (cube 1 k) ∧ (λf . f 0) ‘ cube 1 k = {..<k} by

simp
qed

An alternative introduction rule for the ∃!x quantifier, which means ”there
exists exactly one x”.
lemma ex1I-alt: (∃ x. P x ∧ (∀ y. P y −→ x = y)) =⇒ (∃ !x. P x)

by auto
lemma nat-set-eq-one-dim-cube: bij-betw (λx. λy∈{..<1::nat}. x) {..<k::nat} (cube
1 k)
proof (unfold bij-betw-def)

have ∗: (λx. λy∈{..<1::nat}. x) ‘ {..<k} = cube 1 k
proof (safe)

fix x y
assume y < k
then show (λz∈{..<1}. y) ∈ cube 1 k unfolding cube-def by simp

next
fix x
assume x ∈ cube 1 k

9

have x = (λz. λy∈{..<1::nat}. z) (x 0::nat)
proof

fix j
consider j ∈ {..<1} | j /∈ {..<1::nat} by linarith
then show x j = (λz. λy∈{..<1::nat}. z) (x 0::nat) j using ‹x
∈ cube 1 k› unfolding cube-def by auto

qed
moreover have x 0 ∈ {..<k} using ‹x ∈ cube 1 k› by (auto simp add: cube-def)
ultimately show x ∈ (λz. λy∈{..<1}. z) ‘ {..<k} by blast

qed
moreover
{

have card (cube 1 k) = k using cube-card by (simp add: cube-def)
moreover have card {..<k} = k by simp
ultimately have inj-on (λx. λy∈{..<1::nat}. x) {..<k} using ∗

eq-card-imp-inj-on[of {..<k} λx. λy∈{..<1::nat}. x] by force
}
ultimately show inj-on (λx. λy∈{..<1::nat}. x) {..<k} ∧ (λx.
λy∈{..<1::nat}. x) ‘ {..<k} = cube 1 k by blast

qed

A bijection f between domains A1 and A2 creates a correspondence between
functions in A1 → B and A2 → B.
lemma bij-domain-PiE :

assumes bij-betw f A1 A2
and g ∈ A2 →E B

shows (restrict (g ◦ f) A1) ∈ A1 →E B
using bij-betwE assms by fastforce

The following three lemmas relate lines to 1-dimensional subspaces (in the
natural way). This is a direct consequence of the elimination rule is-line-elim
introduced above.
lemma line-is-dim1-subspace-t-1:

assumes n > 0
and is-line L n 1

shows is-subspace (restrict (λy. L (y 0)) (cube 1 1)) 1 n 1
proof −

obtain B0 B1 where B-props: B0 ∪ B1 = {..<n} ∧ B0

∩ B1 = {} ∧ B0 6= {} ∧ (∀ j ∈ B1.
(∀ x<1. ∀ y<1. L x j = L y j)) ∧ (∀ j ∈ B0. (∀ s<1. L
s j = s)) using is-line-elim-t-1[of L n 1] assms by auto
define B where B ≡ (λi::nat. {}::nat set)(0:=B0, 1:=B1)
define f where f ≡ (λi ∈ B 1. L 0 i)
have ∗: L 0 ∈ {..<n} →E {..<1} using assms(2) unfolding cube-def is-line-def

by auto
have disjoint-family-on B {..1} unfolding B-def using B-props

by (simp add: Int-commute disjoint-family-onI)
moreover have

⋃
(B ‘ {..1}) = {..<n} unfolding B-def using B-props by

auto

10

moreover have {} /∈ B ‘ {..<1} unfolding B-def using B-props by auto
moreover have f ∈ B 1 →E {..<1} using ∗ calculation(2) unfolding f-def by

auto
moreover have (restrict (λy. L (y 0)) (cube 1 1)) ∈ cube 1 1 →E cube n 1

using assms(2) cube1-alt-def unfolding is-line-def by auto
moreover have (∀ y∈cube 1 1. (∀ i∈B 1. (restrict (λy. L (y 0)) (cube 1 1)) y i

= f i)
∧ (∀ j<1. ∀ i∈B j. (restrict (λy. L (y 0)) (cube 1 1)) y i = y j))

using cube1-alt-def B-props ∗ unfolding B-def f-def by auto
ultimately show ?thesis unfolding is-subspace-def by blast

qed

lemma line-is-dim1-subspace-t-ge-1:
assumes n > 0

and t > 1
and is-line L n t

shows is-subspace (restrict (λy. L (y 0)) (cube 1 t)) 1 n t
proof −

let ?B1 = {i::nat . i < n ∧ (∀ x<t. ∀ y<t. L x i = L y i)}
let ?B0 = {i::nat . i < n ∧ (∀ s < t. L s i = s)}
define B where B ≡ (λi::nat. {}::nat set)(0:=?B0, 1:=?B1)
let ?L = (λy ∈ cube 1 t. L (y 0))
have ?B0 6= {} using assms(3) unfolding is-line-def by simp

have L1: ?B0 ∪ ?B1 = {..<n} using assms(3) unfolding is-line-def by auto
{

have (∀ s < t. L s i = s) −→ ¬(∀ x<t. ∀ y<t. L x i =
L y i) if i < n for i using assms(2) less-trans by auto
then have ∗:i /∈ ?B0 if i ∈ ?B1 for i using that by blast

}
moreover
{

have (∀ x<t. ∀ y<t. L x i = L y i) −→ ¬(∀ s < t. L s i = s)
if i < n for i using that calculation by blast

then have ∗∗: ∀ i ∈ ?B0. i /∈ ?B1
by blast

}
ultimately have L2: ?B0 ∩ ?B1 = {} by blast

let ?f = (λi. if i ∈ B 1 then L 0 i else undefined)
{

have {..1::nat} = {0, 1} by auto
then have

⋃
(B ‘ {..1::nat}) = B 0 ∪ B 1 by simp

then have
⋃
(B ‘ {..1::nat}) = ?B0 ∪ ?B1 unfolding B-def by simp

then have A1: disjoint-family-on B {..1::nat} using L2
by (simp add: B-def Int-commute disjoint-family-onI)

}
moreover
{

11

have
⋃
(B ‘ {..1::nat}) = B 0 ∪ B 1 unfolding B-def by auto

then have
⋃
(B ‘ {..1::nat}) = {..<n} using L1 unfolding B-def by simp

}
moreover
{

have ∀ i ∈ {..<1::nat}. B i 6= {}
using ‹{i. i < n ∧ (∀ s<t. L s i = s)} 6= {}› fun-upd-same lessThan-iff less-one

unfolding B-def by auto
then have {} /∈ B ‘ {..<1::nat} by blast

}
moreover
{

have ?f ∈ (B 1) →E {..<t}
proof

fix i
assume asm: i ∈ (B 1)

have L a b ∈ {..<t} if a < t and b < n for a b using assms(3) that unfolding
is-line-def cube-def by auto

then have L 0 i ∈ {..<t} using assms(2) asm calculation(2) by blast
then show ?f i ∈ {..<t} using asm by presburger

qed (auto)
}

moreover
{

have L ∈ {..<t} →E (cube n t) using assms(3) by (simp add: is-line-def)
then have ?L ∈ (cube 1 t) →E (cube n t)
using bij-domain-PiE [of (λf . f 0) (cube 1 t) {..<t} L cube n t] one-dim-cube-eq-nat-set[of

t]
by auto

}
moreover
{

have ∀ y ∈ cube 1 t. (∀ i ∈ B 1. ?L y i = ?f i) ∧ (∀ j < 1.
∀ i ∈ B j. (?L y) i = y j)
proof

fix y
assume y ∈ cube 1 t
then have y 0 ∈ {..<t} unfolding cube-def by blast

have (∀ i ∈ B 1. ?L y i = ?f i)
proof

fix i
assume i ∈ B 1
then have ?f i = L 0 i

by meson
moreover have ?L y i = L (y 0) i using ‹y ∈ cube 1 t› by simp
moreover have L (y 0) i = L 0 i

12

proof −
have i ∈ ?B1 using ‹i ∈ B 1› unfolding B-def fun-upd-def by presburger
then have (∀ x<t. ∀ y<t. L x i = L y i) by blast
then show L (y 0) i = L 0 i using ‹y 0 ∈ {..<t}› by blast

qed
ultimately show ?L y i = ?f i by simp

qed

moreover have (?L y) i = y j if j < 1 and i ∈ B j for i j
proof−

have i ∈ B 0 using that by blast
then have i ∈ ?B0 unfolding B-def by auto
then have (∀ s < t. L s i = s) by blast
moreover have y 0 < t using ‹y ∈ cube 1 t› unfolding cube-def by auto
ultimately have L (y 0) i = y 0 by simp
then show ?L y i = y j using that using ‹y ∈ cube 1 t› by force

qed

ultimately show (∀ i ∈ B 1. ?L y i = ?f i) ∧ (∀ j < 1. ∀ i
∈ B j. (?L y) i = y j)

by blast
qed

}
ultimately show is-subspace ?L 1 n t unfolding is-subspace-def by blast

qed

lemma line-is-dim1-subspace:
assumes n > 0

and t > 0
and is-line L n t

shows is-subspace (restrict (λy. L (y 0)) (cube 1 t)) 1 n t
using line-is-dim1-subspace-t-1[of n L] line-is-dim1-subspace-t-ge-1[of n t L] assms

not-less-iff-gr-or-eq by blast

The key property of the existence of a minimal dimension N , such that for
any r-colouring in CN ′

t (for N ′ ≥ N) there exists a monochromatic line is
defined in the following using the variables:
r: nat the number of colours
t: nat the size of of the base

definition hj
where hj r t ≡ (∃N>0. ∀N ′ ≥ N . ∀χ. χ ∈ (cube N ′

t) →E {..<r ::nat} −→ (∃L. ∃ c<r . is-line L N ′ t
∧ (∀ y ∈ L ‘ {..<t}. χ y = c)))

The key property of the existence of a minimal dimension N , such that
for any r-colouring in CN ′

t (for N ′ ≥ N) there exists a layered subspace of
dimension k is defined in the following using the variables:

13

r: nat the number of colours
t: nat the size of of the base
k: nat the dimension of the subspace

definition lhj
where lhj r t k ≡ (∃N > 0. ∀N ′ ≥ N . ∀χ. χ ∈
(cube N ′ (t + 1)) →E {..<r ::nat} −→ (∃S .
layered-subspace S k N ′ t r χ))

We state some useful facts about 1-dimensional subspaces.
lemma dim1-subspace-elims:

assumes disjoint-family-on B {..1::nat} and
⋃
(B ‘ {..1::nat}) = {..<n} and

({}
/∈ B ‘ {..<1::nat}) and f ∈ (B 1) →E {..<t} and S ∈ (cube 1
t) →E (cube n t) and (∀ y ∈ cube 1 t. (∀ i ∈ B 1. S y i
= f i) ∧ (∀ j<1. ∀ i ∈ B j. (S y) i = y j))
shows B 0 ∪ B 1 = {..<n}

and B 0 ∩ B 1 = {}
and (∀ y ∈ cube 1 t. (∀ i ∈ B 1. S y i = f i) ∧ (∀ i ∈ B 0. (S y) i = y 0))
and B 0 6= {}

proof −
have {..1} = {0::nat, 1} by auto
then show B 0 ∪ B 1 = {..<n} using assms(2) by simp

next
show B 0 ∩ B 1 = {} using assms(1) unfolding disjoint-family-on-def by simp

next
show (∀ y ∈ cube 1 t. (∀ i ∈ B 1. S y i = f i) ∧ (∀ i ∈ B 0. (S y) i = y 0))

using assms(6) by simp
next

show B 0 6= {} using assms(3) by auto
qed

We state some properties of cubes.
lemma cube-props:

assumes s < t
shows ∃ p ∈ cube 1 t. p 0 = s

and (SOME p. p ∈ cube 1 t ∧ p 0 = s) 0 = s
and (λs∈{..<t}. S (SOME p. p∈cube 1 t ∧ p 0 = s)) s =
(λs∈{..<t}. S (SOME p. p∈cube 1 t ∧ p 0 = s)) ((SOME p. p ∈ cube 1 t
∧ p 0 = s) 0)
and (SOME p. p ∈ cube 1 t ∧ p 0 = s) ∈ cube 1 t

proof −
show 1: ∃ p ∈ cube 1 t. p 0 = s using assms unfolding cube-def by (simp add:

fun-ex)
show 2: (SOME p. p ∈ cube 1 t ∧ p 0 = s) 0 = s using assms 1 someI-ex[of

λx. x
∈ cube 1 t ∧ x 0 = s] by blast
show 3: (λs∈{..<t}. S (SOME p. p∈cube 1 t ∧ p 0 = s)) s =
(λs∈{..<t}. S (SOME p. p∈cube 1 t ∧ p 0 = s)) ((SOME p. p ∈ cube 1 t

14

∧ p 0 = s) 0) using 2 by simp
show 4: (SOME p. p ∈ cube 1 t ∧ p 0 = s) ∈ cube 1 t using 1 someI-ex[of

λp. p ∈ cube 1 t ∧ p 0 = s] assms by blast
qed

The following lemma relates 1-dimensional subspaces to lines, thus establish-
ing a bidirectional correspondence between the two together with line-is-dim1-subspace.
lemma dim1-subspace-is-line:

assumes t > 0
and is-subspace S 1 n t

shows is-line (λs∈{..<t}. S (SOME p. p∈cube 1 t ∧ p 0 = s)) n t
proof−

define L where L ≡ (λs∈{..<t}. S (SOME p. p∈cube 1 t ∧ p 0 = s))
have {..1} = {0::nat, 1} by auto
obtain B f where Bf-props: disjoint-family-on B {..1::nat} ∧

⋃
(B ‘ {..1::nat})

=
{..<n} ∧ ({} /∈ B ‘ {..<1::nat}) ∧ f ∈ (B 1) →E {..<t}
∧ S ∈ (cube 1 t) →E (cube n t) ∧ (∀ y ∈ cube 1 t.
(∀ i ∈ B 1. S y i = f i) ∧ (∀ j<1. ∀ i ∈ B j. (S y) i = y j))

using assms(2) unfolding is-subspace-def by auto
then have 1: B 0 ∪ B 1 = {..<n} ∧ B 0 ∩ B 1 = {} using dim1-subspace-elims(1,

2)[of B n f t S] by simp

have L ∈ {..<t} →E cube n t
proof

fix s assume a: s ∈ {..<t}
then have L s = S (SOME p. p∈cube 1 t ∧ p 0 = s) unfolding L-def by simp
moreover have (SOME p. p∈cube 1 t ∧ p 0 = s) ∈ cube 1 t using cube-props(1)

a
someI-ex[of λp. p ∈ cube 1 t ∧ p 0 = s] by blast

moreover have S (SOME p. p∈cube 1 t ∧ p 0 = s) ∈ cube n t
using assms(2) calculation(2) is-subspace-def by auto

ultimately show L s ∈ cube n t by simp
next

fix s assume a: s /∈ {..<t}
then show L s = undefined unfolding L-def by simp

qed
moreover have (∀ x<t. ∀ y<t. L x j = L y j) ∨ (∀ s<t. L s j = s) if j < n for j
proof−

consider j ∈ B 0 | j ∈ B 1 using ‹j < n› 1 by blast
then show (∀ x<t. ∀ y<t. L x j = L y j) ∨ (∀ s<t. L s j = s)
proof (cases)

case 1
have L s j = s if s < t for s
proof−

have ∀ y ∈ cube 1 t. (S y) j = y 0 using Bf-props 1 by simp
then show L s j = s using that cube-props(2,4) unfolding L-def by auto

qed
then show ?thesis by blast

15

next
case 2
have L x j = L y j if x < t and y < t for x y
proof−

have ∗: S y j = f j if y ∈ cube 1 t for y using 2 that Bf-props by simp
then have L y j = f j using that(2) cube-props(2,4) lessThan-iff restrict-apply

unfolding L-def by fastforce
moreover from ∗ have L x j = f j using that(1) cube-props(2,4) lessThan-iff

restrict-apply unfolding L-def
by fastforce

ultimately show L x j = L y j by simp
qed
then show ?thesis by blast

qed
qed
moreover have (∃ j<n. ∀ s<t. (L s j = s))
proof −

obtain j where j-prop: j ∈ B 0 ∧ j < n using Bf-props by blast
then have (S y) j = y 0 if y ∈ cube 1 t for y using that Bf-props by auto
then have L s j = s if s < t for s using that cube-props(2,4) unfolding L-def

by auto
then show ∃ j<n. ∀ s<t. (L s j = s) using j-prop by blast

qed
ultimately show is-line (λs∈{..<t}. S (SOME p. p∈cube 1 t ∧ p 0 = s)) n t

unfolding L-def is-line-def by auto
qed

lemma bij-unique-inv:
assumes bij-betw f A B

and x ∈ B
shows ∃ !y ∈ A. (the-inv-into A f) x = y
using assms unfolding bij-betw-def inj-on-def the-inv-into-def
by blast

lemma inv-into-cube-props:
assumes s < t
shows the-inv-into (cube 1 t) (λf . f 0) s ∈ cube 1 t

and the-inv-into (cube 1 t) (λf . f 0) s 0 = s
using assms bij-unique-inv one-dim-cube-eq-nat-set f-the-inv-into-f-bij-betw
by fastforce+

lemma some-inv-into:
assumes s < t
shows (SOME p. p∈cube 1 t ∧ p 0 = s) = (the-inv-into (cube 1 t) (λf . f 0) s)
using inv-into-cube-props[of s t] one-dim-cube-eq-nat-set[of t] assms unfolding

bij-betw-def inj-on-def by auto

lemma some-inv-into-2:
assumes s < t

16

shows (SOME p. p∈cube 1 (t+1) ∧ p 0 = s) = (the-inv-into (cube 1 t) (λf . f 0)
s)
proof−

have ∗: (SOME p. p∈cube 1 (t+1) ∧ p 0 = s) ∈ cube 1 (t+1) using cube-props
assms by simp

then have (SOME p. p∈cube 1 (t+1) ∧ p 0 = s) 0 = s using cube-props assms
by simp

moreover
{
have (SOME p. p∈cube 1 (t+1) ∧ p 0 = s) ‘ {..<1} ⊆ {..<t} using calculation

assms by force
then have (SOME p. p∈cube 1 (t+1) ∧ p 0 = s) ∈ cube 1 t using ∗ unfolding

cube-def by auto
}
moreover have inj-on (λf . f 0) (cube 1 t) using one-dim-cube-eq-nat-set[of t]

unfolding bij-betw-def inj-on-def by auto
ultimately show (SOME p. p∈cube 1 (t+1) ∧ p 0 = s) = (the-inv-into (cube 1

t) (λf . f 0) s)
using the-inv-into-f-eq [of λf . f 0 cube 1 t (SOME p. p∈cube 1 (t+1) ∧ p 0 =

s) s] by auto
qed

lemma dim1-layered-subspace-as-line:
assumes t > 0

and layered-subspace S 1 n t r χ
shows ∃ c1 c2. c1<r ∧ c2<r ∧ (∀ s<t. χ (S (SOME p. p∈cube 1
(t+1) ∧ p 0 = s)) = c1) ∧ χ (S (SOME p. p∈cube 1 (t+1) ∧ p 0 = t)) = c2

proof −
have x u < t if x ∈ classes 1 t 0 and u < 1 for x u
proof −

have x ∈ cube 1 (t+1) using that unfolding classes-def by blast
then have x u ∈ {..<t+1} using that unfolding cube-def by blast
then have x u ∈ {..<t} using that

using that less-Suc-eq unfolding classes-def by auto
then show x u < t by simp

qed
then have classes 1 t 0 ⊆ cube 1 t unfolding cube-def classes-def by auto
moreover have cube 1 t ⊆ classes 1 t 0 using cube-subset[of 1 t] unfolding

cube-def classes-def by auto
ultimately have X : classes 1 t 0 = cube 1 t by blast

obtain c1 where c1-prop: c1 < r ∧ (∀ x∈classes 1 t 0. χ (S x) = c1) using
assms(2)

unfolding layered-subspace-def by blast
then have (χ (S x) = c1) if x ∈ cube 1 t for x using X that by blast
then have χ (S (the-inv-into (cube 1 t) (λf . f 0) s)) = c1 if s < t for s
using one-dim-cube-eq-nat-set[of t] by (meson that bij-betwE bij-betw-the-inv-into

lessThan-iff)
then have K1: χ (S (SOME p. p∈cube 1 (t+1) ∧ p 0 = s)) = c1 if s < t for s

17

using that some-inv-into-2 by simp

have ∗: ∃ c<r . ∀ x ∈ classes 1 t 1. χ (S x) = c
using assms(2) unfolding layered-subspace-def by blast

have x 0 = t if x ∈ classes 1 t 1 for x using that unfolding classes-def by
simp

moreover have ∃ !x ∈ cube 1 (t+1). x 0 = t using one-dim-cube-eq-nat-set[of
t+1]

unfolding bij-betw-def inj-on-def using inv-into-cube-props(1) inv-into-cube-props(2)
by force

moreover have ∗∗: ∃ !x. x ∈ classes 1 t 1 unfolding classes-def using calcu-
lation(2) by simp

ultimately have the-inv-into (cube 1 (t+1)) (λf . f 0) t ∈ classes 1 t 1
using inv-into-cube-props[of t t+1] unfolding classes-def by simp

then have ∃ c2. c2 < r ∧ χ (S (the-inv-into (cube 1 (t+1)) (λf . f 0) t)) = c2
using ∗ ∗∗ by blast

then have K2: ∃ c2. c2 < r ∧ χ (S (SOME p. p∈cube 1 (t+1) ∧ p 0 = t)) = c2
using some-inv-into by simp

from K1 K2 show ?thesis
using c1-prop by blast

qed

lemma dim1-layered-subspace-mono-line:
assumes t > 0

and layered-subspace S 1 n t r χ
shows ∀ s<t. ∀ l<t. χ (S (SOME p. p∈cube 1 (t+1) ∧ p 0 = s)) =
χ (S (SOME p. p∈cube 1 (t+1) ∧ p 0 = l)) ∧ χ (S (SOME p. p∈cube 1
(t+1) ∧ p 0 = s)) < r
using dim1-layered-subspace-as-line[of t S n r χ] assms by auto

definition join :: (nat ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ nat
⇒ nat ⇒ (nat ⇒ ′a)

where
join f g n m ≡ (λx. if x ∈ {..<n} then f x else (if x ∈ {n..<n+m} then g
(x − n) else undefined))

lemma join-cubes:
assumes f ∈ cube n (t+1)

and g ∈ cube m (t+1)
shows join f g n m ∈ cube (n+m) (t+1)

proof (unfold cube-def ; intro PiE-I)
fix i
assume i ∈ {..<n+m}
then consider i < n | i ≥ n ∧ i < n+m by fastforce
then show join f g n m i ∈ {..<t + 1}
proof (cases)

18

case 1
then have join f g n m i = f i unfolding join-def by simp
moreover have f i ∈ {..<t+1} using assms(1) 1 unfolding cube-def by blast
ultimately show ?thesis by simp

next
case 2
then have join f g n m i = g (i − n) unfolding join-def by simp
moreover have i − n ∈ {..<m} using 2 by auto

moreover have g (i − n) ∈ {..<t+1} using calculation(2) assms(2) unfolding
cube-def by blast

ultimately show ?thesis by simp
qed

next
fix i
assume i /∈ {..<n+m}
then show join f g n m i = undefined unfolding join-def by simp

qed

lemma subspace-elems-embed:
assumes is-subspace S k n t
shows S ‘ (cube k t) ⊆ cube n t
using assms unfolding cube-def is-subspace-def by blast

2 Core proofs

The numbering of the theorems has been borrowed from the textbook [1].

2.1 Theorem 4
2.1.1 Base case of Theorem 4
lemma hj-imp-lhj-base:

fixes r t
assumes t > 0

and
∧

r ′. hj r ′ t
shows lhj r t 1

proof−
from assms(2) obtain N where N-def : N > 0 ∧ (∀N ′ ≥ N . ∀χ. χ
∈ (cube N ′ t) →E {..<r ::nat} −→ (∃L. ∃ c<r .
is-line L N ′ t ∧ (∀ y ∈ L ‘ {..<t}. χ y = c))) unfolding hj-def by blast

have (∃S . is-subspace S 1 N ′ (t + 1) ∧ (∀ i ∈ {..1}. ∃ c < r .
(∀ x ∈ classes 1 t i. χ (S x) = c))) if asm: N ′ ≥ N χ ∈ (cube N ′

(t + 1)) →E {..<r ::nat} for N ′ χ
proof−

have N ′-props: N ′ > 0 ∧ (∀χ. χ ∈ (cube N ′ t) →E

{..<r ::nat} −→ (∃L. ∃ c<r . is-line L N ′ t ∧ (∀ y ∈
L ‘ {..<t}. χ y = c))) using asm N-def by simp

19

let ?chi-t = λx ∈ cube N ′ t. χ x
have ?chi-t ∈ cube N ′ t →E {..<r ::nat} using cube-subset asm by auto
then obtain L where L-def : is-line L N ′ t ∧ (∃ c<r . (∀ y ∈ L ‘ {..<t}. ?chi-t

y = c))
using N ′-props by blast

have is-subspace (restrict (λy. L (y 0)) (cube 1 t)) 1 N ′ t using line-is-dim1-subspace
N ′-props L-def

using assms(1) by auto
then obtain B f where Bf-defs: disjoint-family-on B {..1} ∧

⋃
(B ‘ {..1}) =

{..<N ′}
∧ ({} /∈ B ‘ {..<1}) ∧ f ∈ (B 1) →E {..<t} ∧
(restrict (λy. L (y 0)) (cube 1 t)) ∈ (cube 1 t) →E (cube N ′ t)
∧ (∀ y ∈ cube 1 t. (∀ i ∈ B 1. (restrict (λy. L (y 0)) (cube
1 t)) y i = f i) ∧ (∀ j<1. ∀ i ∈ B j. ((restrict (λy. L (y 0))
(cube 1 t)) y) i = y j)) unfolding is-subspace-def by auto

have {..1::nat} = {0, 1} by auto
then have B-props: B 0 ∪ B 1 = {..<N ′} ∧ (B 0 ∩ B 1 = {})

using Bf-defs unfolding disjoint-family-on-def by auto
define L ′ where L ′ ≡ L(t:=(λj. if j ∈ B 1 then L (t − 1) j else (if j ∈
B 0 then t else undefined)))

S1 is the corresponding 1-dimensional subspace of L ′.
define S1 where S1 ≡ restrict (λy. L ′ (y (0::nat))) (cube 1 (t+1))
have line-prop: is-line L ′ N ′ (t + 1)
proof−

have A1: L ′ ∈ {..<t+1} →E cube N ′ (t + 1)
proof

fix x
assume asm: x ∈ {..<t + 1}
then show L ′ x ∈ cube N ′ (t + 1)
proof (cases x < t)

case True
then have L ′ x = L x by (simp add: L ′-def)
then have L ′ x ∈ cube N ′ t using L-def True unfolding is-line-def by

auto
then show L ′ x ∈ cube N ′ (t + 1) using cube-subset by blast

next
case False
then have x = t using asm by simp
show L ′ x ∈ cube N ′ (t + 1)
proof(unfold cube-def , intro PiE-I)

fix j
assume j ∈ {..<N ′}
have j ∈ B 1 ∨ j ∈ B 0 ∨ j /∈ (B 0 ∪ B 1) by blast
then show L ′ x j ∈ {..<t + 1}
proof (elim disjE)

assume j ∈ B 1

20

then have L ′ x j = L (t − 1) j
by (simp add: ‹x = t› L ′-def)

have L (t − 1) ∈ cube N ′ t using line-points-in-cube L-def
by (meson assms(1) diff-less less-numeral-extra(1))

then have L (t − 1) j < t using ‹j ∈ {..<N ′}› unfolding cube-def
by auto

then show L ′ x j ∈ {..<t + 1} using ‹L ′ x j = L (t − 1) j› by simp
next

assume j ∈ B 0
then have j /∈ B 1 using Bf-defs unfolding disjoint-family-on-def by

auto
then have L ′ x j = t by (simp add: ‹j ∈ B 0› ‹x = t› L ′-def)
then show L ′ x j ∈ {..<t + 1} by simp

next
assume a: j /∈ (B 0 ∪ B 1)
have {..1::nat} = {0, 1} by auto
then have B 0 ∪ B 1 = (

⋃
(B ‘ {..1::nat})) by simp

then have B 0 ∪ B 1 = {..<N ′} using Bf-defs unfolding partition-on-def
by simp

then have ¬(j ∈ {..<N ′}) using a by simp
then have False using ‹j ∈ {..<N ′}› by simp
then show ?thesis by simp

qed
next

fix j
assume j /∈ {..<N ′}

then have j /∈ (B 0) ∧ j /∈ B 1 using Bf-defs unfolding partition-on-def
by auto

then show L ′ x j = undefined using ‹x = t› by (simp add: L ′-def)
qed

qed
next

fix x
assume asm: x /∈ {..<t+1}
then have x /∈ {..<t} ∧ x 6= t by simp
then show L ′ x = undefined using L-def unfolding L ′-def is-line-def by

auto
qed
have A2: (∃ j<N ′. (∀ s < (t + 1). L ′ s j = s))
proof (cases t = 1)

case True
obtain j where j-prop: j ∈ B 0 ∧ j < N ′ using Bf-defs by blast
then have L ′ s j = L s j if s < t for s using that by (auto simp: L ′-def)
moreover have L s j = 0 if s < t for s using that True L-def j-prop

line-points-in-cube-unfolded[of L N ′ t]
by simp

moreover have L ′ s j = s if s < t for s using True calculation that by
simp

moreover have L ′ t j = t using j-prop B-props by (auto simp: L ′-def)

21

ultimately show ?thesis unfolding L ′-def using j-prop by auto
next

case False
then show ?thesis
proof−
have (∃ j<N ′. (∀ s < t. L ′ s j = s)) using L-def unfolding is-line-def by

(auto simp: L ′-def)
then obtain j where j-def : j < N ′ ∧ (∀ s < t. L ′ s j = s) by blast
have j /∈ B 1
proof

assume a:j ∈ B 1
then have (restrict (λy. L (y 0)) (cube 1 t)) y j = f j if y ∈ cube 1 t

for y
using Bf-defs that by simp

then have L (y 0) j = f j if y ∈ cube 1 t for y using that by simp
moreover have ∃ !i. i < t ∧ y 0 = i if y ∈ cube 1 t for y
using that one-dim-cube-eq-nat-set[of t] unfolding bij-betw-def by blast
moreover have ∃ !y. y ∈ cube 1 t ∧ y 0 = i if i < t for i
proof (intro ex1I-alt)

define y where y ≡ (λx::nat. λy∈{..<1::nat}. x)
have y i ∈ (cube 1 t) using that unfolding cube-def y-def by simp
moreover have y i 0 = i unfolding y-def by simp
moreover have z = y i if z ∈ cube 1 t and z 0 = i for z
proof (rule ccontr)

assume z 6= y i
then obtain l where l-prop: z l 6= y i l by blast
consider l ∈ {..<1::nat} | l /∈ {..<1::nat} by blast
then show False
proof cases

case 1
then show ?thesis using l-prop that(2) unfolding y-def by auto

next
case 2

then have z l = undefined using that unfolding cube-def by blast
moreover have y i l = undefined unfolding y-def using 2 by auto

ultimately show ?thesis using l-prop by presburger
qed

qed
ultimately show ∃ y. (y ∈ cube 1 t ∧ y 0 = i) ∧ (∀ ya. ya
∈ cube 1 t ∧ ya 0 = i −→ y = ya) by blast

qed

moreover have L i j = f j if i < t for i using that calculation by blast
moreover have (∃ j<N ′. (∀ s < t. L s j = s)) using

‹(∃ j<N ′. (∀ s < t. L ′ s j = s))› by (auto simp: L ′-def)
ultimately show False using False
by (metis (no-types, lifting) L ′-def assms(1) fun-upd-apply j-def less-one

nat-neq-iff)
qed

22

then have j ∈ B 0 using ‹j /∈ B 1› j-def B-props by auto

then have L ′ t j = t using ‹j /∈ B 1› by (auto simp: L ′-def)
then have L ′ s j = s if s < t + 1 for s using j-def that by (auto simp:

L ′-def)
then show ?thesis using j-def by blast

qed
qed
have A3: (∀ x<t+1. ∀ y<t+1. L ′ x j = L ′ y j) ∨ (∀ s<t+1. L ′ s j = s) if j

< N ′ for j
proof−

consider j ∈ B 1 | j ∈ B 0 using ‹j < N ′› B-props by auto
then show (∀ x<t+1. ∀ y<t+1. L ′ x j = L ′ y j) ∨ (∀ s<t+1. L ′ s j = s)
proof (cases)

case 1
then have (restrict (λy. L (y 0)) (cube 1 t)) y j = f j if y ∈ cube 1 t for y

using that Bf-defs by simp
moreover have ∃ !i. i < t ∧ y 0 = i if y ∈ cube 1 t for y

using that one-dim-cube-eq-nat-set[of t] unfolding bij-betw-def by blast
moreover have ∃ !y. y ∈ cube 1 t ∧ y 0 = i if i < t for i
proof (intro ex1I-alt)

define y where y ≡ (λx::nat. λy∈{..<1::nat}. x)
have y i ∈ (cube 1 t) using that unfolding cube-def y-def by simp
moreover have y i 0 = i unfolding y-def by auto
moreover have z = y i if z ∈ cube 1 t and z 0 = i for z
proof (rule ccontr)

assume z 6= y i
then obtain l where l-prop: z l 6= y i l by blast
consider l ∈ {..<1::nat} | l /∈ {..<1::nat} by blast
then show False
proof cases

case 1
then show ?thesis using l-prop that(2) unfolding y-def by auto

next
case 2
then have z l = undefined using that unfolding cube-def by blast
moreover have y i l = undefined unfolding y-def using 2 by auto
ultimately show ?thesis using l-prop by presburger

qed
qed
ultimately show ∃ y. (y ∈ cube 1 t ∧ y 0 = i) ∧ (∀ ya. ya
∈ cube 1 t ∧ ya 0 = i −→ y = ya) by blast

qed
moreover have L i j = f j if i < t for i using calculation that by force

moreover have L i j = L x j if x < t i < t for x i using that calculation
by simp

moreover have L ′ x j = L x j if x < t for x using that fun-upd-other [of
x t L

23

λj. if j ∈ B 1 then L (t − 1) j else if j ∈ B 0 then t else undefined]
unfolding L ′-def by simp

ultimately have ∗: L ′ x j = L ′ y j if x < t y < t for x y using that by
presburger

have L ′ t j = L ′ (t − 1) j using ‹j ∈ B 1› by (auto simp: L ′-def)
also have ... = L ′ x j if x < t for x using ∗ by (simp add: assms(1) that)
finally have ∗∗: L ′ t j = L ′ x j if x < t for x using that by auto
have L ′ x j = L ′ y j if x < t + 1 y < t + 1 for x y
proof−
consider x < t ∧ y = t | y < t ∧ x = t | x = t ∧ y = t | x < t ∧ y < t

using ‹x < t + 1› ‹y < t + 1› by linarith
then show L ′ x j = L ′ y j
proof cases

case 1
then show ?thesis using ∗∗ by auto

next
case 2
then show ?thesis using ∗∗ by auto

next
case 3
then show ?thesis by simp

next
case 4
then show ?thesis using ∗ by auto

qed
qed
then show ?thesis by blast

next
case 2
then have ∀ y ∈ cube 1 t. ((restrict (λy. L (y 0)) (cube 1 t)) y) j = y 0

using ‹j ∈ B 0› Bf-defs by auto
then have ∀ y ∈ cube 1 t. L (y 0) j = y 0 by auto
moreover have ∃ !y. y ∈ cube 1 t ∧ y 0 = i if i < t for i
proof (intro ex1I-alt)

define y where y ≡ (λx::nat. λy∈{..<1::nat}. x)
have y i ∈ (cube 1 t) using that unfolding cube-def y-def by simp
moreover have y i 0 = i unfolding y-def by auto
moreover have z = y i if z ∈ cube 1 t and z 0 = i for z
proof (rule ccontr)

assume z 6= y i
then obtain l where l-prop: z l 6= y i l by blast
consider l ∈ {..<1::nat} | l /∈ {..<1::nat} by blast
then show False
proof cases

case 1
then show ?thesis using l-prop that(2) unfolding y-def by auto

next
case 2

24

then have z l = undefined using that unfolding cube-def by blast
moreover have y i l = undefined unfolding y-def using 2 by auto
ultimately show ?thesis using l-prop by presburger

qed
qed
ultimately show ∃ y. (y ∈ cube 1 t ∧ y 0 = i) ∧ (∀ ya. ya
∈ cube 1 t ∧ ya 0 = i −→ y = ya) by blast

qed
ultimately have L s j = s if s < t for s using that by blast
then have L ′ s j = s if s < t for s using that by (auto simp: L ′-def)
moreover have L ′ t j = t using 2 B-props by (auto simp: L ′-def)
ultimately have L ′ s j = s if s < t+1 for s using that by (auto simp:

L ′-def)
then show ?thesis by blast

qed
qed
from A1 A2 A3 show ?thesis unfolding is-line-def by simp

qed
then have F1: is-subspace S1 1 N ′ (t + 1) unfolding S1-def

using line-is-dim1-subspace[of N ′ t+1] N ′-props assms(1) by force
moreover have F2: ∃ c < r . (∀ x ∈ classes 1 t i. χ (S1 x) = c) if i ≤ 1 for i
proof−

have ∃ c < r . (∀ y ∈ L ′ ‘ {..<t}. ?chi-t y = c) unfolding L ′-def using L-def
by fastforce

have ∀ x ∈ (L ‘ {..<t}). x ∈ cube N ′ t using L-def
using line-points-in-cube by blast

then have ∀ x ∈ (L ′ ‘ {..<t}). x ∈ cube N ′ t by (auto simp: L ′-def)
then have ∗:∀ x ∈ (L ′ ‘ {..<t}). χ x = ?chi-t x by simp
then have ?chi-t ‘ (L ′ ‘ {..<t}) = χ ‘ (L ′ ‘ {..<t}) by force
then have ∃ c < r . (∀ y ∈ L ′ ‘ {..<t}. χ y = c) using

‹∃ c < r . (∀ y ∈ L ′ ‘ {..<t}. ?chi-t y = c)› by fastforce
then obtain linecol where lc-def : linecol < r ∧ (∀ y ∈ L ′ ‘ {..<t}. χ y =

linecol) by blast
consider i = 0 | i = 1 using ‹i ≤ 1› by linarith
then show ∃ c < r . (∀ x ∈ classes 1 t i. χ (S1 x) = c)
proof (cases)

case 1
assume i = 0
have ∗: ∀ a t. a ∈ {..<t+1} ∧ a 6= t ←→ a ∈ {..<(t::nat)} by auto
from ‹i = 0› have classes 1 t 0 = {x . x ∈ (cube 1 (t + 1)) ∧
(∀ u ∈ {((1::nat) − 0)..<1}. x u = t) ∧ t /∈ x ‘ {..<(1 − (0::nat))}}

using classes-def by simp
also have ... = {x . x ∈ cube 1 (t+1) ∧ t /∈ x ‘ {..<(1::nat)}} by simp
also have ... = {x . x ∈ cube 1 (t+1) ∧ (x 0 6= t)} by blast
also have ... = {x . x ∈ cube 1 (t+1) ∧ (x 0 ∈ {..<t+1} ∧ x 0 6= t)}

unfolding cube-def by blast
also have ... = {x . x ∈ cube 1 (t+1) ∧ (x 0 ∈ {..<t})} using ∗ by simp
finally have redef : classes 1 t 0 = {x . x ∈ cube 1 (t+1) ∧ (x 0 ∈ {..<t})}

25

by simp
have {x 0 | x . x ∈ classes 1 t 0} ⊆ {..<t} using redef by auto
moreover have {..<t} ⊆ {x 0 | x . x ∈ classes 1 t 0}
proof

fix x assume x: x ∈ {..<t}
hence ∃ a∈cube 1 t. a 0 = x

unfolding cube-def by (intro fun-ex) auto
then show x ∈ {x 0 |x. x ∈ classes 1 t 0}

using x cube-subset unfolding redef by auto
qed
ultimately have ∗∗: {x 0 | x . x ∈ classes 1 t 0} = {..<t} by blast

have χ (S1 x) = linecol if x ∈ classes 1 t 0 for x
proof−

have x ∈ cube 1 (t+1) unfolding classes-def using that redef by blast
then have S1 x = L ′ (x 0) unfolding S1-def by simp
moreover have x 0 ∈ {..<t} using ∗∗ using ‹x ∈ classes 1 t 0› by blast

ultimately show χ (S1 x) = linecol using lc-def using fun-upd-triv
image-eqI by blast

qed
then show ?thesis using lc-def ‹i = 0› by auto

next
case 2
assume i = 1
have classes 1 t 1 = {x . x ∈ (cube 1 (t + 1)) ∧ (∀ u ∈ {0::nat..<1}. x
u = t) ∧ t /∈ x ‘ {..<0}} unfolding classes-def by simp
also have ... = {x . x ∈ cube 1 (t+1) ∧ (∀ u ∈ {0}. x u = t)} by simp
finally have redef : classes 1 t 1 = {x . x ∈ cube 1 (t+1) ∧ (x 0 = t)} by

auto
have ∀ s ∈ {..<t+1}. ∃ !x ∈ cube 1 (t+1). (λp.
λy∈{..<1::nat}. p) s = x using nat-set-eq-one-dim-cube[of t+1]

unfolding bij-betw-def by blast
then have ∃ !x ∈cube 1 (t+1). (λp. λy∈{..<1::nat}. p) t = x by auto
then obtain x where x-prop: x ∈ cube 1 (t+1) and (λp.
λy∈{..<1::nat}. p) t = x and ∀ z ∈ cube 1 (t+1). (λp.
λy∈{..<1::nat}. p) t = z −→ z = x by blast
then have (λp. λy∈{0}. p) t = x ∧ (∀ z ∈ cube 1
(t+1). (λp. λy∈{0}. p) t = z −→ z = x) by force
then have ∗:((λp. λy∈{0}. p) t) 0 = x 0 ∧ (∀ z ∈ cube
1 (t+1). (λp. λy∈{0}. p) t = z −→ z = x)

using x-prop by force

then have ∃ !y ∈ cube 1 (t + 1). y 0 = t
proof (intro ex1I-alt)

define y where y ≡ (λx::nat. λy∈{..<1::nat}. x)
have y t ∈ (cube 1 (t + 1)) unfolding cube-def y-def by simp
moreover have y t 0 = t unfolding y-def by auto
moreover have z = y t if z ∈ cube 1 (t + 1) and z 0 = t for z
proof (rule ccontr)

26

assume z 6= y t
then obtain l where l-prop: z l 6= y t l by blast
consider l ∈ {..<1::nat} | l /∈ {..<1::nat} by blast
then show False
proof cases

case 1
then show ?thesis using l-prop that(2) unfolding y-def by auto

next
case 2
then have z l = undefined using that unfolding cube-def by blast
moreover have y t l = undefined unfolding y-def using 2 by auto
ultimately show ?thesis using l-prop by presburger

qed
qed
ultimately show ∃ y. (y ∈ cube 1 (t + 1) ∧ y 0 = t) ∧ (∀ ya.
ya ∈ cube 1 (t + 1) ∧ ya 0 = t −→ y = ya) by blast

qed
then have ∃ !x ∈ classes 1 t 1. True using redef by simp
then obtain x where x-def : x ∈ classes 1 t 1 ∧ (∀ y ∈ classes 1 t 1. x =

y) by auto

have χ (S1 y) < r if y ∈ classes 1 t 1 for y
proof−

have y = x using x-def that by auto
then have χ (S1 y) = χ (S1 x) by auto
moreover have S1 x ∈ cube N ′ (t+1) unfolding S1-def is-line-def

using line-prop line-points-in-cube redef x-def by fastforce
ultimately show χ (S1 y) < r using asm unfolding cube-def by auto

qed
then show ?thesis using lc-def ‹i = 1› using x-def by fast

qed
qed
ultimately show (∃S . is-subspace S 1 N ′ (t + 1) ∧ (∀ i ∈ {..1}.
∃ c < r . (∀ x ∈ classes 1 t i. χ (S x) = c))) by blast

qed
then show ?thesis using N-def unfolding layered-subspace-def lhj-def by auto

qed

2.1.2 Induction step of theorem 4

The proof has four parts:

1. We obtain two layered subspaces of dimension 1 and k (respectively),
whose existence is guaranteed by the assumption lhj (i.e. the induction
hypothesis). Additionally, we prove some useful facts about these.

2. We construct a k+1-dimensional subspace with the goal of showing
that it is layered.

3. We prove that our construction is a subspace in the first place.

27

4. We prove that it is a layered subspace.

lemma hj-imp-lhj-step:
fixes r k
assumes t > 0

and k ≥ 1
and True
and (

∧
r k ′. k ′ ≤ k =⇒ lhj r t k ′)

and r > 0
shows lhj r t (k+1)

proof−
obtain m where m-props: (m > 0 ∧ (∀M ′ ≥ m. ∀χ. χ ∈ (cube
M ′ (t + 1)) →E {..<r ::nat} −→ (∃S . layered-subspace S k
M ′ t r χ))) using assms(4)[of k r] unfolding lhj-def by blast
define s where s ≡ r^((t + 1)^m)
obtain n ′ where n ′-props: (n ′ > 0 ∧ (∀N ≥ n ′. ∀χ. χ ∈
(cube N (t + 1)) →E {..<s::nat} −→ (∃S . layered-subspace
S 1 N t s χ))) using assms(2) assms(4)[of 1 s] unfolding lhj-def by auto

have (∃T . layered-subspace T (k + 1) (M ′) t r χ) if χ-prop: χ ∈ cube
M ′ (t + 1) →E {..<r} and M ′-prop: M ′ ≥ n ′ + m for χ M ′

proof −
define d where d ≡ M ′ − (n ′ + m)
define n where n ≡ n ′ + d
have n ≥ n ′ unfolding n-def d-def by simp
have n + m = M ′ unfolding n-def d-def using M ′-prop by simp
have line-subspace-s: ∃S . layered-subspace S 1 n t s χ ∧ is-line
(λs∈{..<t+1}. S (SOME p. p∈cube 1 (t+1) ∧ p 0 = s)) n (t+1) if χ
∈ (cube n (t + 1)) →E {..<s::nat} for χ
proof−

have ∃S . layered-subspace S 1 n t s χ using that n ′-props ‹n ≥ n ′› by blast
then obtain L where layered-subspace L 1 n t s χ by blast
then have is-subspace L 1 n (t+1) unfolding layered-subspace-def by simp
then have is-line (λs∈{..<t+1}. L (SOME p. p∈cube 1 (t+1) ∧ p 0 = s)) n

(t + 1)
using dim1-subspace-is-line[of t+1 L n] assms(1) by simp

then show ∃S . layered-subspace S 1 n t s χ ∧ is-line (λs∈{..<t
+ 1}. S (SOME p. p ∈ cube 1 (t+1) ∧ p 0 = s)) n (t + 1) using

‹layered-subspace L 1 n t s χ› by auto
qed

Part 1: Obtaining the subspaces L and S
Recall that lhj claims the existence of a layered subspace for any colour-

ing (of a fixed size, where the size of a colouring refers to the number of
colours). Therefore, the colourings have to be defined first, before the lay-
ered subspaces can be obtained. The colouring χL here is χ∗ in the book [1],
an s-colouring; see the fact s-coloured a couple of lines below.

define χL where χL ≡ (λx ∈ cube n (t+1). (λy ∈ cube m

28

(t + 1). χ (join x y n m)))
have A: ∀ x ∈ cube n (t+1). ∀ y ∈ cube m (t+1). χ (join x y n m) ∈ {..<r}
proof(safe)

fix x y
assume x ∈ cube n (t+1) y ∈ cube m (t+1)
then have join x y n m ∈ cube (n+m) (t+1) using join-cubes[of x n t y m]

by simp
then show χ (join x y n m) < r using χ-prop ‹n + m = M ′› by blast

qed
have χL-prop: χL ∈ cube n (t+1) →E cube m (t+1) →E {..<r}

using A by (auto simp: χL-def)

have card (cube m (t+1) →E {..<r}) = (card {..<r}) ^ (card (cube m (t+1)))

using card-PiE [of cube m (t + 1) λ-. {..<r}] by (simp add: cube-def finite-PiE)
also have ... = r ^ (card (cube m (t+1))) by simp
also have ... = r ^ ((t+1)^m) using cube-card unfolding cube-def by simp
finally have card (cube m (t+1) →E {..<r}) = r ^ ((t+1)^m) .
then have s-coloured: card (cube m (t+1) →E {..<r}) = s unfolding s-def

by simp
have s > 0 using assms(5) unfolding s-def by simp
then obtain ϕ where ϕ-prop: bij-betw ϕ (cube m (t+1) →E {..<r}) {..<s}
using assms(5) ex-bij-betw-nat-finite-2[of cube m (t+1)→E {..<r} s] s-coloured

by blast
define χL-s where χL-s ≡ (λx∈cube n (t+1). ϕ (χL x))
have χL-s ∈ cube n (t+1) →E {..<s}
proof

fix x assume a: x ∈ cube n (t+1)
then have χL-s x = ϕ (χL x) unfolding χL-s-def by simp
moreover have χL x ∈ (cube m (t+1) →E {..<r})

using a χL-def χL-prop unfolding χL-def by blast
moreover have ϕ (χL x) ∈ {..<s} using ϕ-prop calculation(2) unfolding

bij-betw-def by blast
ultimately show χL-s x ∈ {..<s} by auto

qed (auto simp: χL-s-def)

L is the layered line which we obtain from the monochromatic line guaran-
teed to exist by the assumption hj s t.

then obtain L where L-prop: layered-subspace L 1 n t s χL-s using line-subspace-s
by blast

define L-line where L-line ≡ (λs∈{..<t+1}. L (SOME p. p∈cube 1 (t+1) ∧ p
0 = s))

have L-line-base-prop: ∀ s ∈ {..<t+1}. L-line s ∈ cube n (t+1)
using assms(1) dim1-subspace-is-line[of t+1 L n] L-prop line-points-in-cube[of

L-line n t+1]
unfolding layered-subspace-def L-line-def by auto

Here, χS is χ∗∗ in the book [1], an r-colouring.
define χS where χS ≡ (λy∈cube m (t+1). χ (join (L-line 0) y n m))

29

have χS ∈ (cube m (t + 1)) →E {..<r ::nat}
proof
fix x assume a: x ∈ cube m (t+1)
then have χS x = χ (join (L-line 0) x n m) unfolding χS-def by simp
moreover have L-line 0 = L (SOME p. p∈cube 1 (t+1) ∧ p 0 = 0)

using L-prop assms(1) unfolding L-line-def by simp
moreover have (SOME p. p∈cube 1 (t+1) ∧ p 0 = 0) ∈ cube 1 (t+1) using

cube-props(4)[of 0 t+1]
using assms(1) by auto

moreover have L ∈ cube 1 (t+1) →E cube n (t+1)
using L-prop unfolding layered-subspace-def is-subspace-def by blast

moreover have L (SOME p. p∈cube 1 (t+1) ∧ p 0 = 0) ∈ cube n (t+1)
using calculation (3,4) unfolding cube-def by auto

moreover have join (L-line 0) x n m ∈ cube (n + m) (t+1) using join-cubes
a calculation(2, 5) by auto

ultimately show χS x ∈ {..<r} using A a by fastforce
qed (auto simp: χS-def)

S is the k-dimensional layered subspace that arises as a consequence of the
induction hypothesis. Note that the colouring is χS, an r-colouring.

then obtain S where S-prop: layered-subspace S k m t r χS using assms(4)
m-props by blast

Remark: L-Line i returns the i-th point of the line.

Part 2: Constructing the (k + 1)-dimensional subspace T
Below, Tset is the set as defined in the book [1]. It represents the (k+1)-

dimensional subspace. In this construction, subspaces (e.g. T) are functions
whose image is a set. See the fact im-T-eq-Tset below.

Having obtained our subspaces S and L, we define the (k + 1)-dimensional
subspace very straightforwardly Namely, T = L ×S. Since we represent
tuples by function sets, we need an appropriate operator that mirrors the
Cartesian product × for these. We call this join and define it for elements
of a function set.

define Tset where Tset ≡ {join (L-line i) s n m | i s . i ∈ {..<t+1} ∧ s ∈ S
‘ (cube k (t+1))}

define T ′ where T ′ ≡ (λx ∈ cube 1 (t+1). λy ∈ cube k (t+1). join
(L-line (x 0)) (S y) n m)
have T ′-prop: T ′ ∈ cube 1 (t+1) →E cube k (t+1) →E cube (n + m) (t+1)
proof

fix x assume a: x ∈ cube 1 (t+1)
show T ′ x ∈ cube k (t + 1) →E cube (n + m) (t + 1)
proof

fix y assume b: y ∈ cube k (t+1)
then have T ′ x y = join (L-line (x 0)) (S y) n m using a unfolding T ′-def

by simp

30

moreover have L-line (x 0) ∈ cube n (t+1) using a L-line-base-prop
unfolding cube-def by blast

moreover have S y ∈ cube m (t+1)
using subspace-elems-embed[of S k m t+1] S-prop b unfolding lay-

ered-subspace-def by blast
ultimately show T ′ x y ∈ cube (n + m) (t + 1) using join-cubes by

presburger
next
qed (unfold T ′-def ; use a in simp)

qed (auto simp: T ′-def)

define T where T ≡ (λx ∈ cube (k + 1) (t+1). T ′ (λy ∈ {..<1}. x
y) (λy ∈ {..<k}. x (y + 1)))
have T-prop: T ∈ cube (k+1) (t+1) →E cube (n+m) (t+1)
proof

fix x assume a: x ∈ cube (k+1) (t+1)
then have T x = T ′ (λy ∈ {..<1}. x y) (λy ∈ {..<k}. x (y + 1)) unfolding

T-def by auto
moreover have (λy ∈ {..<1}. x y) ∈ cube 1 (t+1) using a unfolding

cube-def by auto
moreover have (λy ∈ {..<k}. x (y + 1)) ∈ cube k (t+1) using a unfolding

cube-def by auto
moreover have T ′ (λy ∈ {..<1}. x y) (λy ∈ {..<k}. x (y + 1)) ∈ cube (n +

m) (t+1)
using T ′-prop calculation unfolding T ′-def by blast

ultimately show T x ∈ cube (n + m) (t+1) by argo
qed (auto simp: T-def)

have im-T-eq-Tset: T ‘ cube (k+1) (t+1) = Tset
proof

show T ‘ cube (k + 1) (t + 1) ⊆ Tset
proof

fix x assume x ∈ T ‘ cube (k+1) (t+1)
then obtain y where y-prop: y ∈ cube (k+1) (t+1) ∧ x = T y by blast
then have T y = T ′ (λi ∈ {..<1}. y i) (λi ∈ {..<k}. y (i + 1)) unfolding

T-def by simp
moreover have (λi ∈ {..<1}. y i) ∈ cube 1 (t+1) using y-prop unfolding

cube-def by auto
moreover have (λi ∈ {..<k}. y (i + 1)) ∈ cube k (t+1) using y-prop

unfolding cube-def by auto
moreover have T ′ (λi ∈ {..<1}. y i) (λi ∈ {..<k}. y (i + 1)) =
join (L-line ((λi ∈ {..<1}. y i) 0)) (S (λi ∈ {..<k}. y (i + 1))) n m

using calculation unfolding T ′-def by auto
ultimately have ∗: T y = join (L-line ((λi ∈ {..<1}. y i) 0))

(S (λi ∈ {..<k}. y (i + 1))) n m by simp

have (λi ∈ {..<1}. y i) 0 ∈ {..<t+1} using y-prop unfolding cube-def by
auto

moreover have S (λi ∈ {..<k}. y (i + 1)) ∈ S ‘ (cube k (t+1))

31

using ‹(λi∈{..<k}. y (i + 1)) ∈ cube k (t + 1)› by blast
ultimately have T y ∈ Tset using ∗ unfolding Tset-def by blast
then show x ∈ Tset using y-prop by simp

qed

show Tset ⊆ T ‘ cube (k + 1) (t + 1)
proof

fix x assume x ∈ Tset
then obtain i sx sxinv where isx-prop: x = join (L-line i) sx n m ∧ i ∈

{..<t+1}
∧ sx ∈ S ‘ (cube k (t+1)) ∧ sxinv ∈ cube k (t+1) ∧ S sxinv = sx

unfolding Tset-def by blast
let ?f1 = (λj ∈ {..<1::nat}. i)
let ?f2 = sxinv
have ?f1 ∈ cube 1 (t+1) using isx-prop unfolding cube-def by simp
moreover have ?f2 ∈ cube k (t+1) using isx-prop by blast

moreover have x = join (L-line (?f1 0)) (S ?f2) n m by (simp add:
isx-prop)

ultimately have ∗: x = T ′ ?f1 ?f2 unfolding T ′-def by simp

define f where f ≡ (λj ∈ {1..<k+1}. ?f2 (j − 1))(0:=i)
have f ∈ cube (k+1) (t+1)
proof (unfold cube-def ; intro PiE-I)

fix j assume j ∈ {..<k+1}
then consider j = 0 | j ∈ {1..<k+1} by fastforce
then show f j ∈ {..<t+1}
proof (cases)

case 1
then have f j = i unfolding f-def by simp
then show ?thesis using isx-prop by simp

next
case 2
then have j − 1 ∈ {..<k} by auto
moreover have f j = ?f2 (j − 1) using 2 unfolding f-def by simp
moreover have ?f2 (j − 1) ∈ {..<t+1} using calculation(1) isx-prop

unfolding cube-def by blast
ultimately show ?thesis by simp

qed
qed (auto simp: f-def)
have ?f1 = (λj ∈ {..<1}. f j) unfolding f-def using isx-prop by auto
moreover have ?f2 = (λj∈{..<k}. f (j+1))

using calculation isx-prop unfolding cube-def f-def by fastforce
ultimately have T ′ ?f1 ?f2 = T f using ‹f ∈ cube (k+1) (t+1)› unfolding

T-def by simp
then show x ∈ T ‘ cube (k + 1) (t + 1) using ∗

using ‹f ∈ cube (k + 1) (t + 1)› by blast
qed

32

qed
have Tset ⊆ cube (n + m) (t+1)
proof

fix x assume a: x∈Tset
then obtain i sx where isx-props: x = join (L-line i) sx n m ∧ i ∈ {..<t+1}

∧
sx ∈ S ‘ (cube k (t+1)) unfolding Tset-def by blast
then have L-line i ∈ cube n (t+1) using L-line-base-prop by blast
moreover have sx ∈ cube m (t+1)

using subspace-elems-embed[of S k m t+1] S-prop isx-props unfolding
layered-subspace-def by blast

ultimately show x ∈ cube (n + m) (t+1) using join-cubes[of L-line i n t sx
m] isx-props by simp

qed

Part 3: Proving that T is a subspace
To prove something is a subspace, we have to provide the B and f satisfy-

ing the subspace properties. We construct BT and fT from BS, fS and BL,
fL, which correspond to the k-dimensional subspace S and the 1-dimensional
subspace (i.e. line) L, respectively.

obtain BS fS where BfS-props: disjoint-family-on BS {..k}
⋃
(BS ‘ {..k}) =

{..<m} ({}
/∈ BS ‘ {..<k}) fS ∈ (BS k) →E {..<t+1} S ∈ (cube k (t+1))
→E (cube m (t+1)) (∀ y ∈ cube k (t+1). (∀ i ∈ BS k.
S y i = fS i) ∧ (∀ j<k. ∀ i ∈ BS j. (S y) i = y j)) using S-prop

unfolding layered-subspace-def is-subspace-def by auto

obtain BL fL where BfL-props: disjoint-family-on BL {..1}
⋃
(BL ‘ {..1}) =

{..<n}
({} /∈ BL ‘ {..<1}) fL ∈ (BL 1) →E {..<t+1} L ∈ (cube 1

(t+1)) →E (cube n (t+1)) (∀ y ∈ cube 1 (t+1). (∀ i ∈
BL 1. L y i = fL i) ∧ (∀ j<1. ∀ i ∈ BL j. (L y) i = y j)) using L-prop

unfolding layered-subspace-def is-subspace-def by auto

define Bstat where Bstat ≡ set-incr n (BS k) ∪ BL 1
define Bvar where Bvar ≡ (λi::nat. (if i = 0 then BL 0 else set-incr n (BS

(i − 1))))
define BT where BT ≡ (λi ∈ {..<k+1}. Bvar i)((k+1):=Bstat)
define fT where fT ≡ (λx. (if x ∈ BL 1 then fL x else (if x ∈ set-incr n
(BS k) then fS (x − n) else undefined)))

have fact1: set-incr n (BS k) ∩ BL 1 = {} using BfL-props BfS-props
unfolding set-incr-def by auto

have fact2: BL 0 ∩ (
⋃

i∈{..<k}. set-incr n (BS i)) = {}
using BfL-props BfS-props unfolding set-incr-def by auto

have fact3: ∀ i ∈ {..<k}. BL 0 ∩ set-incr n (BS i) = {}
using BfL-props BfS-props unfolding set-incr-def by auto

have fact4: ∀ i ∈ {..<k+1}. ∀ j ∈ {..<k+1}. i 6= j

33

−→ set-incr n (BS i) ∩ set-incr n (BS j) = {}
using set-incr-disjoint-family[of BS k] BfS-props unfolding disjoint-family-on-def

by simp
have fact5: ∀ i ∈ {..<k+1}. Bvar i ∩ Bstat = {}
proof

fix i assume a: i ∈ {..<k+1}
show Bvar i ∩ Bstat = {}
proof (cases i)

case 0
then have Bvar i = BL 0 unfolding Bvar-def by simp

moreover have BL 0 ∩ BL 1 = {} using BfL-props unfolding dis-
joint-family-on-def by simp

moreover have set-incr n (BS k) ∩ BL 0 = {} using BfL-props BfS-props
unfolding set-incr-def by auto

ultimately show ?thesis unfolding Bstat-def by blast
next

case (Suc nat)
then have Bvar i = set-incr n (BS nat) unfolding Bvar-def by simp

moreover have set-incr n (BS nat) ∩ BL 1 = {} using BfS-props BfL-props
a Suc unfolding set-incr-def

by auto
moreover have set-incr n (BS nat) ∩ set-incr n (BS k) = {} using a Suc

fact4 by simp
ultimately show ?thesis unfolding Bstat-def by blast

qed
qed

The facts F1, ..., F5 are the disjuncts in the subspace definition.
have Bvar ‘ {..<k+1} = BL ‘ {..<1} ∪ Bvar ‘ {1..<k+1} unfolding Bvar-def

by force
also have ... = BL ‘ {..<1} ∪ {set-incr n (BS i) | i . i ∈ {..<k}} unfolding

Bvar-def by fastforce
moreover have {} /∈ BL ‘ {..<1} using BfL-props by auto
moreover have {} /∈ {set-incr n (BS i) | i . i ∈ {..<k}} using BfS-props(2,

3) set-incr-def by fastforce
ultimately have {} /∈ Bvar ‘ {..<k+1} by simp
then have F1: {} /∈ BT ‘ {..<k+1} unfolding BT-def by simp
moreover
{

have F2-aux: disjoint-family-on Bvar {..<k+1}
proof (unfold disjoint-family-on-def ; safe)

fix m n x assume a: m < k + 1 n < k + 1 m 6= n x ∈ Bvar m x ∈ Bvar n
show x ∈ {}
proof (cases n)

case 0
then show ?thesis using a fact3 unfolding Bvar-def by auto

next
case (Suc nnat)
then have ∗: n = Suc nnat by simp

34

then show ?thesis
proof (cases m)

case 0
then show ?thesis using a fact3 unfolding Bvar-def by auto

next
case (Suc mnat)
then show ?thesis using a fact4 ∗ unfolding Bvar-def by fastforce

qed
qed

qed

have F2: disjoint-family-on BT {..k+1}
proof

fix m n assume a: m∈{..k+1} n∈{..k+1} m 6= n
have ∀ x. x ∈ BT m ∩ BT n −→ x ∈ {}
proof (intro allI impI)

fix x assume b: x ∈ BT m ∩ BT n
have m < k + 1 ∧ n < k + 1 ∨ m = k + 1 ∧ n = k + 1 ∨ m < k + 1
∧ n = k + 1 ∨ m = k + 1 ∧ n < k + 1 using a le-eq-less-or-eq by auto
then show x ∈ {}
proof (elim disjE)

assume c: m < k + 1 ∧ n < k + 1
then have BT m = Bvar m ∧ BT n = Bvar n unfolding BT-def by

simp
then show x ∈ {} using a b c fact4 F2-aux unfolding Bvar-def

disjoint-family-on-def by auto
qed (use a b fact5 in ‹auto simp: BT-def ›)

qed
then show BT m ∩ BT n = {} by auto

qed
}
moreover have F3:

⋃
(BT ‘ {..k+1}) = {..<n + m}

proof
show

⋃
(BT ‘ {..k + 1}) ⊆ {..<n + m}

proof
fix x assume x ∈

⋃
(BT ‘ {..k + 1})

then obtain i where i-prop: i ∈ {..k+1} ∧ x ∈ BT i by blast
then consider i = k +1 | i ∈ {..<k+1} by fastforce
then show x ∈ {..<n + m}
proof (cases)

case 1
then have x ∈ Bstat using i-prop unfolding BT-def by simp
then have x ∈ BL 1 ∨ x ∈ set-incr n (BS k) unfolding Bstat-def by

blast
then have x ∈ {..<n} ∨ x ∈ {n..<n+m} using BfL-props BfS-props(2)

set-incr-image[of BS k m n]
by blast

then show ?thesis by auto
next

35

case 2
then have x ∈ Bvar i using i-prop unfolding BT-def by simp
then have x ∈ BL 0 ∨ x ∈ set-incr n (BS (i − 1)) unfolding Bvar-def

by presburger
then show ?thesis
proof (elim disjE)

assume x ∈ BL 0
then have x ∈ {..<n} using BfL-props by auto
then show x ∈ {..<n + m} by simp

next
assume a: x ∈ set-incr n (BS (i − 1))
then have i − 1 ≤ k

by (meson atMost-iff i-prop le-diff-conv)
then have set-incr n (BS (i − 1)) ⊆ {n..<n+m} using set-incr-image[of

BS k m n] BfS-props
by auto

then show x ∈ {..<n+m} using a by auto
qed

qed
qed

next
show {..<n + m} ⊆

⋃
(BT ‘ {..k + 1})

proof
fix x assume x ∈ {..<n + m}
then consider x ∈ {..<n} | x ∈ {n..<n+m} by fastforce
then show x ∈

⋃
(BT ‘ {..k + 1})

proof (cases)
case 1
have ∗: {..1::nat} = {0, 1::nat} by auto
from 1 have x ∈

⋃
(BL ‘ {..1::nat}) using BfL-props by simp

then have x ∈ BL 0 ∨ x ∈ BL 1 using ∗ by simp
then show ?thesis
proof (elim disjE)

assume x ∈ BL 0
then have x ∈ Bvar 0 unfolding Bvar-def by simp
then have x ∈ BT 0 unfolding BT-def by simp
then show x ∈

⋃
(BT ‘ {..k + 1}) by auto

next
assume x ∈ BL 1
then have x ∈ Bstat unfolding Bstat-def by simp
then have x ∈ BT (k+1) unfolding BT-def by simp
then show x ∈

⋃
(BT ‘ {..k + 1}) by auto

qed
next

case 2
then have x ∈ (

⋃
i≤k. set-incr n (BS i)) using set-incr-image[of BS k

m n] BfS-props by simp
then obtain i where i-prop: i ≤ k ∧ x ∈ set-incr n (BS i) by blast
then consider i = k | i < k by fastforce

36

then show ?thesis
proof (cases)

case 1
then have x ∈ Bstat unfolding Bstat-def using i-prop by auto
then have x ∈ BT (k+1) unfolding BT-def by simp
then show ?thesis by auto

next
case 2
then have x ∈ Bvar (i + 1) unfolding Bvar-def using i-prop by simp
then have x ∈ BT (i + 1) unfolding BT-def using 2 by force
then show ?thesis using 2 by auto

qed
qed

qed
qed

moreover have F4: fT ∈ (BT (k+1)) →E {..<t+1}
proof

fix x assume x ∈ BT (k+1)
then have x ∈ Bstat unfolding BT-def by simp
then have x ∈ BL 1 ∨ x ∈ set-incr n (BS k) unfolding Bstat-def by auto
then show fT x ∈ {..<t + 1}
proof (elim disjE)

assume x ∈ BL 1
then have fT x = fL x unfolding fT-def by simp
then show fT x ∈ {..<t+1} using BfL-props ‹x ∈ BL 1› by auto

next
assume a: x ∈ set-incr n (BS k)
then have fT x = fS (x − n) using fact1 unfolding fT-def by auto
moreover have x − n ∈ BS k using a unfolding set-incr-def by auto
ultimately show fT x ∈ {..<t+1} using BfS-props by auto

qed
qed(auto simp: BT-def Bstat-def fT-def)
moreover have F5: ((∀ i ∈ BT (k + 1). T y i = fT i) ∧ (∀ j<k+1.
∀ i ∈ BT j. (T y) i = y j)) if y ∈ cube (k + 1) (t + 1) for y
proof(intro conjI allI impI ballI)

fix i assume i ∈ BT (k + 1)
then have i ∈ Bstat unfolding BT-def by simp
then consider i ∈ set-incr n (BS k) | i ∈ BL 1 unfolding Bstat-def by

blast
then show T y i = fT i
proof (cases)

case 1
then have ∃ s<m. i = n + s unfolding set-incr-def using BfS-props(2)

by auto
then obtain s where s-prop: s < m ∧ i = n + s by blast
then have ∗: i ∈ {n..<n+m} by simp
have i /∈ BL 1 using 1 fact1 by auto
then have fT i = fS (i − n) using 1 unfolding fT-def by simp

37

then have ∗∗: fT i = fS s using s-prop by simp

have XX : (λz ∈ {..<k}. y (z + 1)) ∈ cube k (t+1) using split-cube that by
simp

have XY : s ∈ BS k using s-prop 1 unfolding set-incr-def by auto

from that have T y i = (T ′ (λz ∈ {..<1}. y z) (λz ∈ {..<k}. y (z + 1))) i
unfolding T-def by auto

also have ... = (join (L-line ((λz ∈ {..<1}. y z) 0)) (S (λz ∈
{..<k}. y (z + 1))) n m) i using split-cube that unfolding T ′-def by simp
also have ... = (join (L-line (y 0)) (S (λz ∈ {..<k}. y (z + 1))) n m) i by

simp
also have ... = (S (λz ∈ {..<k}. y (z + 1))) s using ∗ s-prop unfolding

join-def by simp
also have ... = fS s using XX XY BfS-props(6) by blast
finally show ?thesis using ∗∗ by simp

next
case 2
have XZ : y 0 ∈ {..<t+1} using that unfolding cube-def by auto
have XY : i ∈ {..<n} using 2 BfL-props(2) by blast
have XX : (λz ∈ {..<1}. y z) ∈ cube 1 (t+1) using that split-cube by simp

have some-eq-restrict: (SOME p. p∈cube 1 (t+1) ∧ p 0 = ((λz ∈ {..<1}.
y z) 0)) = (λz ∈ {..<1}. y z)
proof

show restrict y {..<1} ∈ cube 1 (t + 1) ∧ restrict y {..<1} 0 = restrict y
{..<1} 0

using XX by simp
next

fix p
assume p ∈ cube 1 (t+1) ∧ p 0 = restrict y {..<1} 0
moreover have p u = restrict y {..<1} u if u /∈ {..<1} for u

using that calculation XX unfolding cube-def
using PiE-arb[of restrict y {..<1} {..<1} λx. {..<t + 1} u]

PiE-arb[of p {..<1} λx. {..<t + 1} u] by simp
ultimately show p = restrict y {..<1} by auto

qed

from that have T y i = (T ′ (λz ∈ {..<1}. y z) (λz ∈ {..<k}. y (z + 1))) i
unfolding T-def by auto

also have ... = (join (L-line ((λz ∈ {..<1}. y z) 0)) (S (λz ∈ {..<k}. y (z
+ 1))) n m) i

using split-cube that unfolding T ′-def by simp
also have ... = (L-line ((λz ∈ {..<1}. y z) 0)) i using XY unfolding

join-def by simp
also have ... = L (SOME p. p∈cube 1 (t+1) ∧ p 0 = ((λz ∈ {..<1}. y z)

0)) i
using XZ unfolding L-line-def by auto

also have ... = L (λz ∈ {..<1}. y z) i using some-eq-restrict by simp

38

also have ... = fL i using BfL-props(6) XX 2 by blast
also have ... = fT i using 2 unfolding fT-def by simp
finally show ?thesis .

qed
next

fix j i assume j < k + 1 i ∈ BT j
then have i-prop: i ∈ Bvar j unfolding BT-def by auto
consider j = 0 | j > 0 by auto
then show T y i = y j
proof cases

case 1
then have i ∈ BL 0 using i-prop unfolding Bvar-def by auto
then have XY : i ∈ {..<n} using 1 BfL-props(2) by blast
have XX : (λz ∈ {..<1}. y z) ∈ cube 1 (t+1) using that split-cube by simp
have XZ : y 0 ∈ {..<t+1} using that unfolding cube-def by auto

have some-eq-restrict: (SOME p. p∈cube 1 (t+1) ∧ p 0 = ((λz ∈ {..<1}.
y z) 0)) = (λz ∈ {..<1}. y z)
proof

show restrict y {..<1} ∈ cube 1 (t + 1) ∧ restrict y {..<1} 0 = restrict y
{..<1} 0 using XX by simp

next
fix p
assume p ∈ cube 1 (t+1) ∧ p 0 = restrict y {..<1} 0
moreover have p u = restrict y {..<1} u if u /∈ {..<1} for u

using that calculation XX unfolding cube-def
using PiE-arb[of restrict y {..<1} {..<1} λx. {..<t + 1} u]

PiE-arb[of p {..<1} λx. {..<t + 1} u] by simp
ultimately show p = restrict y {..<1} by auto

qed

from that have T y i = (T ′ (λz ∈ {..<1}. y z) (λz ∈ {..<k}. y (z + 1))) i
unfolding T-def by auto

also have ... = (join (L-line ((λz ∈ {..<1}. y z) 0)) (S (λz ∈ {..<k}. y (z
+ 1))) n m) i

using split-cube that unfolding T ′-def by simp
also have ... = (L-line ((λz ∈ {..<1}. y z) 0)) i using XY unfolding

join-def by simp
also have ... = L (SOME p. p∈cube 1 (t+1) ∧ p 0 = ((λz ∈ {..<1}. y z)

0)) i
using XZ unfolding L-line-def by auto

also have ... = L (λz ∈ {..<1}. y z) i using some-eq-restrict by simp
also have ... = (λz ∈ {..<1}. y z) j using BfL-props(6) XX 1 ‹i ∈ BL 0›

by blast
also have ... = (λz ∈ {..<1}. y z) 0 using 1 by blast
also have ... = y 0 by simp
also have ... = y j using 1 by simp
finally show ?thesis .

next

39

case 2
then have i ∈ set-incr n (BS (j − 1)) using i-prop unfolding Bvar-def

by simp
then have ∃ s<m. n + s = i using BfS-props(2) ‹j < k + 1› unfolding

set-incr-def by force
then obtain s where s-prop: s < m i = s + n by auto
then have ∗: i ∈ {n..<n+m} by simp

have XX : (λz ∈ {..<k}. y (z + 1)) ∈ cube k (t+1) using split-cube that by
simp

have XY : s ∈ BS (j − 1) using s-prop 2 ‹i ∈ set-incr n (BS (j − 1))›
unfolding set-incr-def by force

from that have T y i = (T ′ (λz ∈ {..<1}. y z) (λz ∈ {..<k}. y (z + 1))) i
unfolding T-def by auto

also have ... = (join (L-line ((λz ∈ {..<1}. y z) 0)) (S (λz ∈ {..<k}. y (z
+ 1))) n m) i

using split-cube that unfolding T ′-def by simp
also have ... = (join (L-line (y 0)) (S (λz ∈ {..<k}. y (z + 1))) n m) i by

simp
also have ... = (S (λz ∈ {..<k}. y (z + 1))) s using ∗ s-prop unfolding

join-def by simp
also have ... = (λz ∈ {..<k}. y (z + 1)) (j−1)

using XX XY BfS-props(6) 2 ‹j < k + 1› by auto
also have ... = y j using 2 ‹j < k + 1› by force
finally show ?thesis .

qed
qed

ultimately have subspace-T : is-subspace T (k+1) (n+m) (t+1) unfolding
is-subspace-def using T-prop by metis

Part 4: Proving T is layered
The following redefinition of the classes makes proving the layered prop-

erty easier.
define T-class where T-class ≡ (λj∈{..k}. {join (L-line i) s n m | i s . i
∈ {..<t} ∧ s ∈ S ‘ (classes k t j)})(k+1:= {join (L-line t) (SOME s. s ∈ S ‘
(cube m (t+1))) n m})
have classprop: T-class j = T ‘ classes (k + 1) t j if j-prop: j ≤ k for j
proof

show T-class j ⊆ T ‘ classes (k + 1) t j
proof

fix x assume x ∈ T-class j
from that have T-class j = {join (L-line i) s n m | i s . i ∈ {..<t} ∧ s ∈ S

‘ (classes k t j)}
unfolding T-class-def by simp

then obtain i s where is-defs: x = join (L-line i) s n m ∧ i < t ∧ s ∈ S ‘
(classes k t j)

40

using ‹x ∈ T-class j› unfolding T-class-def by auto
moreover have ∗:classes k t j ⊆ cube k (t+1) unfolding classes-def by

simp
moreover have ∃ !y. y ∈ classes k t j ∧ s = S y
using subspace-inj-on-cube[of S k m t+1] S-prop inj-onD[of S cube k (t+1)]

calculation
unfolding layered-subspace-def inj-on-def by blast

ultimately obtain y where y-prop: y ∈ classes k t j ∧ s = S y ∧
(∀ z∈classes k t j. s = S z −→ y = z) by auto

define p where p ≡ join (λg∈{..<1}. i) y 1 k
have (λg∈{..<1}. i) ∈ cube 1 (t+1) using is-defs unfolding cube-def by

simp
then have p-in-cube: p ∈ cube (k + 1) (t+1)

using join-cubes[of (λg∈{..<1}. i) 1 t y k] y-prop ∗ unfolding p-def by
auto

then have ∗∗: p 0 = i ∧ (∀ l < k. p (l + 1) = y l) unfolding p-def join-def
by simp

have t /∈ y ‘ {..<(k − j)} using y-prop unfolding classes-def by simp
then have ∀ u < k − j. y u 6= t by auto
then have ∀ u < k − j. p (u + 1) 6= t using ∗∗ by simp
moreover have p 0 6= t using is-defs ∗∗ by simp
moreover have ∀ u < k − j + 1. p u 6= t

using calculation by (auto simp: algebra-simps less-Suc-eq-0-disj)
ultimately have ∀ u < (k + 1) − j. p u 6= t using that by auto
then have A1: t /∈ p ‘ {..<((k+1) − j)} by blast

have p u = t if u ∈ {k − j + 1..<k+1} for u
proof −

from that have u − 1 ∈ {k − j..<k} by auto
then have y (u − 1) = t using y-prop unfolding classes-def by blast
then show p u = t using ∗∗ that ‹u − 1 ∈ {k − j..<k}› by auto

qed
then have A2: ∀ u∈{(k+1) − j..<k+1}. p u = t using that by auto

from A1 A2 p-in-cube have p ∈ classes (k+1) t j unfolding classes-def by
blast

moreover have x = T p
proof−

have loc-useful:(λy ∈ {..<k}. p (y + 1)) = (λz ∈ {..<k}. y z) using ∗∗
by auto

have T p = T ′ (λy ∈ {..<1}. p y) (λy ∈ {..<k}. p (y + 1))
using p-in-cube unfolding T-def by auto

have T ′ (λy ∈ {..<1}. p y) (λy ∈ {..<k}. p (y + 1))
= join (L-line ((λy ∈ {..<1}. p y) 0)) (S (λy ∈ {..<k}. p (y + 1))) n

41

m
using split-cube p-in-cube unfolding T ′-def by simp

also have ... = join (L-line (p 0)) (S (λy ∈ {..<k}. p (y + 1))) n m by
simp

also have ... = join (L-line i) (S (λy ∈ {..<k}. p (y + 1))) n m by (simp
add: ∗∗)

also have ... = join (L-line i) (S (λz ∈ {..<k}. y z)) n m using loc-useful
by simp

also have ... = join (L-line i) (S y) n m using y-prop ∗ unfolding cube-def
by auto

also have ... = x using is-defs y-prop by simp
finally show x = T p
using ‹T p = T ′ (restrict p {..<1}) (λy∈{..<k}. p (y + 1))› by presburger

qed
ultimately show x ∈ T ‘ classes (k + 1) t j by blast

qed
next

show T ‘ classes (k + 1) t j ⊆ T-class j
proof

fix x assume x ∈ T ‘ classes (k+1) t j
then obtain y where y-prop: y ∈ classes (k+1) t j ∧ T y = x by blast

then have y-props: (∀ u ∈ {((k+1)−j)..<k+1}. y u = t) ∧ t /∈ y ‘ {..<(k+1)
− j }

unfolding classes-def by blast

define z where z ≡ (λv ∈ {..<k}. y (v+1))
have z ∈ cube k (t+1) using y-prop classes-subset-cube[of k+1 t j] unfolding

z-def cube-def by auto
moreover
{
have z ‘ {..<k − j} = y ‘ ((+) 1 ‘ {..<k−j}) unfolding z-def by fastforce

also have ... = y ‘ {1..<k−j+1} by (simp add: atLeastLessThanSuc-atLeastAtMost
image-Suc-lessThan)

also have ... = y ‘ {1..<(k+1)−j} using j-prop by auto
finally have z ‘ {..<k − j} ⊆ y ‘ {..<(k+1)−j} by auto
then have t /∈ z ‘ {..<k − j} using y-props by blast

}
moreover have ∀ u ∈ {k−j..<k}. z u = t unfolding z-def using y-props

by auto
ultimately have z-in-classes: z ∈ classes k t j unfolding classes-def by

blast

have y 0 6= t
proof−

from that have 0 ∈ {..<k + 1 − j} by simp
then show y 0 6= t using y-props by blast

qed
then have tr : y 0 < t using y-prop classes-subset-cube[of k+1 t j] unfolding

42

cube-def by fastforce

have (λg ∈ {..<1}. y g) ∈ cube 1 (t+1)
using y-prop classes-subset-cube[of k+1 t j] cube-restrict[of 1 (k+1) y t+1]

assms(2) by auto
then have T y = T ′ (λg ∈ {..<1}. y g) z using y-prop classes-subset-cube[of

k+1 t j]
unfolding T-def z-def by auto

also have ... = join (L-line ((λg ∈ {..<1}. y g) 0)) (S z) n m
unfolding T ′-def
using ‹(λg ∈ {..<1}. y g) ∈ cube 1 (t+1)› ‹z ∈ cube k (t+1)›
by auto

also have ... = join (L-line (y 0)) (S z) n m by simp
also have ... ∈ T-class j using tr z-in-classes that unfolding T-class-def

by force
finally show x ∈ T-class j using y-prop by simp

qed
qed

The core case i ≤ k. The case i = k + 1 is trivial since k + 1 has only one
point.

have χ x = χ y ∧ χ x < r if a: i ≤ k x ∈ T ‘ classes (k+1) t i
y ∈ T ‘ classes (k+1) t i for i x y

proof−
from a have ∗: T ‘ classes (k+1) t i = T-class i by (simp add: classprop)
then have x ∈ T-class i using that by simp
moreover have ∗∗: T-class i = {join (L-line l) s n m | l s . l ∈ {..<t} ∧ s

∈ S ‘ (classes k t i)}
using a unfolding T-class-def by simp

ultimately obtain xs xi where xdefs: x = join (L-line xi) xs n m ∧ xi < t
∧ xs ∈ S ‘ (classes k t i)

by blast

from ∗ ∗∗ obtain ys yi where ydefs: y = join (L-line yi) ys n m ∧ yi < t ∧
ys ∈ S ‘ (classes k t i)

using a by auto

have (L-line xi) ∈ cube n (t+1) using L-line-base-prop xdefs by simp
moreover have xs ∈ cube m (t+1)
using xdefs S-prop subspace-elems-embed imageE image-subset-iff mem-Collect-eq

unfolding layered-subspace-def classes-def by blast
ultimately have AA1: χ x = χL (L-line xi) xs using xdefs unfolding χL-def

by simp

have (L-line yi) ∈ cube n (t+1) using L-line-base-prop ydefs by simp
moreover have ys ∈ cube m (t+1)
using ydefs S-prop subspace-elems-embed imageE image-subset-iff mem-Collect-eq

43

unfolding layered-subspace-def classes-def by blast
ultimately have AA2: χ y = χL (L-line yi) ys using ydefs unfolding χL-def

by simp

have ∀ s<t. ∀ l < t. χL-s (L (SOME p. p∈cube 1 (t+1) ∧ p 0 = s))
= χL-s (L (SOME p. p∈cube 1 (t+1) ∧ p 0 = l)) using

dim1-layered-subspace-mono-line[of t L n s χL-s] L-prop assms(1) by blast
then have key-aux: χL-s (L-line s) = χL-s (L-line l) if s ∈ {..<t} l ∈ {..<t}

for s l
using that unfolding L-line-def
by (metis (no-types, lifting) add.commute

lessThan-iff less-Suc-eq plus-1-eq-Suc restrict-apply)
have key: χL (L-line s) = χL (L-line l) if s < t l < t for s l
proof−

have L1: χL (L-line s) ∈ cube m (t + 1) →E {..<r} unfolding χL-def
using A L-line-base-prop ‹s < t› by simp

have L2: χL (L-line l) ∈ cube m (t + 1) →E {..<r} unfolding χL-def
using A L-line-base-prop ‹l < t› by simp

have ϕ (χL (L-line s)) = χL-s (L-line s) unfolding χL-s-def
using ‹s < t› L-line-base-prop by simp

also have ... = χL-s (L-line l) using key-aux ‹s <t› ‹l < t› by blast
also have ... = ϕ (χL (L-line l)) unfolding χL-s-def using L-line-base-prop

‹l<t›
by simp

finally have ϕ (χL (L-line s)) = ϕ (χL (L-line l)) by simp
then show χL (L-line s) = χL (L-line l)
using ϕ-prop L-line-base-prop L1 L2 unfolding bij-betw-def inj-on-def by

blast
qed
then have χL (L-line xi) xs = χL (L-line 0) xs using xdefs assms(1) by

metis
also have ... = χS xs unfolding χS-def χL-def using xdefs L-line-base-prop

by auto
also have ... = χS ys using xdefs ydefs layered-eq-classes[of S k m t r χS]

S-prop a by blast
also have ... = χL (L-line 0) ys unfolding χS-def χL-def using xdefs

L-line-base-prop
by auto

also have ... = χL (L-line yi) ys using ydefs key assms(1) by metis
finally have core-prop: χL (L-line xi) xs = χL (L-line yi) ys by simp
then have χ x = χ y using AA1 AA2 by simp
then show χ x = χ y ∧ χ x < r

using xdefs AA1 key assms(1) A
‹L-line xi ∈ cube n (t + 1)› ‹xs ∈ cube m (t + 1)› by blast

qed
then have ∃ c<r . ∀ x ∈ T ‘ classes (k+1) t i. χ x = c if i ≤ k for i

using that assms(5) by blast

moreover have ∃ c<r . ∀ x ∈ T ‘ classes (k+1) t (k+1). χ x = c

44

proof −
have ∀ x ∈ classes (k+1) t (k+1). ∀ u < k + 1. x u = t unfolding classes-def

by auto
have (λu. t) ‘ {..<k + 1} ⊆ {..<t + 1} by auto
then have ∃ !y ∈ cube (k+1) (t+1). (∀ u < k + 1. y u = t)

using PiE-uniqueness[of (λu. t) {..<k+1} {..<t+1}] unfolding cube-def
by auto

then have ∃ !y ∈ classes (k+1) t (k+1). (∀ u < k + 1. y u = t)
unfolding classes-def using classes-subset-cube[of k+1 t k+1] by auto

then have ∃ !y. y ∈ classes (k+1) t (k+1)
using ‹∀ x ∈ classes (k+1) t (k+1). ∀ u < k + 1. x u = t› by auto

have ∃ c<r . ∀ y ∈ classes (k+1) t (k+1). χ (T y) = c
proof −

have ∀ y ∈ classes (k+1) t (k+1). T y ∈ cube (n+m) (t+1) using T-prop
classes-subset-cube

by blast
then have ∀ y ∈ classes (k+1) t (k+1). χ (T y) < r using χ-prop

unfolding n-def d-def using M ′-prop by auto
then show ∃ c<r . ∀ y ∈ classes (k+1) t (k+1). χ (T y) = c

using ‹∃ !y. y ∈ classes (k+1) t (k+1)› by blast
qed
then show ∃ c<r . ∀ x ∈ T ‘ classes (k+1) t (k+1). χ x = c by blast

qed
ultimately have ∃ c<r . ∀ x ∈ T ‘ classes (k+1) t i. χ x = c if i ≤ k + 1 for i

using that by (metis Suc-eq-plus1 le-Suc-eq)
then have ∃ c<r . ∀ x ∈ classes (k+1) t i. χ (T x) = c if i ≤ k + 1 for i

using that by simp
then have layered-subspace T (k+1) (n + m) t r χ using subspace-T that(1)

‹n + m = M ′›
unfolding layered-subspace-def by blast

then show ?thesis using ‹n + m = M ′› by blast
qed
then show ?thesis unfolding lhj-def

using m-props
exI [of λM . ∀M ′≥M . ∀χ. χ ∈ cube M ′ (t + 1)
→E {..<r} −→ (∃S . layered-subspace S (k + 1) M ′ t r
χ) m]

by blast
qed

theorem hj-imp-lhj:
fixes k
assumes

∧
r ′. hj r ′ t

shows lhj r t k
proof (induction k arbitrary: r rule: less-induct)

case (less k)
consider k = 0 | k = 1 | k ≥ 2 by linarith
then show ?case
proof (cases)

45

case 1
then show ?thesis using dim0-layered-subspace-ex unfolding lhj-def by auto

next
case 2
then show ?thesis
proof (cases t > 0)

case True
then show ?thesis using hj-imp-lhj-base[of t] assms 2 by blast

next
case False

then show ?thesis using assms unfolding hj-def lhj-def cube-def by fastforce
qed

next
case 3
note less
then show ?thesis
proof (cases t > 0 ∧ r > 0)
case True
then show ?thesis using hj-imp-lhj-step[of t k−1 r]

using assms less.IH 3 One-nat-def Suc-pred by fastforce
next

case False
then consider t = 0 | t > 0 ∧ r = 0 | t = 0 ∧ r = 0 by fastforce
then show ?thesis
proof cases

case 1
then show ?thesis using assms unfolding hj-def lhj-def cube-def by

fastforce
next

case 2
then obtain N where N-props: N > 0 ∀N ′≥N . ∀χ ∈ cube N ′ t
→E {..<r}. (∃L c. c < r ∧ is-line L N ′ t ∧ (∀ y
∈ L ‘ {..<t}. χ y = c)) using assms[of r] unfolding hj-def by force
have cube N ′ (t + 1) →E {..<r} = {} if N ′ ≥ N for N ′

proof−
have cube N ′ t 6= {} using N-props(2) that 2 by fastforce
then have cube N ′ (t + 1) 6= {} using cube-subset[of N ′ t] by blast
then show ?thesis using 2 by blast

qed
then show ?thesis unfolding lhj-def using N-props(1) by blast

next
case 3
then have (∃L c. c < r ∧ is-line L N ′ t ∧ (∀ y ∈ L ‘ {..<t}. χ y = c))
=⇒ False for N ′ χ by blast
then have False using assms 3 unfolding hj-def cube-def by fastforce
then show ?thesis by blast

qed

qed

46

qed
qed

2.2 Theorem 5

We provide a way to construct a monochromatic line in Cn
t+1 from a k-

dimensional k-coloured layered subspace S in Cn
t+1. The idea is to rely on

the fact that there are k+ 1 classes in S, but only k colours. It thus follows
from the Pigeonhole Principle that two classes must share the same colour.
The way classes are defined allows for a straightforward construction of a line
with points only from those two classes. Thus we have our monochromatic
line.
theorem layered-subspace-to-mono-line:

assumes layered-subspace S k n t k χ
and t > 0

shows (∃L. ∃ c<k. is-line L n (t+1) ∧ (∀ y ∈ L ‘ {..<t+1}. χ y = c))
proof−

define x where x ≡ (λi∈{..k}. λj∈{..<k}. (if j < k − i then 0 else t))

have A: x i ∈ cube k (t + 1) if i ≤ k for i using that unfolding cube-def x-def
by simp

then have S (x i) ∈ cube n (t+1) if i ≤ k for i using that assms(1)
unfolding layered-subspace-def is-subspace-def by fast

have χ ∈ cube n (t + 1)→E {..<k} using assms unfolding layered-subspace-def
by linarith

then have χ ‘ (cube n (t+1)) ⊆ {..<k} by blast
then have card (χ ‘ (cube n (t+1))) ≤ card {..<k}

by (meson card-mono finite-lessThan)
then have ∗: card (χ ‘ (cube n (t+1))) ≤ k by auto
have k > 0 using assms(1) unfolding layered-subspace-def by auto
have inj-on x {..k}
proof −

have ∗:x i1 (k − i2) 6= x i2 (k − i2) if i1 ≤ k i2 ≤ k i1 6= i2 i1 < i2 for i1 i2
using that assms(2) unfolding x-def by auto

have ∃ j<k. x i1 j 6= x i2 j if i1 ≤ k i2 ≤ k i1 6= i2 for i1 i2
proof (cases i1 ≤ i2)

case True
then have k − i2 < k

using ‹0 < k› that(3) by linarith
then show ?thesis using that ∗

by (meson True nat-less-le)
next

case False
then have i2 < i1 by simp
then show ?thesis using that ∗[of i2 i1] ‹k > 0›

by (metis diff-less gr-implies-not0 le0 nat-less-le)
qed

47

then have x i1 6= x i2 if i1 ≤ k i2 ≤ k i1 6= i2 i1 < i2 for i1 i2 using that
by fastforce

then show ?thesis unfolding inj-on-def by (metis atMost-iff linorder-cases)
qed
then have card (x ‘ {..k}) = card {..k} using card-image by blast
then have B: card (x ‘ {..k}) = k+1 by simp
have x ‘ {..k} ⊆ cube k (t+1) using A by blast
then have S ‘ x ‘ {..k} ⊆ S ‘ cube k (t+1) by fast
also have ... ⊆ cube n (t+1)

by (meson assms(1) layered-subspace-def subspace-elems-embed)
finally have S ‘ x ‘ {..k} ⊆ cube n (t+1) by blast
then have χ ‘ S ‘ x ‘ {..k} ⊆ χ ‘ cube n (t+1) by auto
then have card (χ ‘ S ‘ x ‘ {..k}) ≤ card (χ ‘ cube n (t+1))

by (simp add: card-mono cube-def finite-PiE)
also have ... ≤ k using ∗ by blast
also have ... < k + 1 by auto
also have ... = card {..k} by simp
also have ... = card (x ‘ {..k}) using B by auto
also have ... = card (S ‘ x ‘ {..k})

using subspace-inj-on-cube[of S k n t+1] card-image[of S x ‘ {..k}]
inj-on-subset[of S cube k (t+1) x ‘ {..k}] assms(1) ‹x ‘ {..k} ⊆ cube k (t +

1)›
unfolding layered-subspace-def by simp

finally have card (χ ‘ S ‘ x ‘ {..k}) < card (S ‘ x ‘ {..k}) by blast
then have ¬inj-on χ (S ‘ x ‘ {..k}) using pigeonhole[of χ S ‘ x ‘ {..k}] by blast
then have ∃ a b. a ∈ S ‘ x ‘ {..k} ∧ b ∈ S ‘ x ‘ {..k} ∧ a 6= b ∧ χ a =
χ b unfolding inj-on-def by auto
then obtain ax bx where ab-props: ax ∈ S ‘ x ‘ {..k} ∧ bx ∈ S ‘ x ‘ {..k} ∧ ax
6= bx ∧
χ ax = χ bx by blast
then have ∃ u v. u ∈ {..k} ∧ v ∈ {..k} ∧ u 6= v ∧ χ (S (x u)) = χ (S (x
v)) by blast
then obtain u v where uv-props: u ∈ {..k} ∧ v ∈ {..k} ∧ u < v ∧ χ (S (x u))
= χ (S (x v)) by (metis linorder-cases)

let ?f = λs. (λi ∈ {..<k}. if i < k − v then 0 else (if i < k − u then s else t))
define y where y ≡ (λs ∈ {..t}. S (?f s))

have line1: ?f s ∈ cube k (t+1) if s ≤ t for s unfolding cube-def using that by
auto

have f-cube: ?f j ∈ cube k (t+1) if j < t+1 for j using line1 that by simp
have f-classes-u: ?f j ∈ classes k t u if j-prop: j < t for j

using that j-prop uv-props f-cube unfolding classes-def by auto
have f-classes-v: ?f j ∈ classes k t v if j-prop: j = t for j

using that j-prop uv-props assms(2) f-cube unfolding classes-def by auto

obtain B f where Bf-props: disjoint-family-on B {..k}
⋃
(B ‘ {..k}) = {..<n}

({} /∈ B ‘ {..<k})

48

f ∈ (B k) →E {..<t+1} S ∈ (cube k (t+1)) →E (cube n (t+1))
(∀ y ∈ cube k (t+1). (∀ i ∈ B k. S y i = f i) ∧ (∀ j<k. ∀ i ∈ B j.
(S y) i = y j))
using assms(1) unfolding layered-subspace-def is-subspace-def by auto

have y ∈ {..<t+1} →E cube n (t+1) unfolding y-def using line1 ‹S ‘ cube k
(t + 1)
⊆ cube n (t + 1)› by auto
moreover have (∀ u<t+1. ∀ v<t+1. y u j = y v j) ∨ (∀ s<t+1. y s j = s)

if j-prop: j<n for j
proof−

show (∀ u<t+1. ∀ v<t+1. y u j = y v j) ∨ (∀ s<t+1. y s j = s)
proof −

consider j ∈ B k | ∃ ii<k. j ∈ B ii using Bf-props(2) j-prop
by (metis UN-E atMost-iff le-neq-implies-less lessThan-iff)

then have y a j = y b j ∨ y s j = s if a < t + 1 b < t +1 s < t +1 for a b s
proof cases

case 1
then have y a j = S (?f a) j using that(1) unfolding y-def by auto
also have ... = f j using Bf-props(6) f-cube 1 that(1) by auto
also have ... = S (?f b) j using Bf-props(6) f-cube 1 that(2) by auto
also have ... = y b j using that(2) unfolding y-def by simp
finally show ?thesis by simp

next
case 2
then obtain ii where ii-prop: ii < k ∧ j ∈ B ii by blast
then consider ii < k − v | ii ≥ k − v ∧ ii < k − u | ii ≥ k − u ∧ ii < k

using not-less
by blast

then show ?thesis
proof cases

case 1
then have y a j = S (?f a) j using that(1) unfolding y-def by auto
also have ... = (?f a) ii using Bf-props(6) f-cube that(1) ii-prop by auto
also have ... = 0 using 1 by (simp add: ii-prop)
also have ... = (?f b) ii using 1 by (simp add: ii-prop)
also have ... = S (?f b) j using Bf-props(6) f-cube that(2) ii-prop by

auto
also have ... = y b j using that(2) unfolding y-def by auto
finally show ?thesis by simp

next
case 2
then have y s j = S (?f s) j using that(3) unfolding y-def by auto
also have ... = (?f s) ii using Bf-props(6) f-cube that(3) ii-prop by auto
also have ... = s using 2 by (simp add: ii-prop)
finally show ?thesis by simp

next
case 3
then have y a j = S (?f a) j using that(1) unfolding y-def by auto

49

also have ... = (?f a) ii using Bf-props(6) f-cube that(1) ii-prop by auto
also have ... = t using 3 uv-props by auto
also have ... = (?f b) ii using 3 uv-props by auto
also have ... = S (?f b) j using Bf-props(6) f-cube that(2) ii-prop by

auto
also have ... = y b j using that(2) unfolding y-def by auto
finally show ?thesis by simp

qed
qed
then show ?thesis by blast

qed
qed
moreover have ∃ j < n. ∀ s<t+1. y s j = s
proof −

have k > 0 using uv-props by simp
have k − v < k using uv-props by auto
have k − v < k − u using uv-props by auto
then have B (k − v) 6= {} using Bf-props(3) uv-props by auto
then obtain j where j-prop: j ∈ B (k − v) ∧ j < n using Bf-props(2) uv-props

by force
then have y s j = s if s<t+1 for s
proof

have y s j = S (?f s) j using that unfolding y-def by auto
also have ... = (?f s) (k − v) using Bf-props(6) f-cube that j-prop ‹k − v

< k› by fast
also have ... = s using that j-prop ‹k − v < k − u› by simp
finally show ?thesis .

qed
then show ∃ j < n. ∀ s<t+1. y s j = s using j-prop by blast

qed
ultimately have Z1: is-line y n (t+1) unfolding is-line-def by blast
moreover
{

have k-colour : χ e < k if e ∈ y ‘ {..<t+1} for e
using ‹y ∈ {..<t+1} →E cube n (t + 1)› ‹χ ∈ cube n (t + 1)
→E {..<k}› that by auto

have χ e1 = χ e2 ∧ χ e1 < k if e1 ∈ y ‘ {..<t+1} e2 ∈ y ‘ {..<t+1} for e1 e2
proof

from that obtain i1 i2 where i-props: i1 < t + 1 i2 < t + 1 e1 = y i1 e2
= y i2 by blast

from i-props(1,2) have χ (y i1) = χ (y i2)
proof (induction i1 i2 rule: linorder-wlog)

case (le a b)
then show ?case
proof (cases a = b)

case True
then show ?thesis by blast

next
case False

50

then have a < b using le by linarith
then consider b = t | b < t using le.prems(2) by linarith
then show ?thesis
proof cases

case 1
then have y b ∈ S ‘ classes k t v
proof −

have y b = S (?f b) unfolding y-def using ‹b = t› by auto
moreover have ?f b ∈ classes k t v using ‹b = t› f-classes-v by blast
ultimately show y b ∈ S ‘ classes k t v by blast

qed
moreover have x u ∈ classes k t u
proof −

have x u cord = t if cord ∈ {k − u..<k} for cord using uv-props that
unfolding x-def by simp

moreover
{

have x u cord 6= t if cord ∈ {..<k − u} for cord
using uv-props that assms(2) unfolding x-def by auto

then have t /∈ x u ‘ {..<k − u} by blast
}
ultimately show x u ∈ classes k t u unfolding classes-def

using ‹x ‘ {..k} ⊆ cube k (t + 1)› uv-props by blast
qed
moreover have x v ∈ classes k t v
proof −

have x v cord = t if cord ∈ {k − v..<k} for cord using uv-props that
unfolding x-def by simp

moreover
{

have x v cord 6= t if cord ∈ {..<k − v} for cord
using uv-props that assms(2) unfolding x-def by auto

then have t /∈ x v ‘ {..<k − v} by blast
}
ultimately show x v ∈ classes k t v unfolding classes-def

using ‹x ‘ {..k} ⊆ cube k (t + 1)› uv-props by blast
qed
moreover have χ (y b) = χ (S (x v))

using assms(1) calculation(1, 3) unfolding layered-subspace-def by
(metis imageE uv-props)

moreover have y a ∈ S ‘ classes k t u
proof −

have y a = S (?f a) unfolding y-def using ‹a < b› 1 by simp
moreover have ?f a ∈ classes k t u using ‹a < b› 1 f-classes-u by

blast
ultimately show y a ∈ S ‘ classes k t u by blast

qed
moreover have χ (y a) = χ (S (x u)) using assms(1) calculation(2, 5)

unfolding layered-subspace-def by (metis imageE uv-props)

51

ultimately have χ (y a) = χ (y b) using uv-props by simp
then show ?thesis by blast

next
case 2
then have a < t using ‹a < b› less-trans by blast
then have y a ∈ S ‘ classes k t u
proof −

have y a = S (?f a) unfolding y-def using ‹a < t› by auto
moreover have ?f a ∈ classes k t u using ‹a < t› f-classes-u by blast
ultimately show y a ∈ S ‘ classes k t u by blast

qed
moreover have y b ∈ S ‘ classes k t u
proof −

have y b = S (?f b) unfolding y-def using ‹b < t› by auto
moreover have ?f b ∈ classes k t u using ‹b < t› f-classes-u by blast
ultimately show y b ∈ S ‘ classes k t u by blast

qed
ultimately have χ (y a) = χ (y b) using assms(1) uv-props unfolding

layered-subspace-def
by (metis imageE)

then show ?thesis by blast
qed

qed
next

case (sym a b)
then show ?case by presburger

qed
then show χ e1 = χ e2 using i-props(3,4) by blast

qed (use that(1) k-colour in blast)
then have Z2: ∃ c < k. ∀ e ∈ y ‘ {..<t+1}. χ e = c

by (meson image-eqI lessThan-iff less-add-one)
}
ultimately show ∃L c. c < k ∧ is-line L n (t + 1) ∧ (∀ y∈L ‘ {..<t + 1}. χ y

= c)
by blast

qed

2.3 Corollary 6
corollary lhj-imp-hj:

assumes (
∧

r k. lhj r t k)
and t>0

shows (hj r (t+1))
using assms(1)[of r r] assms(2) unfolding lhj-def hj-def using layered-subspace-to-mono-line[of

- r - t] by metis

52

2.4 Main result
2.4.1 Edge cases and auxiliary lemmas
lemma single-point-line:

assumes N > 0
shows is-line (λs∈{..<1}. λa∈{..<N}. 0) N 1
using assms unfolding is-line-def cube-def by auto

lemma single-point-line-is-monochromatic:
assumes χ ∈ cube N 1 →E {..<r} N > 0
shows (∃ c < r . is-line (λs∈{..<1}. λa∈{..<N}. 0) N 1 ∧ (∀ i ∈
(λs∈{..<1}. λa∈{..<N}. 0) ‘ {..<1}. χ i = c))

proof −
have is-line (λs∈{..<1}. λa∈{..<N}. 0) N 1 using assms(2) single-point-line by

blast
moreover have ∃ c < r . χ ((λs∈{..<1}. λa∈{..<N}. 0) j) = c

if (j::nat) < 1 for j using assms line-points-in-cube calculation that unfolding
cube-def by blast

ultimately show ?thesis by auto
qed

lemma hj-r-nonzero-t-0:
assumes r > 0
shows hj r 0

proof−
have (∃L c. c < r ∧ is-line L N ′ 0 ∧ (∀ y ∈ L ‘ {..<0::nat}. χ y = c))

if N ′ ≥ 1 χ ∈ cube N ′ 0 →E {..<r} for N ′ χ using assms is-line-def that(1)
by fastforce

then show ?thesis unfolding hj-def by auto
qed

Any cube over 1 element always has a single point, which also forms the only
line in the cube. Since it’s a single point line, it’s trivially monochromatic.
We show the result for dimension 1.
lemma hj-t-1: hj r 1

unfolding hj-def
proof−

let ?N = 1
have ∃L c. c < r ∧ is-line L N ′ 1 ∧ (∀ y∈L ‘ {..<1}. χ y = c) if N ′ ≥ ?N χ ∈

cube N ′ 1 →E {..<r} for N ′ χ
using single-point-line-is-monochromatic[of χ N ′ r] that by force

then show ∃N>0. ∀N ′≥N . ∀χ. χ ∈ cube N ′ 1 →E {..<r} −→ (∃L c. c < r ∧
is-line L N ′ 1 ∧ (∀ y∈L ‘ {..<1}. χ y = c))

by blast
qed

53

2.4.2 Main theorem

We state the main result hj r t. The explanation for the choice of assumption
is offered subsequently.
theorem hales-jewett:

assumes ¬(r = 0 ∧ t = 0)
shows hj r t
using assms

proof (induction t arbitrary: r)
case 0
then show ?case using hj-r-nonzero-t-0[of r] by blast

next
case (Suc t)
then show ?case using hj-t-1[of r] hj-imp-lhj[of t] lhj-imp-hj[of t r] by auto

qed

We offer a justification for having excluded the special case r = t = 0 from
the statement of the main theorem hales-jewett. The exclusion is a conse-
quence of the fact that colourings are defined as members of the function set
cube n t →E {..<r}, which for r = t = 0 means there’s a dummy colouring
λx. undefined, even though cube n 0 = {} for n > 0. Hence, in this case,
no line exists at all (let alone one monochromatic under the aforementioned
colouring). This means hj 0 0 =⇒ False—but only because of the quirky
behaviour of the FuncSet cube n t →E {..<r}. This could have been cir-
cumvented by letting colourings χ be arbitrary functions constraint only by
χ ‘ cube n t ⊆ {..<r}. We avoided this in order to have consistency with the
cube’s definition, for which FuncSets were crucial because the proof heavily
relies on arguments about the cardinality of the cube. he constraint x ‘
{..<n} ⊆ {..<t} for elements x of Cn

t would not have sufficed there, as there
are infinitely many functions over the naturals satisfying it.
end

References

[1] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory,
2nd Edition. Wiley-Interscience, March 1990.

[2] K. Kreuzer and M. Eberl. Van der Waerden’s Theorem. Archive of For-
mal Proofs, June 2021. https://isa-afp.org/entries/Van_der_Waerden.
html, Formal proof development.

54

https://isa-afp.org/entries/Van_der_Waerden.html
https://isa-afp.org/entries/Van_der_Waerden.html

	Preliminaries
	The n-dimensional cube over t elements
	Lines
	Subspaces
	Equivalence classes

	Core proofs
	Theorem 4
	Base case of Theorem 4
	Induction step of theorem 4

	Theorem 5
	Corollary 6
	Main result
	Edge cases and auxiliary lemmas
	Main theorem

