Solving Cubic and Quartic Equations

René Thiemann

September 3, 2021

Abstract

We formalize Cardano's formula to solve a cubic equation

$$ax^3 + bx^2 + cx + d = 0$$
,

as well as Ferrari's formula to solve a quartic equation [1]. We further turn both formulas into executable algorithms based on the algebraic number implementation in the AFP [2]. To this end we also slightly extended this library, namely by making the minimal polynomial of an algebraic number executable, and by defining and implementing n-th roots of complex numbers.

Contents

	Feri	cari's formula for solving quartic equations	2
	1.1	Translation to depressed case	2
	1.2	Solving the depressed case via Ferrari's formula	2
2	Car	dano's formula for solving cubic equations	4
	2.1	Translation to depressed case	4
	2.2	Solving the depressed case in arbitrary fields	4
	2.3	Solving the depressed case for complex numbers	5
	2.4	Solving the depressed case for real numbers	7
3	_	elementation of the minimal polynomial of a real or com-	11
4	n-th	roots of complex numbers	15
4		An algorithm to compute all complex roots of (algebraic)	
4	4.1	An algorithm to compute all complex roots of (algebraic) complex numbers	15
4		An algorithm to compute all complex roots of (algebraic)	15
4 5	4.1	An algorithm to compute all complex roots of (algebraic) complex numbers	15 16

1 Ferrari's formula for solving quartic equations

```
theory Ferraris-Formula
imports
Polynomial-Factorization. Explicit-Roots
Polynomial-Interpolation. Ring-Hom-Poly
Complex-Geometry. More-Complex
begin
```

1.1 Translation to depressed case

Solving an arbitrary quartic equation can easily be turned into the depressed case, i.e., where there is no cubic part.

```
lemma to-depressed-quartic: fixes a4 :: 'a :: field-char-0
 assumes a4: a4 \neq 0
 and b: b = a3 / a4
 and c: c = a2 / a4
 and d: d = a1 / a4
 and e: e = a0 / a4
 and p: p = c - (3/8) * b^2
 and q: q = (b^3 - 4*b*c + 8*d) / 8
 and r: r = (-3 * b^4 + 256 * e - 64 * b * d + 16 * b^2 * c) / 256
 and x: x = y - b/4
shows a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 = 0
 \longleftrightarrow y^4 + p * y^2 + q * y + r = 0
proof -
 have a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 = 0 \longleftrightarrow
   (a4 * x^2 + a3 * x^3 + a2 * x^2 + a1 * x + a0) / a4 = 0 using a4 by auto
 also have (a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0) / a4
   = x^2 + b * x^3 + c * x^2 + d * x + e
   unfolding b c d e using a4 by (simp add: field-simps)
 also have ... = y^4 + p * y^2 + q * y + r
   unfolding x p q r
   by (simp add: field-simps power4-eq-xxxx power3-eq-cube power2-eq-square)
 finally show ?thesis.
qed
lemma biquadratic-solution: fixes p \ q :: 'a :: field-char-0
 shows y^4 + p * y^2 + q = 0 \longleftrightarrow (\exists z. z^2 + p * z + q = 0 \land z = y^2)
 by (auto simp: field-simps power4-eq-xxxx power2-eq-square)
```

1.2 Solving the depressed case via Ferrari's formula

lemma depressed-quartic-Ferrari: fixes $p \neq r :: 'a :: field-char-0$

```
assumes cubic-root: 8*m^3 + (8*p)*m^2 + (2*p^2 - 8*r)*m - q^2
 and q\theta: q \neq \theta — otherwise m might be zero, so a is zero and then there is a
division by zero in b1 and b2
 and sqrt: a * a = 2 * m
 and b1: b1 = p / 2 + m - q / (2 * a)
 and b2: b2 = p / 2 + m + q / (2 * a)
 shows y^4 + p * y^2 + q * y + r = 0 \longleftrightarrow poly [:b1,a,1:] y = 0 \lor poly [:b2,-a,1:]
y = 0
proof -
 let ?N = y^2 + p / 2 + m
 let ?M = a * y - q / (2 * a)
 from cubic-root q0 have m0: m \neq 0 by auto
 from sqrt \ m\theta have a\theta: a \neq \theta by auto
 define N where N = ?N
 define M where M = ?M
 note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
 from cubic-root have 8*m^3 = -(8*p)*m^2 - (2*p^2 - 8*r)*m +
   by (simp add: powers)
 from arg\text{-}cong[OF this, of (*) 4]
 have id: 32 * m^3 = 4 * (-(8 * p) * m^2 - (2 * p^2 - 8 * r) * m + q^2) by
 let ?add = 2 * y^2 * m + p * m + m^2
 have y^2 + p * y^2 + q * y + r = 0 \longleftrightarrow
    (y^2 + p / 2)^2 = -q * y - r + p^2 / 4
   by (simp add: powers, algebra)
 also have ... \longleftrightarrow (y^2 + p / 2)^2 + ?add = -q * y - r + p^2 / 4 + ?add
bv simp
 also have ... \longleftrightarrow ?N^2 = 2 * m * y^2 - q * y + m^2 + m * p + p^2 / 4 - r
   by (simp add: powers)
 also have 2 * m * y^2 - q * y + m^2 + m * p + p^2 / 4 - r =
       ?M ^ 2 using m0 id a0 sqrt by (simp add: powers, algebra)
 also have ?N^2 = ?M^2 \longleftrightarrow (?N + ?M) * (?N - ?M) = 0
   unfolding N-def[symmetric] M-def[symmetric] by algebra
 also have ... \longleftrightarrow ?N + ?M = 0 \lor ?N - ?M = 0 by simp
 also have ?N + ?M = y^2 + a * y + b1
   by (simp add: b1)
 also have ?N - ?M = y^2 - a * y + b2
   by (simp add: b2)
 also have y^2 + a * y + b1 = 0 \longleftrightarrow poly [:b1,a,1:] y = 0
   by (simp add: powers)
 also have y^2 - a * y + b2 = 0 \longleftrightarrow poly [:b2, -a, 1:] y = 0
   by (simp add: powers)
 finally show ?thesis.
qed
```

end

2 Cardano's formula for solving cubic equations

```
theory Cardanos-Formula
imports
Polynomial-Factorization.Explicit-Roots
Polynomial-Interpolation.Ring-Hom-Poly
Complex-Geometry.More-Complex
Algebraic-Numbers.Complex-Roots-Real-Poly
begin
```

2.1 Translation to depressed case

Solving an arbitrary cubic equation can easily be turned into the depressed case, i.e., where there is no quadratic part.

```
lemma to-depressed-cubic: fixes a :: 'a :: field-char-0
 assumes a: a \neq 0
 and xy: x = y - b / (3 * a)
 and e: e = (c - b^2 / (3 * a)) / a
 and f: f = (d + 2 * b^3 / (27 * a^2) - b * c / (3 * a)) / a
shows (a * x ^3 + b * x^2 + c * x + d = 0) \longleftrightarrow y^3 + e * y + f = 0
proof -
 let ?yexp = y^3 + e * y + f
 have a * x^3 + b * x^2 + c * x + d = 0 \longleftrightarrow (a * x^3 + b * x^2 + c * x + d)
d) / a = 0
   using a by auto
  also have (a * x^3 + b * x^2 + c * x + d) / a = ?yexp unfolding xy e f
power3-eq-cube power2-eq-square using a
   by (simp add: field-simps)
 finally show ?thesis.
qed
```

2.2 Solving the depressed case in arbitrary fields

```
lemma cubic-depressed: fixes e: 'a:: field-char-0
assumes yz: e \neq 0 \Longrightarrow z^2 - y * z - e / 3 = 0
and u: e \neq 0 \Longrightarrow u = z^3
and v: v = -(e^3 / 27)
shows y^3 + e * y + f = 0 \longleftrightarrow (if e = 0 then y^3 = -f else u^2 + f * u + v = 0)
proof —
let ?yexp = y^3 + e * y + f
show ?thesis
proof (cases e = 0)
case False
note yz = yz[OF False]
from yz have eyz: e = 3 * (z^2 - y * z) by auto
from yz False have z0: z \neq 0 by auto
have ?yexp = 0 \longleftrightarrow z^3 * ?yexp = 0 using z0 by simp
also have z^3 * ?yexp = z^6 + f * z^3 - e^3/27 unfolding eyz by algebra
```

```
also have ... = u^2 + f * u + v unfolding u[OF\ False]\ v by algebra finally show ?thesis using False by auto next case True show ?thesis unfolding True by (auto,\ algebra) qed qed
```

2.3 Solving the depressed case for complex numbers

In the complex-numbers-case, the quadratic equation for u is always solvable, and the main challenge here is prove that it does not matter which solution of the quadratic equation is considered (this is the diff:False case in the proof below.)

```
\mathbf{lemma}\ solve\text{-}cubic\text{-}depressed\text{-}Cardano\text{-}complex:}\ \mathbf{fixes}\ e:: complex
 assumes e\theta: e \neq \theta
 and v: v = -(e^3 / 27)
 and u: u^2 + f * u + v = 0
shows y^3 + e * y + f = 0 \longleftrightarrow (\exists z. z^3 = u \land y = z - e / (3 * z))
proof -
  from v \in \theta have v\theta: v \neq \theta by auto
 from e\theta have (if \ e = \theta \ then \ x \ else \ y) = y for x \ y :: bool by auto
 note main = cubic\text{-}depressed[OF - - v, unfolded this]
 show ?thesis (is ?l = ?r)
 proof
   assume ?r
   then obtain z where z: z^3 = u and y: y = z - e / (3 * z) by auto
   from u \ v\theta have u\theta: u \neq \theta by auto
   from z u\theta have z\theta: z \neq \theta by auto
   show ?l
   proof (subst main)
     \mathbf{show}\ u^2 + f * u + v = \theta\ \mathbf{by}\ fact
     show u = z^3 unfolding z by simp
     show z^2 - y * z - e / 3 = \theta unfolding y using z\theta
       by (auto simp: field-simps power2-eq-square)
   qed
  next
   assume ?l
   let ?yexp = y^3 + e * y + f
   have y\theta: ?yexp = \theta using \langle ?l \rangle by auto
   define p where p = [: -e/3, -y, 1:]
   have deg: degree p = 2 unfolding p-def by auto
   define z where z = hd (croots2 p)
   have z \in set (croots2 p) unfolding croots2-def Let-def z-def by auto
   with croots2[OF\ deg] have pz:\ poly\ p\ z=0 by auto
   from pz \ e\theta have z\theta: z \neq \theta unfolding p-def by auto
    from pz have yz: y * z = z * z - e / 3 unfolding p-def by (auto simp:
field-simps)
```

```
from arg-cong[OF this, of \lambda x. x / z] z0 have y = z - e / (3 * z)
 by (auto simp: field-simps)
have \exists u z. u^2 + f * u + v = 0 \land z^3 = u \land y = z - e / (3 * z)
proof (intro exI conjI)
 show y = z - e / (3 * z) by fact
 from y\theta have \theta = ?yexp * z^3 by auto
 also have ... = (y * z)^3 + e * (y * z) * z^2 + f * z^3 by algebra
 also have \dots = (z^3)^2 + f * (z^3) + v unfolding yz v by algebra
 finally show (z^3)^2 + f * (z^3) + v = 0 by simp
qed simp
then obtain uu z where
  *: uu^2 + f * uu + v = 0 z ^3 = uu y = z - e / (3 * z) by blast
   show ?r
proof (cases uu = u)
 case True
 thus ?thesis using * by auto
next
 case diff: False
 define p where p = [:v,f,1:]
 have p2: degree p = 2 unfolding p-def by auto
 have poly: poly p \ u = 0 poly p \ uu = 0 using u *(1) unfolding p-def
   by (auto simp: field-simps power2-eq-square)
 have u\theta: u \neq \theta uu \neq \theta using poly v\theta unfolding p-def by auto
 {
   from poly(1) have [:-u,1:] dvd p by (meson poly-eq-0-iff-dvd)
   then obtain q where pq: p = q * [:-u,1:] by auto
   from poly(2)[unfolded pq poly-mult] diff have poly q uu = 0 by auto
   hence [:-uu,1:] dvd q by (meson poly-eq-0-iff-dvd)
   then obtain q' where qq': q = q' * [:-uu,1:] by auto
   with pq have pq: p = q' * [:-uu,1:] * [:-u,1:] by auto
   from pq[unfolded p-def] have q': q' \neq 0 by auto
   from arg\text{-}cong[OF\ pq,\ of\ degree,\ unfolded\ p2]
   have 2 = degree (q' * [:- uu, 1:] * [:- u, 1:]).
   also have \dots = degree \ q' + degree \ [:-uu, 1:] + degree \ [:-u, 1:]
     apply (subst degree-mult-eq)
     subgoal using q' by (metis mult-eq-0-iff pCons-eq-0-iff zero-neq-one)
     subgoal by force
     by (subst degree-mult-eq[OF q'], auto)
   also have \dots = degree \ q' + 2 \ by \ simp
   finally have dq: degree q' = 0 by simp
   from dq obtain c where q': q' = [: c:] by (metis\ degree-eq-zero\ E)
   from pq[unfolded \ q' \ p\text{-}def] have c = 1 by auto
   with q' have q' = 1 by simp
   with pq have [: -u, 1:] * [: -uu, 1:] = p by simp
 from this[unfolded p-def, simplified] have prod: uu * u = v by simp
 hence uu: u = v / uu using u\theta by (simp add: field-simps)
 define zz where zz = -e / (3 * z)
 show ?r using *(2-) uu unfolding v using u\theta
```

```
\begin{array}{c} \mathbf{by}\ (intro\ exI[of\ -\ zz],\ auto\ simp:\ zz\text{-}def\ field\text{-}simps)\\ \mathbf{qed}\\ \mathbf{qed}\\ \mathbf{qed} \end{array}
```

2.4 Solving the depressed case for real numbers

```
definition discriminant-cubic-depressed :: 'a :: comm-ring-1 \Rightarrow 'a \Rightarrow 'a where discriminant-cubic-depressed ef = -(4 * e^3 + 27 * f^2)
```

```
lemma discriminant-cubic-depressed: assumes [:-x,1:] * [:-y,1:] * [:-z,1:] = [:f,e,0,1:] shows discriminant-cubic-depressed e f = (x-y)^2 * (x-z)^2 * (y-z)^2 proof – from assms have f: f = -(z * (y * x)) and e: e = y * x - z * (-y - x) and z: z = -y - x by auto show ?thesis unfolding discriminant-cubic-depressed-def e f z by (simp add: power2-eq-square power3-eq-cube field-simps)
```

If the discriminant is negative, then there is exactly one real root

```
lemma solve-cubic-depressed-Cardano-real: fixes e f v u :: real
  defines y1 \equiv root \ 3 \ u - e \ / \ (3 * root \ 3 \ u)
   and \Delta \equiv discriminant-cubic-depressed e f
  assumes e\theta: e \neq \theta
  and v: v = -(e^3 / 27)
 and u: u^2 + f * u + v = 0
shows y1^3 + e * y1 + f = 0
  \Delta \neq 0 \Longrightarrow y^3 + e * y + f = 0 \Longrightarrow y = y1
proof -
  let ?c = complex-of-real
  let ?y = ?c y
 let ?e = ?c e
 let ?u = ?c u
 let ?v = ?c v
  let ?f = ?c f
  {
   \mathbf{fix} \ y :: real
   let ?y = ?c y
   have y^3 + e * y + f = 0 \longleftrightarrow ?c (y^3 + e * y + f) = ?c 0
     using of-real-eq-iff by blast
   also have ... \longleftrightarrow ?y^3 + ?e * ?y + ?f = 0 by simp also have ... \longleftrightarrow (\exists z. z^3 = ?u \land ?y = z - ?e / (\beta * z))
   \mathbf{proof} (rule solve-cubic-depressed-Cardano-complex)
     show ?e \neq \theta using e\theta by auto
     show ?v = -(?e ^3 / 27) unfolding v by simp
     show ?u^2 + ?f * ?u + ?v = 0 using arg-cong[OF u, of ?c] by simp
    ged
   finally have y^3 + e * y + f = 0 \longleftrightarrow (\exists z. z^3 = ?u \land ?y = z - ?e / (3 * ))
```

```
z)).
 } note pre = this
 show y1: y1^3 + e * y1 + f = 0 unfolding pre y1-def
   by (intro exI[of - ?c (root 3 u)], simp only: of-real-power[symmetric],
       simp del: of-real-power add: odd-real-root-pow)
 from u have \{z. \ poly \ [:v,f,1:] \ z = 0\} \neq \{\}
   by (auto simp add: field-simps power2-eq-square)
 hence set (rroots2 [:v,f,1:]) \neq \{\}
   by (subst rroots2[symmetric], auto)
 hence rroots2 [:v,f,1:] \neq [] by simp
 from this[unfolded rroots2-def Let-def, simplified]
 have f^2 - 4 * v \ge 0
   by (auto split: if-splits simp: numeral-2-eq-2 field-simps power2-eq-square)
 hence delta-le-\theta: \Delta \leq \theta unfolding \Delta-def discriminant-cubic-depressed-def v by
auto
 assume Delta-non-\theta: \Delta \neq \theta
 with delta-le-0 have delta-neg: \Delta < 0 by simp
 let ?p = [:f,e,0,1:]
 have poly: poly ?p y = 0 \longleftrightarrow y^3 + e * y + f = 0 for y
   by (simp add: field-simps power2-eq-square power3-eq-cube)
 from y1 have poly ?p y1 = 0 unfolding poly.
 hence [:-y1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
 then obtain q where pq: ?p = [:-y1,1:] * q by blast
 {
   fix y2
   assume poly ?p \ y2 = 0 \ y2 \neq y1
   from this [unfolded pq] poly-mult have poly q y2 = 0 by auto
   from this [unfolded poly-eq-0-iff-dvd] obtain r where qr: q = [:-y2,1:] * r by
blast
     have r\theta: r \neq \theta using pq unfolding qr poly-mult by auto
     have 3 = degree ?p by simp
     also have \dots = 2 + degree \ r \ unfolding \ pq \ qr
      apply (subst degree-mult-eq, force)
      subgoal using r\theta pq qr by force
      by (subst\ degree-mult-eq[OF-r0],\ auto)
     finally have degree r = 1 by simp
     from degree1-coeffs [OF this] obtain yy a where r: r = [:yy,a:] by auto
     define y\beta where y\beta = -yy
     with r have r: r = [:-y3,a:] by auto
     from pq[unfolded qr r] have a = 1 by auto
     with r have \exists y3. r = [:-y3,1:] by auto
   then obtain y3 where r: r = [:-y3,1:] by auto
   have py: ?p = [:-y1,1:] * [:-y2,1:] * [:-y3,1:] unfolding pq \ qr \ r by algebra
   from discriminant-cubic-depressed [OF this [symmetric], folded \Delta-def]
   have delta: \Delta = (y1 - y2)^2 * (y1 - y3)^2 * (y2 - y3)^2.
   have d\theta: \Delta \geq \theta unfolding delta by auto
```

```
with delta-neg have False by auto
 with y1 show y^3 + e * y + f = 0 \Longrightarrow y = y1 unfolding poly by auto
If the discriminant is non-negative, then all roots are real
lemma solve-cubic-depressed-Cardano-all-real-roots: fixes e f v :: real and y ::
complex
 defines \Delta \equiv discriminant-cubic-depressed e f
 assumes Delta: \Delta \geq 0
 and rt: y^3 + e * y + f = 0
shows y \in \mathbb{R}
proof -
 note powers = field-simps power3-eq-cube power2-eq-square
 let ?c = complex-of-real
 let ?e = ?c e
 let ?f = ?c f
 let ?cp = [:?f,?e,0,1:]
 let ?p = [:f,e,0,1:]
 from odd-degree-imp-real-root[of ?p] obtain x1 where poly ?p x1 = 0 by auto
 hence [:-x1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
 then obtain q where pq: ?p = [:-x1,1:] * q by auto
 from arg-cong[OF pq, of degree]
 have \beta = degree([:-x1,1:]*q) by simp
 also have \dots = 1 + degree q
   by (subst degree-mult-eq, insert pq, auto)
 finally have dq: degree q = 2 by auto
 let ?cc = map\text{-poly }?c
 let ?q = ?cc q
 have cpq: ?cc ?p = ?cc [:-x1,1:] * ?q unfolding pq hom-distribs by simp
 let ?x1 = ?c \ x1
 have dq': degree ?q = 2 using dq by simp
 have \neg constant (poly ?q) using dq by (simp add: constant-degree)
 from fundamental-theorem-of-algebra[OF this] obtain x2 where x2: poly ?q x2
= 0 by blast
 have x2 \in \mathbb{R}
 proof (rule ccontr)
   assume x2r: x2 \notin \mathbb{R}
   define x3 where x3 = cnj x2
   from x2r have x23: x2 \neq x3 unfolding x3-def using Reals-cnj-iff by force
   have x3: poly ?q x3 = 0 unfolding x3-def
    by (rule complex-conjugate-root[OF - x2], auto)
   from x2[unfolded\ poly-eq-0-iff-dvd] obtain r where qr:\ ?q = [:-x2,1:]*r by
auto
    from arg\text{-}cong[OF this[symmetric], of <math>\lambda x. poly x x3, unfolded poly-mult x3
mult-eq-0-iff] x23
   have x3: poly r x3 = 0 by auto
   from arg\text{-}cong[OF\ qr,\ of\ degree]
   have 2 = degree ([:-x2,1:] * r) using dq' by simp
```

```
also have \dots = 1 + degree \ r \ by \ (subst \ degree-mult-eq, \ insert \ pq \ qr, \ auto)
   finally have degree r = 1 by simp
   from degree1-coeffs[OF this] obtain a b where r: r = [:a,b:] by auto
   from cpq[unfolded\ qr\ r] have b1:\ b=1 by simp
   with x3 r have a + x3 = 0 by simp
   hence a = -x3 by algebra
   with b1 r have r: r = [:-x3,1:] by auto
    have ?cc ?p = ?cc [:-x1,1:] * [:-x2,1:] * [:-x3,1:] unfolding cpq \ qr \ r by
algebra
   also have ?cc [:-x1,1:] = [:-?x1,1:] by simp
   also have ?cc ?p = ?cp by simp
   finally have id: [:-?x1,1:] * [:-x2,1:] * [:-x3,1:] = ?cp by simp
   define x23 where x23 = -4 * (Im x2)^2
   define x12c where x12c = ?x1 - x2
   define x12 where x12 = (Re \ x12c) ^2 + (Im \ x12c)^2
   have x23-\theta: x23 < \theta unfolding x23-def using x2r using complex-is-Real-iff
by force
  have Im \ x12c \neq 0 unfolding x12c-def using x2r using complex-is-Real-iff by
force
   hence (Im \ x12c)^2 > 0 by simp
   hence x12: x12 > 0 unfolding x12-def using sum-power2-gt-zero-iff by auto
   from discriminant-cubic-depressed[OF id]
   have ?c \Delta = ((?x1 - x2)^2 * (?x1 - x3)^2) * (x2 - x3)^2
    unfolding \Delta-def discriminant-cubic-depressed-def by simp
    also have (x^2 - x^3)^2 = ?c \ x^2 \ unfolding \ x^3 - def \ x^2 - def \ by \ (simp \ add:
complex-eq-iff power2-eq-square)
   also have (?x1 - x2)^2 * (?x1 - x3)^2 = ((?x1 - x2) * (?x1 - x3))^2
    by (simp add: power2-eq-square)
   also have ?x1 - x3 = cnj (?x1 - x2) unfolding x3-def by simp
   also have (?x1 - x2) = x12c unfolding x12c-def...
    also have x12c * cnj x12c = ?c x12 by (simp add: x12-def complex-eq-iff
power2-eq-square)
   finally have ?c \Delta = ?c (x12^2 * x23) by simp
   hence \Delta = x12^2 * x23 by (rule of-real-hom.injectivity)
   also have \dots < 0 using x12 x23-0 by (meson mult-pos-neg zero-less-power)
   finally show False using Delta by simp
 qed
 with x2 obtain x2 where poly ?q (?c x2) = 0 unfolding Reals-def by auto
 hence x2: poly q x2 = 0 by simp
  from x2[unfolded\ poly-eq-0-iff-dvd] obtain r where qr: q = [:-x2,1:] * r by
auto
 from arg-cong[OF qr, of degree]
 have 2 = degree ([:-x2,1:] * r) using dq' by simp
 also have ... = 1 + degree \ r \ by \ (subst \ degree-mult-eq, \ insert \ pq \ qr, \ auto)
 finally have degree r = 1 by simp
 from degree1-coeffs[OF this] obtain a b where r: r = [:a,b:] by auto
 from pq[unfolded\ qr\ r] have b1:\ b=1 by simp
 define x3 where x3 = -a
 have r: r = [:-x3,1:] unfolding r b1 x3-def by simp
```

```
let ?pp = [:-x1,1:] * [:-x2,1:] * [:-x3,1:]
have id: ?p = ?pp unfolding pq qr r by linarith
have True \longleftrightarrow y^3 + e * y + f = 0 using rt by auto
also have y^3 + e * y + f = poly (?cc ?p) y by (simp add: powers)
also have \ldots = poly (?cc ?pp) y unfolding id by simp
also have ?cc ?pp = [:-?c \ x1, \ 1:] * [:-?c \ x2, \ 1:] * [:-?c \ x3, \ 1:]
by simp
also have poly \ldots y = 0 \longleftrightarrow y = ?c \ x1 \lor y = ?c \ x2 \lor y = ?c \ x3
unfolding poly-mult mult-eq-0-iff by auto
finally show y \in \mathbb{R} by auto
```

 \mathbf{end}

3 Implementation of the minimal polynomial of a real or complex algebraic number

This theory provides implementation of the minimal-representing-polynomial of an algebraic number, for both the real-numbers and the complex-numbers.

```
theory Min-Int-Poly-Impl
 imports
   Hermite-Lindemann.Min-Int-Poly
   Algebraic\text{-}Numbers. Real\text{-}Algebraic\text{-}Numbers
   Algebraic-Numbers. Complex-Algebraic-Numbers
begin
definition min-int-poly-real-alg :: real-alg <math>\Rightarrow int \ poly \ \mathbf{where}
 min-int-poly-real-alg\ x = (case\ info-real-alg\ x\ of\ Inl\ r \Rightarrow poly-rat\ r \mid Inr\ (p,-) \Rightarrow
p)
lemma min-int-poly-of-rat: min-int-poly (of-rat r :: 'a :: \{field-char-0, field-gcd\}\})
= poly-rat r
 by (intro min-int-poly-unique, auto)
lemma min-int-poly-real-alg: min-int-poly-real-alg x = min-int-poly (real-of x)
proof (cases info-real-alg x)
 case (Inl\ r)
 show ?thesis unfolding info-real-alg(2)[OF Inl] min-int-poly-real-alg-def Inl
   by (simp add: min-int-poly-of-rat)
next
  case (Inr pair)
 then obtain p n where Inr: info-real-alg x = Inr (p,n) by (cases \ pair, \ auto)
 hence poly-cond p by (transfer, transfer, auto simp: info-2-card)
 hence min-int-poly (real-of x) = p using info-real-alg(1)[OF Inr]
   by (intro min-int-poly-unique, auto)
 thus ?thesis unfolding min-int-poly-real-alg-def Inr by simp
qed
```

```
definition min-int-poly-real :: real <math>\Rightarrow int \ poly \ \mathbf{where}
 [simp]: min-int-poly-real = min-int-poly
lemma min-int-poly-real-code-unfold [code-unfold]: min-int-poly=min-int-poly-real
 by simp
lemma min-int-poly-real-code[code]: min-int-poly-real (real-of x) = min-int-poly-real-alg
 by (simp add: min-int-poly-real-alg)
Now let us head for the complex numbers
definition complex-poly :: int poly \Rightarrow int poly \Rightarrow int poly list where
  complex-poly re im = (let \ i = [:1,0,1:]
    in factors-of-int-poly (poly-add re (poly-mult im i)))
lemma complex-poly: assumes re: re represents (Re x)
  and im: im \ represents \ (Im \ x)
 shows \exists f \in set (complex-poly re im). f represents <math>x \land f. f \in set (complex-poly f \in set)
re\ im) \Longrightarrow poly-cond\ f
proof -
 let ?p = poly-add \ re \ (poly-mult \ im \ [:1, 0, 1:])
 from re have re: re represents complex-of-real (Re x) by simp
 from im have im: im represents complex-of-real (Im x) by simp
 have [:1,0,1:] represents i by auto
  from represents-add[OF re represents-mult[OF im this]]
 have ?p represents of-real (Re\ x) + complex-of-real\ (Im\ x) * i by simp
  also have of-real (Re\ x) + complex-of-real\ (Im\ x) * i = x
   by (metis complex-eq mult.commute)
  finally have p: ?p represents x by auto
 have factors-of-int-poly ?p = complex-poly re im
   unfolding complex-poly-def Let-def by simp
  from factors-of-int-poly(1)[OF\ this]\ factors-of-int-poly(2)[OF\ this,\ of\ x]\ p
  show \exists f \in set (complex-poly re im). f represents <math>x \land f. f \in set (complex-poly f \in set)
re\ im) \Longrightarrow poly\text{-}cond\ f
   unfolding represents-def by auto
qed
definition algebraic\text{-}real :: real \Rightarrow bool  where
  [simp]: algebraic-real = algebraic
lemma algebraic-real-iff[code-unfold]: algebraic = algebraic-real by simp
lemma algebraic-real-code[code]: algebraic-real (real-of x) = True
proof (cases info-real-alg x)
 case (Inl \ r)
 show ?thesis using info-real-alg(2)[OF Inl] by (auto simp: algebraic-of-rat)
```

```
next
 case (Inr pair)
 then obtain p n where Inr: info-real-alg x = Inr (p,n) by (cases pair, auto)
 from info-real-alg(1)[OF Inr] have p represents (real-of x) by auto
 thus ?thesis by (auto simp: algebraic-altdef-ipoly)
qed
lemma algebraic-complex-iff[code-unfold]: algebraic x \longleftrightarrow algebraic (Re \ x) \land algebraic (Re \ x)
gebraic (Im x)
proof
 assume algebraic x
 from this unfolded algebraic-altdef-ipoly obtain p where ipoly p x = 0 p \neq 0
by auto
 from represents-root-poly[OF this] show algebraic (Re x) \land algebraic (Im x)
   unfolding represents-def algebraic-altdef-ipoly by auto
next
 assume algebraic (Re x) \land algebraic (Im x)
 from this [unfolded algebraic-altdef-ipoly] obtain re im where
   re represents (Re x) im represents (Im x) by blast
 from complex-poly[OF\ this] show algebraic\ x
   unfolding represents-def algebraic-altdef-ipoly by auto
qed
lemma algebraic-0[simp]: algebraic 0
 unfolding algebraic-altdef-ipoly
 by (intro\ exI[of - [:0,1:]],\ auto)
lemma min-int-poly-complex-of-real[simp]: min-int-poly (complex-of-real x) = min-int-poly
proof (cases algebraic x)
 case False
 hence \neg algebraic (complex-of-real x) unfolding algebraic-complex-iff by auto
 with False show ?thesis unfolding min-int-poly-def by auto
next
 case True
 from min-int-poly-represents[OF True]
 have min-int-poly x represents x by auto
 thus ?thesis
   by (intro min-int-poly-unique, auto simp: lead-coeff-min-int-poly-pos)
qed
TODO: the implemention might be tuned, since the search process should
be faster when using interval arithmetic to figure out the correct factor.
(One might also implement the search via checking ipoly f(x) = (\theta : x'), but
because of complex-algebraic-number arithmetic, I think that search would
be slower than the current one via "x \in set (complex-roots-of-int-poly f)
definition min-int-poly-complex :: complex <math>\Rightarrow int \ poly \ \mathbf{where}
 min-int-poly-complex \ x = (if \ algebraic \ x \ then \ if \ Im \ x = 0 \ then \ min-int-poly-real
(Re\ x)
```

```
else the (find (\lambda f. x \in set (complex-roots-of-int-poly f)) (complex-poly
(min-int-poly (Re x)) (min-int-poly (Im x))))
         else [:0,1:])
lemma min-int-poly-complex[code-unfold]: <math>min-int-poly = min-int-poly-complex
proof (standard)
   \mathbf{fix} \ x
   define fs where fs = complex-poly (min-int-poly (Re <math>x)) (min-int-poly (Im <math>x))
   let ?f = min-int-poly-complex x
   show min-int-poly x = ?f
   proof (cases algebraic x)
       case False
       thus ?thesis unfolding min-int-poly-def min-int-poly-complex-def by auto
   next
       case True
       show ?thesis
       proof (cases Im \ x = \theta)
          case *: True
         have id: ?f = min\text{-}int\text{-}poly\text{-}real (Re x)  unfolding min\text{-}int\text{-}poly\text{-}complex\text{-}def *
using True by auto
       {\bf show}\ ? the sis\ {\bf unfolding}\ id\ min-int-poly-real-code-unfold[symmetric]\ min-int-poly-complex-of-real[symmetric]\ min-int-poly-complex-of-real[symmet
              using * by (intro arg-cong[of - - min-int-poly] complex-eqI, auto)
       next
          case False
         from True[unfolded algebraic-complex-iff] have algebraic (Re x) algebraic (Im
x) by auto
       from complex-poly[OF\ min-int-poly-represents[OF\ this(1)]\ min-int-poly-represents[OF\ this(1)]
this(2)
         have fs: \exists f \in set fs. ipoly f x = 0 \land f. f \in set fs \Longrightarrow poly-cond f unfolding
fs-def by auto
           let ?fs = find (\lambda f. ipoly f x = 0) fs
           let ?fs' = find (\lambda f. x \in set (complex-roots-of-int-poly f)) fs
           have ?f = the ?fs' unfolding min-int-poly-complex-def fs-def
              using True False by auto
           also have ?fs' = ?fs
              by (rule find-cong[OF refl], subst complex-roots-of-int-poly, insert fs, auto)
           finally have id: ?f = the ?fs.
           from fs(1) have ?fs \neq None unfolding find-None-iff by auto
           then obtain f where Some: ?fs = Some f by auto
           from find-Some-D[OF this] <math>fs(2)[of f]
           show ?thesis unfolding id Some
              by (intro min-int-poly-unique, auto)
       qed
   qed
qed
```

 \mathbf{end}

4 *n*-th roots of complex numbers

```
theory Complex-Roots
imports
Complex-Geometry.More-Complex
Min-Int-Poly-Impl
HOL-Library.Product-Lexorder
begin
```

4.1 An algorithm to compute all complex roots of (algebraic) complex numbers

TODO: The filter instruction might be tuned by using interval arithmetic instead.

```
definition all-croots :: nat \Rightarrow complex \Rightarrow complex \ list \ \mathbf{where}
  all-croots n x = (if n = 0 then [] else
    if algebraic x then
      (let \ p = min-int-poly \ x;
        q = poly-nth-root \ n \ p;
        xs = complex-roots-of-int-poly q
        in filter (\lambda y. y^n = x) xs
    else (SOME ys. set ys = \{y. \ y \hat{n} = x\}))
lemma all-croots-code[code]:
  all-croots n = (if n = 0 then [] else
    if\ algebraic\ x\ then
      (let \ p = min-int-poly \ x;
        q = poly-nth-root \ n \ p;
        xs = complex-roots-of-int-poly q
        in filter (\lambda y. y \hat{n} = x) xs
      else Code.abort (STR "all-croots invoked on non-algebraic number") (\lambda -.
all-croots \ n \ x))
 by (auto simp: all-croots-def)
lemma all-croots: assumes n\theta: n \neq \theta shows set (all-croots n x) = \{y. y^n = x\}
proof (cases algebraic x)
 {f case}\ True
 hence id: (if n = 0 then y else if algebraic x then z else u) = z
   for y z u :: complex list using <math>n\theta by auto
  define p where p = poly-nth-root n (min-int-poly x)
  show ?thesis unfolding Let-def p-def[symmetric] all-croots-def id
  proof (standard, force, standard, simp)
   \mathbf{fix} \ y
   assume y: y \hat{n} = x
   have min-int-poly x represents x using True by auto
   from represents-nth-root[OF n0 y this]
   have p represents y unfolding p-def by auto
   thus y \in set (complex-roots-of-int-poly p)
```

```
by (subst complex-roots-of-int-poly, auto)
qed
next
case False
hence id: (if n=0 then y else if algebraic x then z else u) = u
for y z u :: complex list using n0 by auto
show ?thesis unfolding Let-def all-croots-def id
by (rule some I-ex, rule finite-list, insert n0, blast)
qed
```

4.2 A definition of the complex root of a complex number

While the definition of the complex root is quite natural and easy, the main task is a criterion to determine which of all possible roots of a complex number is the chosen one.

```
definition croot :: nat \Rightarrow complex \Rightarrow complex where
  croot \ n \ x = (rcis \ (root \ n \ (cmod \ x)) \ (arg \ x \ / \ of-nat \ n))
lemma croot-\theta[simp]: croot n \theta = \theta croot \theta x = \theta
  unfolding croot-def by auto
lemma croot-power: assumes n: n \neq 0
 shows (croot \ n \ x) \cap n = x
 unfolding croot-def DeMoivre2
 by (subst real-root-pow-pos2, insert n, auto simp: rcis-cmod-arg)
lemma arg-of-real: arg (of-real x) =
  (if x < 0 then pi else 0)
proof (cases x = \theta)
 {f case} False
 hence x < \theta \lor x > \theta by auto
 thus ?thesis by (intro arg-unique, auto
     simp: complex-sgn-def scaleR-complex.ctr complex-eq-iff)
qed (auto simp: arg-def)
lemma arg-rcis-cis[simp]: assumes x > \theta
 shows arg(rcis x y) = arg(cis y)
 using assms unfolding rcis-def by simp
lemma cis-arg-1[simp]: cis (arg 1) = 1
  using arg-of-real[of 1] by simp
lemma cis-arg-power[simp]: assumes x \neq 0
 shows cis(arg(x \cap n)) = cis(arg x * real n)
proof (induct n)
 case (Suc\ n)
 show ?case unfolding power.simps
 proof (subst cis-arg-mult)
```

```
show cis(arg x + arg(x \cap n)) = cis(arg x * real(Suc n))
     unfolding mult.commute[of arg x] DeMoivre[symmetric]
     unfolding power.simps using Suc
     by (metis DeMoivre cis-mult mult.commute)
   show x * x \cap n \neq 0 using assms by auto
 ged
\mathbf{qed}\ simp
lemma arg\text{-}croot[simp]: arg\ (croot\ n\ x) = arg\ x\ / real\ n
proof (cases n = 0 \lor x = 0)
 \mathbf{case} \ \mathit{True}
 thus ?thesis by (auto simp: arg-def)
next
 {\bf case}\ \mathit{False}
 hence n: n \neq 0 and x: x \neq 0 by auto
 let ?root = croot \ n \ x
 from n have n1: real n \ge 1 real n > 0 real n \ne 0 by auto
 have bounded: -pi < arg x / real n \land arg x / real n \leq pi
 proof (cases arg x < \theta)
   case True
   from arg-bounded[of x] have -pi < arg x by auto
   also have ... \le arg \ x \ / \ real \ n \ using \ n1 \ True
     by (smt (z3) div-by-1 divide-minus-left frac-le)
   finally have one: -pi < arg \ x \ / \ real \ n.
   have arg \ x \ / \ real \ n \le \theta using True n1
     by (smt (verit) divide-less-0-iff)
   also have \dots \leq pi by simp
   finally show ?thesis using one by auto
  next
   case False
   hence ax: arg x \ge 0 by auto
   have arg x / real n \le arg x using n1 ax
     by (smt (verit) div-by-1 frac-le)
   also have \dots \leq pi using arg-bounded[of x] by simp
   finally have one: arg x / real n \le pi.
   have -pi < \theta by simp
   also have \dots \le arg \ x \ / \ real \ n \ using \ ax \ n1 \ by \ simp
   finally show ?thesis using one by auto
  qed
  have arg ?root = arg (cis (arg x / real n))
   unfolding croot-def using x n by simp
 also have \dots = arg \ x \ / \ real \ n
   by (rule arg-unique, force, insert bounded, auto)
 finally show ?thesis.
qed
lemma cos-abs[simp]: cos\ (abs\ x :: real) = cos\ x
proof (cases x < \theta)
 {f case}\ {\it True}
```

```
hence abs: abs \ x = -x \ by \ simp
 show ?thesis unfolding abs by simp
\mathbf{qed}\ simp
lemma cos-mono-le: assumes abs x \leq pi
 and abs \ y \leq pi
shows cos \ x \le cos \ y \longleftrightarrow abs \ y \le abs \ x
proof -
 \mathbf{have}\ cos\ x \leq cos\ y \longleftrightarrow cos\ (abs\ x) \leq cos\ (abs\ y)\ \mathbf{by}\ simp
 also have \dots \longleftrightarrow abs \ y \le abs \ x
   by (subst cos-mono-le-eq, insert assms, auto)
 finally show ?thesis.
qed
lemma abs-add-2-mult-bound: fixes x :: 'a :: linordered-idom
 assumes xy: |x| < y
 shows |x| \leq |x + 2 * of \text{-}int \ i * y|
proof (cases i = \theta)
 {f case}\ i{:}\ False
 let ?oi = of\text{-}int :: int \Rightarrow 'a
 from xy have y: y \ge \theta by auto
 consider (pp) x \ge 0 i \ge 0
    (nn) \ x \le 0 \ i \le 0
    (pn) \ x \ge 0 \ i \le 0
    |(np)| x \leq 0 i \geq 0
   by linarith
  thus ?thesis
 proof cases
   case pp
   thus ?thesis using y by simp
  next
   case nn
   have x \ge x + 2 * ?oi i * y
     using nn y by (simp add: mult-nonneg-nonpos2)
   with nn show ?thesis by linarith
 next
   case pn
   with i have 0 \le x i < 0 by auto
   define j where j = nat(-i) - 1
   define z where z = x - 2 * y
   define u where u = 2 * ?oi (nat j) * y
   have u: u \geq 0 unfolding u-def using y by auto
   have i: i = -int (Suc j)
     using \langle i < \theta \rangle unfolding j-def by simp
   have id: x + 2 * ?oi i * y = z - u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z \le 0 abs z \ge x using xy \ y \ pn(1)
     unfolding z-def by auto
   show ?thesis unfolding id using pn(1) z u by simp
```

```
next
   case np
   with i have 0 \ge x i > 0 by auto
   define j where j = nat i - 1
   have i: i = int (Suc j)
    using \langle i > 0 \rangle unfolding j-def by simp
   define u where u = 2 * ?oi (nat j) * y
   have u: u \geq 0 unfolding u-def using y by auto
   define z where z = -x - 2 * y
   have id: x + 2 * ?oi i * y = - z + u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z \le 0 abs z \ge -x using xy \ y \ np(1)
     unfolding z-def by auto
   show ?thesis unfolding id using np(1) z u by simp
 qed
qed simp
lemma abs-eq-add-2-mult: fixes y :: 'a :: linordered-idom
 assumes abs-id: |x| = |x + 2 * of\text{-int } i * y|
 and xy: -y < x x \le y
 and i: i \neq 0
shows x = y \land i = -1
proof -
 let ?oi = of\text{-}int :: int \Rightarrow 'a
 from xy have y: y > \theta by auto
 consider (pp) x \geq 0 i \geq 0
   \mid (nn) \ x < \theta \ i \leq \theta
   |(pn)| x \geq 0 i \leq 0
   |(np)|x < 0|i \ge 0
   by linarith
 hence ?thesis \lor x = ?oi (-i) * y
 proof cases
   case pp
   thus ?thesis using y abs-id xy i by simp
 next
   case nn
   hence |x + 2 * ?oi i * y| =
     -(x + 2 * ?oi i * y)
     using y nn
    by (intro abs-of-nonpos add-nonpos-nonpos,
        force, simp, intro mult-nonneg-nonpos, auto)
   thus ?thesis using y abs-id xy i nn
    by auto
 next
   case pn
   with i have 0 \le x i < 0 by auto
   define j where j = nat(-i) - 1
   define z where z = x - 2 * y
   define u where u = 2 * ?oi (nat j) * y
```

```
have u: u \geq 0 unfolding u-def using y by auto
   have i: i = -int (Suc j)
     using \langle i < \theta \rangle unfolding j-def by simp
   have id: x + 2 * ?oi i * y = z - u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z \le 0 abs z \ge x using xy \ y \ pn(1)
     unfolding z-def by auto
   from abs-id[unfolded id] have z - u = -x
     using z u pn by auto
   from this[folded\ id] have x = of\text{-}int\ (-i) * y
     by auto
   thus ?thesis by auto
 next
   case np
   with i have 0 \ge x \ i > 0 by auto
   define j where j = nat i - 1
   have i: i = int (Suc j)
    using \langle i > \theta \rangle unfolding j-def by simp
   define u where u = 2 * ?oi (nat j) * y
   have u: u \geq 0 unfolding u-def using y by auto
   define z where z = -x - 2 * y
   have id: x + 2 * ?oi i * y = - z + u
     unfolding i z-def u-def by (simp add: field-simps)
   have z: z \leq \theta
     using xy \ y \ np(1) unfolding z-def by auto
   from abs-id[unfolded id] have -z + u = -x
     using u z np by auto
   from this[folded id] have x = of\text{-int } (-i) * y
    by auto
   thus ?thesis by auto
 qed
 thus ?thesis
 proof
   assume x = ?oi (-i) * y
   with xy i y
   show ?thesis
   by (smt (verit, ccfv-SIG) less-le minus-less-iff mult-le-cancel-right2 mult-minus1-right
mult-minus-left mult-of-int-commute of-int-hom.hom-one of-int-le-1-iff of-int-minus)
 qed
qed
```

This is the core lemma. It tells us that *croot* will choose the principal root, i.e. the root with largest real part and if there are two roots with identical real part, then the largest imaginary part. This criterion will be crucial for implementing *croot*.

```
lemma croot-principal: assumes n: n \neq 0
and y: y \cap n = x
and neq: y \neq croot n x
shows Re \ y < Re \ (croot \ n \ x) \lor Re \ y = Re \ (croot \ n \ x) \land Im \ y < Im \ (croot \ n \ x)
```

```
proof (cases x = \theta)
 {f case}\ True
  with neq y have False by auto
  thus ?thesis ..
next
  case x: False
 let ?root = croot \ n \ x
 from n have n1: real n \ge 1 real n > 0 real n \ne 0 by auto
  from x \ y \ n have y\theta: y \neq \theta by auto
  from croot\text{-}power[OF\ n,\ of\ x]\ y
 have id: ?root \hat{ } n = y \hat{ } n by simp
 hence cmod (?root \widehat{\ } n) = cmod (y \widehat{\ } n) by simp
 hence norm-eq: cmod ?root = cmod y using n unfolding norm-power
   by (meson gr-zeroI norm-ge-zero power-eq-imp-eq-base)
 have cis(arg\ y*real\ n) = cis(arg\ (y^n)) by (subst\ cis-arg-power[OF\ y0],\ simp)
 also have \dots = cis (arg \ x) using y by simp
 finally have ciseq: cis(arg\ y*real\ n)=cis(arg\ x) by simp
 from cis-eq[OF\ ciseq] obtain i where
   arg \ y * real \ n - arg \ x = 2 * real-of-int \ i * pi
   by auto
 hence arg \ y * real \ n = arg \ x + 2 * real-of-int \ i * pi \ by \ auto
  from arg\text{-}cong[OF\ this,\ of\ \lambda\ x.\ x\ /\ real\ n]\ n1
  have argy: arg \ y = arg \ ?root + 2 * real-of-int \ i * pi / real \ n
   by (auto simp: field-simps)
  have i\theta: i \neq \theta
 proof
   assume i = 0
   hence arg y = arg ?root unfolding argy by simp
   with norm-eq have ?root = y by (metis\ rcis-cmod-arg)
   with neg show False by simp
  qed
  from y\theta have cy\theta: cmod y > \theta by auto
  from arg-bounded[of x] have abs-pi: abs (arg x) \leq pi by auto
 have Re \ y \leq Re \ ?root \longleftrightarrow Re \ y \ / \ cmod \ y \leq Re \ ?root \ / \ cmod \ y
   using cy\theta unfolding divide-le-cancel by simp
 also have cosy: Re y / cmod y = cos (arg y) unfolding cos-arg[OF y0] ...
 also have cosrt: Re ?root / cmod y = cos (arg ?root)
   unfolding norm-eq[symmetric] by (subst cos-arg, insert norm-eq cy\theta, auto)
 also have cos\ (arg\ y) \le cos\ (arg\ ?root) \longleftrightarrow abs\ (arg\ ?root) \le abs\ (arg\ y)
   by (rule cos-mono-le, insert arg-bounded[of y] arg-bounded[of ?root], auto)
 also have ... \longleftrightarrow abs (arg ?root) * real n \le abs (arg y) * real n
   unfolding mult-le-cancel-right using n1 by simp
 also have ... \longleftrightarrow abs (arg \ x) \le |arg \ x + 2 * real - of - int \ i * pi|
   unfolding argy using n1 by (simp add: field-simps)
  also have ... using abs-pi
   by (rule abs-add-2-mult-bound)
  finally have le: Re \ y \leq Re \ (croot \ n \ x).
 show ?thesis
```

```
proof (cases Re \ y = Re \ (croot \ n \ x))
   {f case} False
   with le show ?thesis by auto
  next
   case True
   hence Re\ y\ /\ cmod\ y=Re\ ?root\ /\ cmod\ y\ \mathbf{by}\ simp
   hence cos(arg\ y) = cos(arg\ ?root) unfolding cosy\ cosrt.
   hence cos(abs(arg y)) = cos(abs(arg ?root)) unfolding cos-abs.
   from cos-inj-pi[OF - - - - this]
   have abs (arg y) = abs (arg ?root)
     using arg-bounded[of y] arg-bounded[of ?root] by auto
   hence abs (arg\ y) * real\ n = abs\ (arg\ ?root) * real\ n by simp
   hence abs (arg \ x) = |arg \ x + 2 * real-of-int \ i * pi| unfolding argy
     using n1 by (simp add: field-simps)
   from abs-eq-add-2-mult[OF this - - \langle i \neq 0 \rangle] arg-bounded[of x]
   have argx: arg x = pi and i: i = -1 by auto
   have argy: arg y = -pi / real n
     unfolding argy arg-croot i argx by simp
   have Im ?root > Im y \longleftrightarrow Im ?root / cmod ?root > Im y / cmod y
     unfolding norm-eq using cy\theta
     by (meson divide-less-cancel divide-strict-right-mono)
   also have ... \longleftrightarrow sin (arg ?root) > sin (arg y)
     by (subst (1 2) sin-arg, insert y0 norm-eq, auto)
   also have ... \longleftrightarrow sin (-pi / real n) < sin (pi / real n)
     unfolding argy arg-croot argx by simp
   also have ...
   proof -
     have sin (-pi / real n) < 0
          using n1 by (smt (verit) arg-bounded argy divide-neg-pos sin-gt-zero
sin-minus)
     also have \dots < sin (pi / real n)
      using n1 calculation by fastforce
     finally show ?thesis.
   qed
   finally show ?thesis using le by auto
 qed
qed
lemma croot-unique: assumes n: n \neq 0
 and y: y \cap n = x
 and y-max-Re-Im: \bigwedge z. z \cap n = x \Longrightarrow
     Re \ z < Re \ y \lor Re \ z = Re \ y \land Im \ z \le Im \ y
shows croot n x = y
proof (rule ccontr)
 assume croot n \ x \neq y
 from croot-principal[OF n y this[symmetric]]
 have Re \ y < Re \ (croot \ n \ x) \ \lor
   Re \ y = Re \ (croot \ n \ x) \land Im \ y < Im \ (croot \ n \ x).
  with y-max-Re-Im[OF\ croot-power[OF\ n]]
```

```
show False by auto
qed
lemma csqrt-is-croot-2: csqrt = croot 2
proof
 \mathbf{fix} \ x
 show csqrt x = croot 2 x
 proof (rule sym, rule croot-unique, force, force)
   let ?p = [:-x, 0, 1:]
   \mathbf{let}~?cx = csqrt~x
   have p: ?p = [:?cx,1:] * [:-?cx,1:]
     by (simp add: power2-eq-square[symmetric])
   \mathbf{fix} \ y
   assume y^2 = x
   hence True \longleftrightarrow poly ?p \ y = 0
     by (auto simp: power2-eq-square)
   also have \dots \longleftrightarrow y = - ?cx \lor y = ?cx
     {f unfolding}\ p\ poly-mult\ mult-eq	ext{-}	ext{0-iff}\ poly-root-factor}\ {f by}\ auto
   finally have y = -?cx \lor y = ?cx by simp
   thus Re \ y < Re \ ?cx \lor Re \ y = Re \ ?cx \land Im \ y \le Im \ ?cx
   proof
     assume y: y = - ?cx
     show ?thesis
     proof (cases Re ?cx = \theta)
       {f case} False
       with csqrt-principal[of x] have Re ?cx > 0 by simp
       thus ?thesis unfolding y by simp
     next
       case True
       with csqrt-principal [of x] have Im ?cx \ge 0 by simp
       thus ?thesis unfolding y using True by auto
     qed
   qed auto
 qed
qed
lemma croot-via-root-selection: assumes roots: set ys = \{ y. \ y \hat{n} = x \}
 and n: n \neq 0
shows croot n \ x = arg\text{-}min\text{-}list \ (\lambda \ y. \ (-Re \ y, -Im \ y)) \ ys
  (is - arg-min-list ?f ys)
proof (rule croot-unique[OF n])
 let ?y = arg\text{-}min\text{-}list ?f ys
 have rt: croot n x \cap n = x using n by (rule croot-power)
 hence croot \ n \ x \in set \ ys \ unfolding \ roots \ by \ auto
 hence ys: ys \neq [] by auto
 from arg-min-list-in[OF this] have ?y \in set \ ys \ by \ auto
 from this[unfolded roots]
 \mathbf{show} \ ?y\widehat{\ } n = x \ \mathbf{by} \ auto
 \mathbf{fix} \ z
```

```
assume z \cap n = x
hence z: z \in set \ ys unfolding roots by auto
from f-arg-min-list-f[OF ys, of ?f] z
have ?f ?y \le ?f z by simp
thus Re \ z < Re \ ?y \lor Re \ z = Re \ ?y \land Im \ z \le Im \ ?y by auto
qed
lemma croot-impl[code]: croot n \ x = (if \ n = 0 \ then \ 0 \ else
arg-min-list (\lambda \ y. \ (-Re \ y, -Im \ y)) \ (all-croots n \ x))
proof (cases n = 0)
case n0: False
hence id: (if \ n = 0 \ then \ y \ else \ z) = z
for y \ z \ u :: complex by auto
show ?thesis unfolding id \ Let-def
by (rule croot-via-root-selection[OF - n0], rule all-croots[OF n0])
qed auto
```

\mathbf{end}

5 Algorithms to compute all complex and real roots of a cubic polynomial

```
theory Cubic-Polynomials
 imports
    Cardanos-Formula
    Complex-Roots
begin
hide-const (open) MPoly-Type.degree
hide-const (open) MPoly-Type.coeffs
lemma complex-of-real-code[code-unfold]: complex-of-real = (\lambda \ x. \ Complex \ x \ 0)
 by (intro ext, auto simp: complex-eq-iff)
The real case where a result is only delivered if the discriminant is negative
definition solve-depressed-cubic-Cardano-real :: real \Rightarrow real \Rightarrow real \ option \ \mathbf{where}
  solve-depressed-cubic-Cardano-real\ e\ f=(
   if e = 0 then Some (root 3 (-f)) else
    let v = -(e^3 / 27) in
    case rroots2 [:v,f,1:] of
      [u,-] \Rightarrow let \ rt = root \ 3 \ u \ in \ Some \ (rt - e / (3 * rt))
    | - \Rightarrow None \rangle
\mathbf{lemma}\ solve-depressed\text{-}cubic\text{-}Cardano\text{-}real\text{:}
  assumes solve-depressed-cubic-Cardano-real e f = Some y
 shows \{y. \ y^3 + e * y + f = 0\} = \{y\}
proof (cases e = \theta)
```

```
have \{y, y^3 + e * y + f = 0\} = \{y, y^3 = -f\} unfolding True
   by (auto simp add: field-simps)
 also have \dots = \{root \ 3 \ (-f)\}
   using odd-real-root-unique [of 3 - -f] odd-real-root-pow [of 3] by auto
 also have root 3(-f) = y using assms unfolding True solve-depressed-cubic-Cardano-real-def
   by auto
  finally show ?thesis.
next
  case False
 define v where v = -(e^3 / 27)
  \mathbf{note} * = assms[unfolded\ solve-depressed-cubic-Cardano-real-def\ Let-def,\ folded\ ]
v-def
 let ?rr = rroots2 [:v,f,1:]
 from * False obtain u u' where rr: ?rr = [u, u']
   by (cases ?rr; cases tl ?rr; cases tl (tl ?rr); auto split: if-splits)
 from *[unfolded rr list.simps] False
 have y: y = root \ 3 \ u - e \ / \ (3 * root \ 3 \ u) by auto
 have u \in set (rroots2 [:v,f,1:]) unfolding rr by auto
 also have set (rroots2 \ [:v,f,1:]) = \{u. \ poly \ [:v,f,1:] \ u = 0\}
   by (subst rroots2, auto)
 finally have u: u^2 + f * u + v = 0 by (simp add: field-simps power2-eq-square)
 note Cardano = solve-cubic-depressed-Cardano-real[OF False v-def u]
 have 2: 2 = Suc (Suc \ 0) by simp
 from rr have \theta: f^2 - 4 * v \neq \theta unfolding rroots2-def Let-def
   by (auto split: if-splits simp: 2)
 hence \theta: discriminant-cubic-depressed e f \neq \theta
   unfolding discriminant-cubic-depressed-def v-def by auto
  show ?thesis using Cardano(1) Cardano(2)[OF 0] unfolding y[symmetric] by
blast
qed
The complex case
definition solve-depressed-cubic-complex :: complex \Rightarrow complex \Rightarrow complex list
where
  solve-depressed-cubic-complex \ e \ f = (let
        ys = (if \ e = 0 \ then \ all-croots \ 3 \ (-f) \ else \ (let
      u = hd \ (croots2 \ [: -(e^3 / 27), f, 1:]);
      zs = all\text{-}croots \ 3 \ u
      in map (\lambda z. z - e / (3 * z)) zs)
     in remdups ys)
lemma solve-depressed-cubic-complex-code[code]:
  solve-depressed-cubic-complex \ e \ f = (let
        ys = (if \ e = 0 \ then \ all-croots \ 3 \ (-f) \ else \ (let
          f2 = f / 2;
          u = -f2 + csqrt (f2^2 + e^3 / 27);
          zs = all\text{-}croots \ 3 \ u
```

 $in \ map \ (\lambda \ z. \ z - \ e \ / \ (3*z)) \ zs))$

```
unfolding solve-depressed-cubic-complex-def Let-def croots2-def
 by (simp add: numeral-2-eq-2)
lemma solve-depressed-cubic-complex: y \in set (solve-depressed-cubic-complex e f)
 \longleftrightarrow (y^3 + e * y + f = 0)
proof (cases e = \theta)
 case True
 thus ?thesis by (simp add: solve-depressed-cubic-complex-def Let-def all-croots
eq-neg-iff-add-eq-0
\mathbf{next}
 case e\theta: False
 hence id: (if e = 0 then x else y) = y for x y :: complex list by simp
 define v where v = -(e^3 / 27)
 define p where p = [:v, f, 1:]
 have p2: degree p = 2 unfolding p-def by auto
 let ?u = hd (croots2 p)
 define u where u = ?u
 have u \in set (croots2 p) unfolding croots2-def Let-def u-def by auto
 with croots2[OF p2] have poly p u = 0 by auto
 hence u: u^2 + f * u + v = 0 unfolding p\text{-}def
   by (simp add: field-simps power2-eq-square)
 note cube-roots = all-croots[of 3, simplified]
  show ?thesis unfolding solve-depressed-cubic-complex-def Let-def set-remdups
set-map id cube-roots
   unfolding v-def[symmetric] p-def[symmetric] set-concat set-map
     u-def[symmetric]
 proof -
   have p: \{x. \ poly \ p \ x = 0\} = \{u. \ u^2 + f * u + v = 0\} unfolding p-def by
(auto simp: field-simps power2-eq-square)
   have cube: \bigcup (set 'all-croots 3 '\{x. poly p x = 0\}) = \{z. \exists u. u^2 + f * u + g = 0\}
v = \theta \wedge z \hat{\ } 3 = u
     unfolding p by (auto simp: cube-roots)
   show (y \in (\lambda z. \ z - e \ / \ (3 * z)) \ `\{y. \ y \ ^3 = u\}) = (y \ ^3 + e * y + f = 0)
     using solve-cubic-depressed-Cardano-complex[OF e0 v-def u] cube by blast
 qed
qed
```

in remdups ys)

For the general real case, we first try Cardano with negative discrimiant and only if it is not applicable, then we go for the calculation using complex numbers. Note that for for non-negative delta no filter is required to identify the real roots from the list of complex roots, since in that case we already know that all roots are real.

```
definition solve-depressed-cubic-real :: real \Rightarrow real \Rightarrow real list where solve-depressed-cubic-real e f of Some y \Rightarrow [y] | None \Rightarrow map Re (solve-depressed-cubic-complex (of-real e) (of-real f)))
```

```
lemma\ solve-depressed-cubic-real-code[code]:\ solve-depressed-cubic-real\ e\ f=
 (if e = 0 then [root 3 (-f)] else
  let v = e^{3} / 27;
      f2 = f / 2;
      f2v = f2^2 + v in
  if f2v > 0 then
    let \ u = -f2 + sqrt \ f2v;
        rt = root 3 u
     in [rt - e / (3 * rt)]
  else
  let ce3 = of\text{-real } e / 3;
     u = - of-real f2 + csqrt (of-real f2v) in
  map Re (remdups (map (\lambda rt. rt - ce3 / rt) (all-croots 3 u))))
proof -
 have id: rroots2 [:v, f, 1:] = (let
    f2 = f / 2;
    bac = f2^2 - v in
    if\ bac = 0\ then\ [-f2]\ else
    if bac < 0 then [] else let e = sqrt bac in [-f2 + e, -f2 - e] for v
   unfolding rroots2-def Let-def numeral-2-eq-2 by auto
  define foo :: real \Rightarrow real \Rightarrow real option where
   foo f2v f2 = (case (if f2v = 0 then [-f2] else []) of [] \Rightarrow None | - \Rightarrow None)
   for f2v f2
  have solve-depressed-cubic-real e f = (if e = 0 then [root 3 (-f)] else
  let v = e^{3} / 27;
     f2 = f / 2;
f2v = f2^2 + v in
  if f2v > 0 then
    let u = -f2 + sqrt f2v;
       rt = root 3 u
     in [rt - e / (3 * rt)]
  else
  (case foo f2v f2 of
    None \Rightarrow let \ u = - \ cor \ f2 + \ csqrt \ (cor \ f2v) \ in
   (remdups\ (map\ (\lambda z.\ z-cor\ e\ /\ (3*z))\ (all-croots\ 3\ u)))
   | Some y \Rightarrow [])
   unfolding solve-depressed-cubic-real-def solve-depressed-cubic-Cardano-real-def
     solve-depressed-cubic-complex-code
     Let-def id foo-def
   by (auto split: if-splits)
 also have id: foo f2v f2 = None
   for f2v f2 unfolding foo-def by auto
  ultimately show ?thesis by (auto simp: Let-def)
lemma solve-depressed-cubic-real: y \in set (solve-depressed-cubic-real ef)
```

```
\longleftrightarrow (y^3 + e * y + f = 0)
proof (cases solve-depressed-cubic-Cardano-real e f)
 case (Some \ x)
 show ?thesis unfolding solve-depressed-cubic-real-def Some option.simps
   using solve-depressed-cubic-Cardano-real[OF Some] by auto
next
  case None
 from this[unfolded solve-depressed-cubic-Cardano-real-def Let-def rroots2-def]
 have disc: 0 \leq discriminant-cubic-depressed of unfolding discriminant-cubic-depressed-def
   by (auto split: if-splits simp: numeral-2-eq-2)
 let ?c = complex-of-real
 let ?y = ?c y
 let ?e = ?c e
 let ?f = ?c f
 have sub: set (solve-depressed-cubic-complex ?e ?f) \subseteq \mathbb{R}
 proof
   \mathbf{fix} \ y
   assume y: y \in set (solve-depressed-cubic-complex ?e ?f)
   show y \in \mathbb{R}
   \textbf{by } (\textit{rule solve-cubic-depressed-Cardano-all-real-roots} | \textit{OF disc y} [\textit{unfolded solve-depressed-cubic-complex}]])
 qed
  have y^3 + e * y + f = 0 \longleftrightarrow (?c (y^3 + e * y + f) = ?c 0) unfolding
of-real-eq-iff by simp
  also have ... \longleftrightarrow ?y^3 + ?e * ?y + ?f = 0 by simp
 also have \dots \longleftrightarrow ?y \in set \ (solve-depressed-cubic-complex ?e ?f)
   unfolding solve-depressed-cubic-complex...
 also have ... \longleftrightarrow y \in Re 'set (solve-depressed-cubic-complex ?e ?f) using sub
bv force
 finally show ?thesis unfolding solve-depressed-cubic-real-def None by auto
qed
Combining the various algorithms
lemma degree 3-coeffs: degree p = 3 \Longrightarrow
 \exists a b c d. p = [: d, c, b, a :] \land a \neq 0
  by (metis One-nat-def Suc-1 degree2-coeffs degree-pCons-eq-if nat.inject nu-
meral-3-eq-3 pCons-cases zero-neq-numeral)
definition roots3-generic :: ('a :: field-char-0 \Rightarrow 'a \Rightarrow 'a list) \Rightarrow 'a poly \Rightarrow 'a list
where
  roots3-generic depressed-solver p = (let
    cs = coeffs p;
    a = cs ! 3; b = cs ! 2; c = cs ! 1; d = cs ! 0;
    a\beta = \beta * a;
    ba\beta = b / a\beta;
    b2 = b * b;
    b3 = b2 * b:
    e = (c - b2 / a3) / a;
    f = (d + 2 * b3 / (27 * a^2) - b * c / a3) / a;
    roots = depressed-solver e f
```

```
in map (\lambda y. y - ba3) roots)
lemma roots3-generic: assumes deg: degree p = 3
 and solver: \bigwedge e f y. y \in set (depressed\text{-solver } e f) \longleftrightarrow y^3 + e * y + f = 0
  shows set (roots3-generic depressed-solver p) = \{x. poly p | x = 0\}
proof -
  \mathbf{note}\ powers = field\text{-}simps\ power3\text{-}eq\text{-}cube\ power2\text{-}eq\text{-}square
  from degree3-coeffs[OF deg] obtain a b c d where
   p: p = [:d,c,b,a:] and a: a \neq 0 by auto
 have coeffs: coeffs p ! 3 = a coeffs p ! 2 = b coeffs p ! 1 = c coeffs p ! 0 = d
   unfolding p using a by auto
 define e where e = (c - b^2 / (3 * a)) / a
 define f where f = (d + 2 * b^3 / (27 * a^2) - b * c / (3 * a)) / a
 note def = roots3-generic-def[of depressed-solver p, unfolded Let-def coeffs,
     folded power3-eq-cube, folded power2-eq-square, folded e-def f-def]
   fix x :: 'a
   define y where y = x + b / (3 * a)
   have xy: x = y - b / (3 * a) unfolding y-def by auto
   have poly p = 0 \longleftrightarrow a * x^3 + b * x^2 + c * x + d = 0 unfolding p
     by (simp add: powers)
   also have ... \longleftrightarrow (y \, \widehat{\ } \, \vartheta + e * y + f = \theta)
     unfolding to-depressed-cubic[OF a xy e-def f-def] ...
   also have ... \longleftrightarrow y \in set (depressed\text{-}solver \ e \ f)
     unfolding solver ...
   also have ... \longleftrightarrow x \in set (roots3-generic depressed-solver p) unfolding xy def
   finally have poly p \ x = 0 \longleftrightarrow x \in set \ (roots3-generic \ depressed-solver \ p) by
auto
 thus ?thesis by auto
qed
definition croots3:: complex poly \Rightarrow complex list where
  croots3 = roots3-generic solve-depressed-cubic-complex
lemma croots3: assumes deg: degree p = 3
 shows set (croots3\ p) = \{x.\ poly\ p\ x = 0\}
 unfolding croots3-def by (rule roots3-generic[OF deg solve-depressed-cubic-complex])
definition rroots3 :: real poly \Rightarrow real list where
  rroots3 = roots3-generic solve-depressed-cubic-real
lemma rroots3: assumes deg: degree p = 3
 shows set (rroots3\ p) = \{x.\ poly\ p\ x = 0\}
 unfolding rroots3-def by (rule roots3-generic[OF deg solve-depressed-cubic-real])
end
```

6 Algorithms to compute all complex and real roots of a quartic polynomial

```
theory Quartic-Polynomials
 imports
    Ferraris-Formula
    Cubic-Polynomials
begin
The complex case is straight-forward
definition solve-depressed-quartic-complex :: complex \Rightarrow complex \Rightarrow complex \Rightarrow
complex list where
  solve-depressed-quartic-complex p \ q \ r = remdups (if q = 0 then
     (\mathit{concat}\ (\mathit{map}\ (\lambda\ \mathit{z}.\ \mathit{let}\ \mathit{y} = \mathit{csqrt}\ \mathit{z}\ \mathit{in}\ [\mathit{y}, -\mathit{y}])\ (\mathit{croots2}\ [:\mathit{r}, \mathit{p}, \mathit{1}:])))\ \mathit{else}
     let cubics = croots3 [: -(q^2), 2 * p^2 - 8 * r, 8 * p, 8:];
         m = hd \ cubics; — select any root of the cubic polynomial
         a = csqrt (2 * m);
        p2m = p / 2 + m;
        q2a = q / (2 * a);
        b1 = p2m - q2a;
        b2 = p2m + q2a
       in (croots2 [:b1,a,1:] @ croots2 [:b2,-a,1:]))
lemma solve-depressed-quartic-complex: x \in set (solve-depressed-quartic-complex
p q r
  \longleftrightarrow (x^4 + p * x^2 + q * x + r = 0)
proof -
  note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
  show ?thesis
  proof (cases q = \theta)
   {\bf case}\ {\it True}
   have csqrt: z = x^2 \longleftrightarrow (x = csqrt \ z \lor x = -csqrt \ z) for z
      by (metis power2-csqrt power2-eq-iff)
   have (x \hat{\ } 4 + p * x^2 + q * x + r = 0) \longleftrightarrow (x \hat{\ } 4 + p * x^2 + r = 0)
      unfolding True by simp
     also have ... \longleftrightarrow (\exists z. z^2 + p * z + r = 0 \land z = x^2) unfolding bi-
quadratic-solution by simp
   also have ... \longleftrightarrow (\exists z. poly [:r,p,1:] z = 0 \land z = x^2)
     by (simp add: powers)
   also have ... \longleftrightarrow (\exists z \in set (croots2 [:r,p,1:]). z = x^2)
      \mathbf{by} \ (subst\ croots2[symmetric],\ auto)
   also have ... \longleftrightarrow (\exists z \in set (croots2 [:r,p,1:]). x = csqrt z \lor x = - csqrt z)
      unfolding csqrt ...
   also have ... \longleftrightarrow (x \in set (solve-depressed-quartic-complex p q r))
     unfolding solve-depressed-quartic-complex-def id unfolding True Let-def by
auto
   finally show ?thesis ..
   case q0: False
```

```
hence id: (if q = 0 then x else y) = y for x y :: complex list by auto
   {f note}\ powers = field\mbox{-}simps\ power4\mbox{-}eq\mbox{-}xxxx\ power3\mbox{-}eq\mbox{-}cube\ power2\mbox{-}eq\mbox{-}square
   let ?poly = [:-q^2, 2 * p^2 - 8 * r, 8 * p, 8:]
   from croots3[of ?poly] have croots: set (croots3 ?poly) = \{x. poly ?poly x = 0\}
by auto
   from fundamental-theorem-of-algebra-alt[of ?poly]
   have \{x. \ poly \ ?poly \ x = 0\} \neq \{\} by auto
   with croots have croots3 ?poly \neq [] by auto
    then obtain m rest where rts: croots3 ?poly = m \# rest by (cases\ croots3)
?poly, auto)
   hence hd: hd (croots3 ?poly) = m by auto
   from croots[unfolded rts] have poly ?poly m = 0 by auto
   hence mrt: 8*m^3 + (8*p)*m^2 + (2*p^2 - 8*r)*m - q^2 = 0
     and m\theta: m \neq \theta using q\theta
     by (auto simp: powers)
   define b1 where b1 = p / 2 + m - q / (2 * csqrt (2 * m))
   define b2 where b2 = p / 2 + m + q / (2 * csqrt (2 * m))
  have csqrt: csqrt \ x * csqrt \ x = x \ \textbf{for} \ x \ \textbf{by} \ (metis \ power2-csqrt \ power2-eq-square)
  show ?thesis unfolding solve-depressed-quartic-complex-def id Let-def set-remdups
set-append hd
     unfolding b1-def[symmetric] b2-def[symmetric]
     apply (subst depressed-quartic-Ferrari[OF mrt q0 csqrt b1-def b2-def])
     apply (subst (1 2) croots2[symmetric], auto)
     done
 qed
qed
The main difference in the real case is that a specific cubic root has to be
used, namely a positive one. In the soundness proof we show that such a
cubic root always exists.
definition solve-depressed-quartic-real :: real \Rightarrow real \Rightarrow real \Rightarrow real list where
  solve-depressed-quartic-real p \ q \ r = remdups \ (if \ q = 0 \ then
    (concat \ (map \ (\lambda \ z. \ rroots2 \ [:-z,0,1:]) \ (rroots2 \ [:r,p,1:]))) \ else
    let cubics = rroots3 [: -(q^2), 2 * p^2 - 8 * r, 8 * p, 8:];
         m = the (find (\lambda m. m > 0) cubics); — select any positive root of the
cubic polynomial
       a = sqrt (2 * m);
       p2m = p / 2 + m;
       q2a = q / (2 * a);
```

```
lemma solve-depressed-quartic-real: x \in set (solve-depressed-quartic-real p \neq r) \longleftrightarrow (x^4 + p * x^2 + q * x + r = 0) proof — note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square show ?thesis proof (cases q = 0)
```

b1 = p2m - q2a;b2 = p2m + q2a

in (rroots2 [:b1,a,1:] @ rroots2 [:b2,-a,1:]))

```
case True
   \mathbf{have}\ \mathit{sqrt} \colon z = x \hat{\ } 2 \longleftrightarrow (x \in \mathit{set}\ (\mathit{rroots2}\ [:-z, 0, 1:])) \ \mathbf{for}\ z
     by (subst rroots2[symmetric], auto simp: powers)
   have (x^4 + p * x^2 + q * x + r = 0) \longleftrightarrow (x^4 + p * x^2 + r = 0)
     unfolding True by simp
     also have ... \longleftrightarrow (\exists z. z^2 + p * z + r = 0 \land z = x^2) unfolding bi-
quadratic-solution by simp
   also have ... \longleftrightarrow (\exists z. poly [:r,p,1:] z = 0 \land z = x^2)
     by (simp add: powers)
   also have ... \longleftrightarrow (\exists z \in set (rroots2 [:r,p,1:]). z = x^2)
     by (subst\ rroots2[symmetric],\ auto)
   also have ... \longleftrightarrow (\exists z \in set (rroots2 [:r,p,1:]), x \in set (rroots2 [:-z,0,1:]))
     unfolding sqrt ..
   also have ... \longleftrightarrow (x \in set (solve-depressed-quartic-real p q r))
    unfolding solve-depressed-quartic-real-def id unfolding True Let-def by auto
   finally show ?thesis ..
  \mathbf{next}
   case q\theta: False
   hence id: (if q = 0 then x else y) = y for x y :: real list by auto
   note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
   let ?poly = [:-q^2, 2 * p^2 - 8 * r, 8 * p, 8:]
   define cubics where cubics = rroots3 ?poly
   from rroots3[of ?poly, folded cubics-def]
   have rroots: set cubics = \{x. poly ?poly x = 0\} by auto
   from odd-degree-imp-real-root[of ?poly]
   have \{x. \ poly \ ?poly \ x = 0\} \neq \{\} by auto
   with rroots have cubics \neq [] by auto
   have \exists m. m \in set \ cubics \land m > 0
   proof (rule ccontr)
     assume ¬ ?thesis
     from this [unfolded rroots] have rt: poly ?poly m = 0 \implies m \le 0 for m by
auto
     have poly ?poly \theta = -(q^2) by simp
     also have \dots < \theta using q\theta by auto
     finally have lt: poly ?poly 0 \le 0 by simp
     from poly-pinfty-gt-lc[of ?poly] obtain n\theta where \bigwedge n. n \ge n\theta \Longrightarrow 8 \le poly
?poly n by auto
     from this of max n\theta \theta have poly ?poly (max n\theta \theta) \ge \theta by auto
     from IVT[of\ poly\ ?poly,\ OF\ lt\ this] obtain m where m\geq 0 and poly:\ poly
?poly m = \theta by auto
     from rt[OF\ this(2)]\ this(1) have m=0 by auto
     thus False using poly q0 by simp
   qed
   hence find (\lambda m. m > 0) cubics \neq None unfolding find-None-iff by auto
   then obtain m where find: find (\lambda m. m > 0) cubics = Some m by auto
   from find-Some-D[OF this] have m: m \in set\ cubics\ and\ m-0: m > 0 by auto
   with rroots have poly ?poly m = 0 by auto
   hence mrt: 8*m^3 + (8*p)*m^2 + (2*p^2 - 8*r)*m - q^2 = 0
```

```
by (auto simp: powers)
   from m-0 have sqrt: sqrt(2*m)*sqrt(2*m) = 2*m by simp
   define b1 where b1 = p / 2 + m - q / (2 * sqrt (2 * m))
   define b2 where b2 = p / 2 + m + q / (2 * sqrt (2 * m))
   show ?thesis unfolding solve-depressed-quartic-real-def id Let-def set-remdups
set-append
       cubics-def[symmetric] find option.sel
     unfolding b1-def[symmetric] b2-def[symmetric]
     apply (subst depressed-quartic-Ferrari[OF mrt q0 sqrt b1-def b2-def])
     apply (subst (1 2) rroots2[symmetric], auto)
     done
 qed
qed
Combining the various algorithms
lemma numeral-4-eq-4: 4 = Suc (Suc (Suc (Suc (Suc (O))))
 by (simp add: eval-nat-numeral)
lemma degree 4-coeffs: degree p = 4 \Longrightarrow
 \exists \ a \ b \ c \ d \ e. \ p = [: e, d, c, b, a :] \land a \neq 0
 using degree3-coeffs degree-pCons-eq-if nat.inject numeral-3-eq-3 numeral-4-eq-4
pCons-cases zero-neg-numeral
 by metis
definition roots4-generic :: ('a :: field-char-0 \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \ list) \Rightarrow 'a \ poly \Rightarrow
'a list where
 cs = coeffs p;
    cs = coeffs p;
    a4 = cs ! 4; a3 = cs ! 3; a2 = cs ! 2; a1 = cs ! 1; a0 = cs ! 0;
    b = a3 / a4;
    c = a2 / a4;
    d = a1 / a4;
    e = a0 / a4;
    b2 = b * b;
    b3 = b2 * b;
    b4 = b3 * b;
    b4' = b / 4;
    p = c - 3/8 * b2;
    q = (b3 - 4*b*c + 8*d) / 8;
    r = (-3 * b4 + 256 * e - 64 * b * d + 16 * b2 * c) / 256;
    roots = depressed-solver p \neq r
    in map (\lambda y. y - b4') roots)
lemma roots4-generic: assumes deg: degree p = 4
 and solver: \bigwedge p \ q \ r \ y. y \in set \ (depressed\text{-solver} \ p \ q \ r) \longleftrightarrow y^4 + p * y^2 + q
* y + r = 0
 shows set (roots4-generic depressed-solver p) = \{x. poly p \mid x = 0\}
proof -
```

```
note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
 from degree4-coeffs[OF deg] obtain a4 a3 a2 a1 a0 where
   p: p = [:a0, a1, a2, a3, a4:] and a4: a4 \neq 0 by auto
 have coeffs: coeffs p \mid 4 = a4 coeffs p \mid 3 = a3 coeffs p \mid 2 = a2 coeffs p \mid 1 = a3
a1 coeffs p ! 0 = a0
   unfolding p using a \not= b y auto
 define b where b = a3 / a4
 define c where c = a2 / a4
 define d where d = a1 / a4
 define e where e = a\theta / a4
 b-def c-def d-def e-def,
     folded power4-eq-xxxx, folded power3-eq-cube, folded power2-eq-square
 let ?p = p
 {
   \mathbf{fix} \ x
   define y where y = x + b / 4
   define p where p = c - (3/8) * b^2
   define q where q = (b^3 - 4*b*c + 8*d) / 8
   define r where r = (-3 * b^4 + 256 * e - 64 * b * d + 16 * b^2 * c) / 256
   note def = def[folded \ p\text{-}def \ q\text{-}def \ r\text{-}def]
   have xy: x = y - b / 4 unfolding y-def by auto
   have poly ?p \ x = 0 \longleftrightarrow a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 = 0
unfolding p
     by (simp add: powers)
   also have ... \longleftrightarrow (y \hat{\ } 4 + p * y^2 + q * y + r = 0)
     unfolding to-depressed-quartic[OF a4 b-def c-def d-def e-def p-def q-def r-def
xy] ..
   also have ... \longleftrightarrow y \in set (depressed\text{-}solver p q r)
     unfolding solver ..
   also have ... \longleftrightarrow x \in set \ (roots4\text{-}generic \ depressed\text{-}solver \ ?p) unfolding xy
def by auto
   finally have poly ?p \ x = 0 \longleftrightarrow x \in set \ (roots4-generic \ depressed-solver \ ?p)
by auto
 }
 thus ?thesis by simp
qed
definition croots4 :: complex poly <math>\Rightarrow complex \ list \ \mathbf{where}
 croots4 = roots4-generic solve-depressed-quartic-complex
lemma croots4: assumes deg: degree p = 4
 shows set (croots 4 p) = \{ x. poly p x = 0 \}
 unfolding croots4-def by (rule roots4-generic[OF deg solve-depressed-quartic-complex])
definition rroots4 :: real poly \Rightarrow real list where
 rroots4 = roots4-generic solve-depressed-quartic-real
lemma rroots4: assumes deg: degree p = 4
```

```
shows set (rroots4\ p) = \{x.\ poly\ p\ x = 0\}
unfolding rroots4-def by (rule\ roots4-generic[OF deg solve-depressed-quartic-real])
```

 $\quad \text{end} \quad$

References

- [1] G. Cardano. Ars Magna, The Great Art or the Rules of Algebra. 1545. https://en.wikipedia.org/wiki/Ars_Magna_(Cardano_book).
- [2] R. Thiemann, A. Yamada, and S. Joosten. Algebraic numbers in Isabelle/HOL. *Archive of Formal Proofs*, Dec. 2015. https://isa-afp.org/entries/Algebraic_Numbers.html, Formal proof development.