Solving Cubic and Quartic Equations

René Thiemann

September 3, 2021

Abstract

We formalize Cardano’s formula to solve a cubic equation
3 2 _
ax® +bx® +cx+d=0,

as well as Ferrari’s formula to solve a quartic equation [1]. We further
turn both formulas into executable algorithms based on the algebraic
number implementation in the AFP [2]. To this end we also slightly
extended this library, namely by making the minimal polynomial of an
algebraic number executable, and by defining and implementing n-th
roots of complex numbers.

Contents

1 Ferrari’s formula for solving quartic equations 2
1.1 Translation to depressed case 2
1.2 Solving the depressed case via Ferrari’s formula 2

2 Cardano’s formula for solving cubic equations 4
2.1 Translation to depressed case 4
2.2 Solving the depressed case in arbitrary fields. 4
2.3 Solving the depressed case for complex numbers 5
2.4 Solving the depressed case for real numbers 7

3 Implementation of the minimal polynomial of a real or com-

plex algebraic number 11
n-th roots of complex numbers 15
4.1 An algorithm to compute all complex roots of (algebraic)
complex numberso 15
4.2 A definition of the complex root of a complex number 16

Algorithms to compute all complex and real roots of a cubic
polynomial 24

6 Algorithms to compute all complex and real roots of a quar-
tic polynomial 30

1 Ferrari’s formula for solving quartic equations

theory Ferraris-Formula
imports
Polynomial-Factorization. Explicit- Roots
Polynomial-Interpolation. Ring-Hom-Poly
Complez-Geometry. More-Complex
begin

1.1 Translation to depressed case

Solving an arbitrary quartic equation can easily be turned into the depressed
case, i.e., where there is no cubic part.

lemma to-depressed-quartic: fixes a4 :: 'a :: field-char-0
assumes a4: a4 # 0
and b: b= a3 / a4
and ¢: ¢ = a2 / a4
and d: d = al / a4
and e: e = a0 / a4
and p:p=c— (8/8) « b2
and ¢: ¢ = (b73 — 4xbxc+ 8 d) / 8
and rir=(—-3%xb 4+ 256xe—64{xbxd+ 16 b 2x%c)/ 256
andz:z =y — b/4
shows a4 x 27/ + a3« x 3+ a2xx 2+ al xx+ a0 =0
—y4tpxyl+qgry+r=20
proof —
have a4 x 17/ + a8 x 23+ a2+ x 2+ al x 2z + al = 0 —
(afx 2744+ a3 273+ a2 % 272+ al * x + a0) / a4 = 0 using a4 by auto
also have (a4 * 2™/ + a3 x 273+ a2« 22+ al * x + a0) / a4
=z 4y +bxr3+cxr2+dxz+e
unfolding b ¢ d e using a/ by (simp add: field-simps)
alsohave ... =y +pxy 2+ q*xy+r
unfolding z p q r
by (simp add: field-simps power}-eq-zxzz power3-eq-cube power2-eq-square)
finally show ?thesis .
qed

lemma biquadratic-solution: fixes p q :: 'a :: field-char-0
shows y A +p*xy 24+ q¢g=0«— (T 2. 224+ px2+q=0N2z=1y"2)
by (auto simp: field-simps power)-eq-xxrx power2-eq-square)

1.2 Solving the depressed case via Ferrari’s formula

lemma depressed-quartic-Ferrari: fixes p q v :: 'a :: field-char-0

assumes cubic-root: 8xm™3 + (8 p) x m 2+ (2xp 2 — 8xr)xm — ¢ 2
=0
and ¢0: ¢ # 0 — otherwise m might be zero, so a is zero and then there is a
division by zero in bl and b2
and sqrt: a x a = 2% m
and bl: bi=p/ 2+ m—q/ (2% a)
and b2: b2 =p/ 24+ m+ q/ (2% a)
shows y /+p*xy 2+ qxy+r=0 poly [:bl,a,I:] y = 0V poly [:b2,—a,I]
y =10
proof —
let PN=y2+p/2+m
let ‘M =axy—q/ (2xa)
from cubic-root q0 have m0: m # 0 by auto
from sqrt m0 have a0: a # 0 by auto
define N where N = ¢N
define M where M = M
note powers = field-simps power4-eq-rxxx power3-eq-cube power2-eq-square
from cubic-root have 8xm™3 = — (8« p) x m 2 — (2 p 2 — 8% 1) * m +
q 2
by (simp add: powers)
from arg-cong[OF this, of (x) 4]
have id: 32+ m 3 =4 (—(8*xp)*xm 2 — (2%xp 2—8x*r)*xm+ q 2) by
stmp
let 2add = 2+ y 2 m -+ p*xm+ m 2
have y / + pxy 2+ qxy+r =0+
(W 2+p/2)2=—qxy—r+p2//4
by (simp add: powers, algebra)
alsohave ... «— (y 24+ p/ 2) 2+ %add = —q+xy—r+p 2/ 4+ %add
by simp
alsohave ... «—— /N 2=2xmxy 2—q*xy+m 2+ mx*xp+p 2/ 4—r
by (simp add: powers)
alsohave 2« m*xy 2 —qxy+m 2+ mxp+p 2/ 4—1=
M ~ 2 using m0 id a0 sqrt by (simp add: powers, algebra)
also have N2 = M2 «— (?N + M) = (N — ?M) =0
unfolding N-def[symmetric] M-def[symmetric] by algebra
also have ... «—— N + ?M = 0V ?N — ?M = 0 by simp
also have ?N + ?M = y> + a x y + bl
by (simp add: bl)
also have ?N — ?M = 4> — a % y + b2
by (simp add: b2)
also have y? + a * y + bl = 0 «— poly [:bl,a,1:] y = 0
by (simp add: powers)
also have y? — a x y + b2 = 0 < poly [:b2,—a,1:] y = 0
by (simp add: powers)
finally show ?thesis .
qed

end

2 Cardano’s formula for solving cubic equations

theory Cardanos-Formula
imports
Polynomial-Factorization. Explicit- Roots
Polynomial-Interpolation. Ring-Hom-Poly
Complez-Geometry. More-Complex
Algebraic-Numbers. Complex-Roots-Real-Poly
begin

2.1 Translation to depressed case

Solving an arbitrary cubic equation can easily be turned into the depressed
case, i.e., where there is no quadratic part.

lemma to-depressed-cubic: fixes a :: 'a :: field-char-0
assumes a: a # 0
andzy:z =y — b/ (3 *a)
andee=(c—b02/(3%a))/a
and f: f=(d+2%xb78/(27T%xa"2) —bxc/(3xa))/a
shows (ax2 "8+ bxa’+cxax+d=0)+—y3+exy+f=0
proof —
let 2yexp =y 3+ exy+ [
have a x 23+ bx2 2+ cxax+d=0— (ax23+bxaz 2+ c*xz+
d)/a=0
using a by auto
also have (¢ * 278 + bx 22 4+ ¢ x z + d) / a = ?yexp unfolding zy e f
power3-eq-cube power2-eq-square using a
by (simp add: field-simps)
finally show ?thesis .
qed

2.2 Solving the depressed case in arbitrary fields

lemma cubic-depressed: fixes e :: 'a :: field-char-0
assumes yz: e £ 0 = 22— yxz—e/ 8=10
and w: e £ 0= u =23
and v: v =— (e =3/ 27)
shows y 3+ exy+f=0+«— (ife=0theny 3= —felseu®> + f*u+v=
0)
proof —
let 2yexp =y 3 +exy+ [
show ?thesis
proof (cases e = 0)
case Fulse
note yz = yz[|OF False]
from yz have eyz: e = 3 % (272 — y * 2) by auto
from yz False have 20: z # 0 by auto
have ?yexp = 0 «—— 273 * ?yexp = 0 using 20 by simp
also have 273 * %yexp = 276 + f * 278 — ¢~ 3/27 unfolding eyz by algebra

also have ... = v"2 + f x u + v unfolding u[OF Fulse] v by algebra
finally show ?thesis using Fualse by auto
next
case True
show ?thesis unfolding True by (auto, algebra)
qed
qed

2.3 Solving the depressed case for complex numbers

In the complex-numbers-case, the quadratic equation for u is always solvable,
and the main challenge here is prove that it does not matter which solution
of the quadratic equation is considered (this is the diff:False case in the proof
below.)

lemma solve-cubic-depressed-Cardano-complex: fixes e :: complex
assumes ¢e0: e # 0
and v: v =— (e =3/ 27)
and w: u 24+ frxu+ov=20
shows y 3+ exy+f=0— T z.28=uny=2z—¢/ (3% 2)
proof —
from v e0 have v0: v # 0 by auto
from e0 have (if e = 0 then x else y) = y for = y :: bool by auto
note main = cubic-depressed[OF - - v, unfolded this]
show ?thesis (is ?l = ?r)
proof
assume 7r
then obtain z where 2: 2”3 = uand y: y = 2 — e / (3 x 2) by auto
from u v0 have u0: v # 0 by auto
from z u0 have 20: z # 0 by auto
show 7]
proof (subst main)
show u? + f * u + v = 0 by fact
show u = 273 unfolding z by simp
show 22 — y % z — e / 8 = 0 unfolding y using z0
by (auto simp: field-simps power2-eq-square)
qed
next
assume ?[
let 2yexp =y 3 +exy+ f
have y0: ?yexp = 0 using (?l) by auto
define p where p = [: —e/3, —y, 1]
have deg: degree p = 2 unfolding p-def by auto
define 2z where z = hd (croots2 p)
have z € set (croots2 p) unfolding croots2-def Let-def z-def by auto
with croots2[OF deg] have pz: poly p z = 0 by auto
from pz e0 have z0: z # 0 unfolding p-def by auto
from pz have yz: y x 2 = z x 2z — e / 3 unfolding p-def by (auto simp:
field-simps)

from arg-cong[OF this, of A xz. x / z] 20 have y = z — e / (3 x 2)
by (auto simp: field-simps)
have 3 uz. v> +frxu+v=0A23=ulAy=2z2—c¢e/(3%2)
proof (intro exl conjI)
show y =2 — e / (3 * 2) by fact
from y0 have 0 = ?yexp * 273 by auto

also have ... = (y * 2) "3+ ex (y * 2) * 272 + f * 273 by algebra
also have ... = (273)72 + f * (279) + v unfolding yz v by algebra
finally show (273) "2 + f % (273) + v = 0 by simp

qged simp

then obtain uu z where
wuu + fruu+ov=0z"8=uuy=2z— e/ (3*2) by blast
show ?r
proof (cases uu = u)
case True
thus ?thesis using x by auto
next
case diff: Fulse
define p where p = [:0,f,1:]
have p2: degree p = 2 unfolding p-def by auto
have poly: poly p u = 0 poly p vu = 0 using u *(1) unfolding p-def
by (auto simp: field-simps power2-eq-square)
have u0: v # 0 wu # 0 using poly v0 unfolding p-def by auto
{
from poly(1) have [:—u,I:] dvd p by (meson poly-eq-0-iff-dvd)
then obtain ¢ where pg: p = ¢ * [:—u,I:] by auto
from poly(2)[unfolded pq poly-mult] diff have poly q uu = 0 by auto
hence [:—uu,I:] dvd q by (meson poly-eq-0-iff-dvd)
then obtain ¢’ where ¢¢”: ¢ = ¢’ * [:—uu,I:] by auto
with pg have pg: p = ¢’ * [—uu,I:] * —u,1:] by auto
from pqlunfolded p-def] have ¢": ¢’ # 0 by auto
from arg-cong[OF pq, of degree, unfolded p2]
have 2 = degree (¢’ * [:— wu, I:] x [— u, I1]) .
also have ... = degree q' + degree [:— uu, I:] + degree [:— u, I:]
apply (subst degree-mult-eq)
subgoal using ¢’ by (metis mult-eq-0-iff pCons-eq-0-iff zero-neg-one)
subgoal by force
by (subst degree-mult-eq| OF q], auto)
also have ... = degree ¢’ + 2 by simp
finally have dq: degree ¢’ = 0 by simp
from dq obtain ¢ where ¢ ¢’ = [: ¢:] by (metis degree-eq-zeroFE)
from pqlunfolded ¢’ p-def] have ¢ = 1 by auto
with ¢’ have ¢’ = 1 by simp
with pg have [: —u, I:] x [: —uu, 1:] = p by simp
}
from this[unfolded p-def, simplified] have prod: uu * u = v by simp
hence wu: v = v / uu using u0 by (simp add: field-simps)
define 2z where 2z = — ¢ / (3 * 2)
show ?r using *(2—) wu unfolding v using u0

by (intro exl|of - zz], auto simp: zz-def field-simps)
qed
qed
qed

2.4 Solving the depressed case for real numbers

definition discriminant-cubic-depressed :: 'a :: comm-ring-1 = 'a = 'a where

discriminant-cubic-depressed e f = — (4 *x €73 + 27 * [2)
lemma discriminant-cubic-depressed: assumes [—z,1:] * [(—y,I:] * [(—z,1:] =
[:f.e,0,1:]

shows discriminant-cubic-depressed e f = (z—y) 2 * (x — 2) 2 % (y — 2) "2
proof —
from assmshave f: f = — (zx (yxz))and e:e=y*z — 2z x (— y — z) and
z: 2z = — y — z by auto
show ?thesis unfolding discriminant-cubic-depressed-def e f z
by (simp add: power2-eg-square power3-eq-cube field-simps)
qed

If the discriminant is negative, then there is exactly one real root

lemma solve-cubic-depressed-Cardano-real: fixes e fv u :: real
defines yI = root 3 u — e / (3 * root 8 u)
and A = discriminant-cubic-depressed e f
assumes e(: e # 0
and v: v=— (e ~ 8/ 27)
and v: v + fru+v=20
shows yI™ 8+ exyl + f =10
A#0=y3+exy+f=0= y=uyl

proof —
let ?c = complex-of-real
let 9y = %cy

let e = ?c e
let 2u = %c u
let 20 = ?c v

let 2f = %¢ f
{
fix y = real
let 2y = %cy

have y 3 +exy+f=0— 2c(y3+exy+f)="2%0
using of-real-eq-iff by blast
also have ... «—— 2473 + %e x 2y + ?f = 0 by simp
alsohave ... «—— (F z. 2783 =2u N %y=2— %/ (3 x 2))
proof (rule solve-cubic-depressed-Cardano-complex)
show ?e # (0 using e0 by auto
show v = — (%e ~ 3 / 27) unfolding v by simp
show ?2u? + 2f x ?u + ?v = 0 using arg-cong[OF u, of ?c| by simp
qged
finally have y 3+ exy+ f=0«— (T 2. 278 =2uN2y=12— %/ (3%

} note pre = this
show yI: y173 + e x yI + f = 0 unfolding pre yI-def
by (intro exI[of - ?c (root 3 u)], simp only: of-real-power|symmetric|,
simp del: of-real-power add: odd-real-root-pow)
from u have {z. poly [:v,f, 1] 2 = 0} # {}
by (auto simp add: field-simps power2-eq-square)
hence set (rroots2 [:v,f,1:]) # {}
by (subst rroots2[symmetric], auto)
hence rroots2 [:v,f,1:] # [| by simp
from this[unfolded rroots2-def Let-def, simplified)
have [2 — 4 xv >0
by (auto split: if-splits simp: numeral-2-eq-2 field-simps power2-eq-square)
hence delta-le-0: A < 0 unfolding A-def discriminant-cubic-depressed-def v by
auto

assume Delta-non-0: A # 0
with delta-le-0 have delta-neg: A < 0 by simp
let ?p = [:f,e,0,1:]
have poly: poly %py=0«— y 3+ exy+ f=0fory
by (simp add: field-simps power2-eq-square power3-eqg-cube)
from y1 have poly ?p y1 = 0 unfolding poly .
hence [:—y1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
then obtain ¢ where pq: ?p = [:—yI,1:] * ¢ by blast
{
fix y2
assume poly ?p y2 = 0 y2 # yl
from this[unfolded pq] poly-mult have poly ¢ y2 = 0 by auto
from this[unfolded poly-eq-0-iff-dvd] obtain r where ¢r: ¢ = [:—y2,1:] * r by
blast
{
have r0: r # 0 using pq unfolding q¢r poly-mult by auto
have & = degree ?p by simp
also have ... = 2 4 degree r unfolding pq qr
apply (subst degree-mult-eq, force)
subgoal using 70 pq qr by force
by (subst degree-mult-eq| OF - r0], auto)
finally have degree r = 1 by simp
from degreel-coeffs|OF this| obtain yy a where r: r = [:yy,a:] by auto
define y3 where y3 = —yy
with r have r: r = [:—y3,a:] by auto
from pq[unfolded qr r] have a = I by auto
with r have 3 y3. r = [:—y3,1:] by auto
}
then obtain y3 where r: r = [:—y38,1:] by auto
have py: ?p = [:—yl,I:] * [:—y2,1:] * :—y3,1:] unfolding pq gr r by algebra
from discriminant-cubic-depressed|OF this[symmetric], folded A-def)
have delta: A = (y1 — y2)? * (y1 — y3)? * (y2 — y3)? .
have d0: A > 0 unfolding delta by auto

with delta-neg have False by auto
}
with y7 show y"8 + e x y + f = 0 = y = yI unfolding poly by auto
qed

If the discriminant is non-negative, then all roots are real

lemma solve-cubic-depressed-Cardano-all-real-roots: fixes e f v :: real and y :
complex
defines A = discriminant-cubic-depressed e f
assumes Delta: A > 0
and rt: y S +exy+f=10
shows y € R
proof —
note powers = field-simps power3-eq-cube power2-eq-square
let ?c = complex-of-real
let e = %c e
let 9f = ¢ f
let Zcp = [:9f,%e,0,1:]
let %p = [:f,e,0,1:]
from odd-degree-imp-real-root[of ?p] obtain z1 where poly ?p x1 = 0 by auto
hence [:—z1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
then obtain ¢ where pg: ?p = [:—z1,1:] * ¢ by auto
from arg-cong[OF pq, of degree]
have 3 = degree ([:—x1,1:] * q) by simp
also have ... = 1 + degree q
by (subst degree-mult-eq, insert pq, auto)
finally have dq: degree ¢ = 2 by auto
let ?cc = map-poly ?c
let g = ?cc q
have cpq: ?cc ?p = %cc [:—z1,1:] * ?q unfolding pq hom-distribs by simp
let %x1 = ?c¢ x1
have dq’: degree ?¢ = 2 using dq by simp
have — constant (poly ?q) using dq by (simp add: constant-degree)
from fundamental-theorem-of-algebra[OF this] obtain z2 where z2: poly ?q ©2
= 0 by blast
have 22 € R
proof (rule ccontr)
assume z2r: 22 ¢ R
define z3 where 3 = cnj 2
from z2r have z23: z2 # z3 unfolding z3-def using Reals-cnj-iff by force
have z3: poly ?q 8 = 0 unfolding z3-def
by (rule complex-conjugate-root[OF - x2], auto)
from x2[unfolded poly-eq-0-iff-dvd] obtain r where ¢r: ?q = [:—z2,1:] * r by
auto
from arg-cong[OF this[symmetric], of A x. poly x x3, unfolded poly-mult x3
mult-eg-0-iff] ©23
have z3: poly r 8 = 0 by auto
from arg-cong|OF qr, of degree]
have 2 = degree ([:—z2,1:] * r) using dq’ by simp

also have ... = 1 + degree r by (subst degree-mult-eq, insert pq qr, auto)
finally have degree r = 1 by simp
from degreel-coeffs|OF this| obtain a b where r: r = [:a,b:] by auto
from cpqlunfolded gr r] have bl: b = 1 by simp
with 23 r have a + 23 = 0 by simp
hence a = — z3 by algebra
with b1 r have r: r = [:—23,1:] by auto
have ?cc ?p = %cc [:—z1,1:] * [:—z2,1:] * [:—z3,1:] unfolding cpq ¢qr r by
algebra
also have ?cc [:—x1,1:] = [:—%z1,1:] by simp
also have ?cc ?p = ?cp by simp
finally have id: [:—%z1,1:] * [—22,1:] * [—23,1:] = ?cp by simp
define 223 where 123 = — 4 x (Im 22) 2
define z12c where z12¢ = %21 — 22
define 212 where 212 = (Re x12c) ~ 2 + (Im x12¢)"2
have z23-0: 23 < 0 unfolding z23-def using x2r using complex-is- Real-iff
by force
have Im z12¢ # 0 unfolding z12c-def using z2r using complez-is- Real-iff by
force
hence (Im z12¢)"2 > 0 by simp
hence z12: 12 > 0 unfolding z12-def using sum-power2-gt-zero-iff by auto
from discriminant-cubic-depressed| OF id]
have ?c A = ((?21 — 22)? * (%21 — 23)%) * (22 — 23)?
unfolding A-def discriminant-cubic-depressed-def by simp
also have (22 — z3)72 = ?c 223 unfolding z5-def 123-def by (simp add:
complez-eq-iff power2-eq-square)
also have (%z1 — 22)? * (%21 — 23)? = ((%z1 — 22) * (%21 — 23)) 72
by (simp add: power2-eg-square)
also have %1 — 28 = cnj (%21 — 22) unfolding z3-def by simp
also have (%z1 — 22) = z12c¢ unfolding z12c-def ..
also have z12c * cnj z12¢c = %c 12 by (simp add: z12-def complex-eq-iff
power2-eq-square)
finally have %c A = %¢ (21272 x z23) by simp
hence A = 21272 x 223 by (rule of-real-hom.injectivity)

also have ... < 0 using 212 223-0 by (meson mult-pos-neg zero-less-power)
finally show Fulse using Delta by simp
qed

with z2 obtain z2 where poly ?q (?c z2) = 0 unfolding Reals-def by auto

hence x2: poly q 22 = 0 by simp

from x2[unfolded poly-eq-0-iff-dvd] obtain r where ¢r: ¢ = [:—z2,1:] * r by
auto

from arg-cong[OF qr, of degree]

have 2 = degree ([:—22,1:] * r) using dq’ by simp

also have ... = 1 + degree r by (subst degree-mult-eq, insert pq qr, auto)

finally have degree r = 1 by simp

from degreel-coeffs|OF this| obtain a b where r: r = [:a,b:] by auto

from pgunfolded qr r] have b1: b = 1 by simp

define z3 where 23 = —a

have r: r = [:—z3,1:] unfolding r b1 z53-def by simp

10

let %pp = [:—x1,1:] * [—x2,1:] * [:—x3,1]

have id: ?p = ?pp unfolding pq qr r by linarith

have True «—— y 8 + e x y + f = 0 using rt by auto

also have y" 3 + e x y + f = poly (?cc ?p) y by (simp add: powers)

also have ... = poly (?cc ?pp) y unfolding id by simp
also have %cc ?pp = [:—%c xl, I:] * [—%c 22, I:] * [— %c x3, 1]
by simp

alsohave poly ... y=0«— y=%caxlVy=9%cz2Vy= % x3
unfolding poly-mult mult-eq-0-iff by auto
finally show y € IR by auto
qed

end

3 Implementation of the minimal polynomial of a
real or complex algebraic number

This theory provides implementation of the minimal-representing-polynomial
of an algebraic number, for both the real-numbers and the complex-numbers.

theory Min-Int-Poly-Impl
imports
Hermite-Lindemann. Min-Int-Poly
Algebraic-Numbers. Real-Algebraic- Numbers
Algebraic-Numbers. Complex-Algebraic- Numbers
begin

definition min-int-poly-real-alg :: real-alg = int poly where
min-int-poly-real-alg * = (case info-real-alg x of Inl r = poly-rat r | Inr (p,-) =
p)

lemma min-int-poly-of-rat: min-int-poly (of-rat r :: 'a :: {field-char-0, field-gcd})
= poly-rat r
by (intro min-int-poly-unique, auto)

lemma min-int-poly-real-alg: min-int-poly-real-alg x = min-int-poly (real-of x)
proof (cases info-real-alg x)
case (Inl r)
show ?thesis unfolding info-real-alg(2)[OF Inl] min-int-poly-real-alg-def Inl
by (simp add: min-int-poly-of-rat)
next
case (Inr pair)
then obtain p n where Inr: info-real-alg x = Inr (p,n) by (cases pair, auto)
hence poly-cond p by (transfer, transfer, auto simp: info-2-card)
hence min-int-poly (real-of) = p using info-real-alg(1)[OF Inr]
by (intro min-int-poly-unique, auto)
thus ?thesis unfolding min-int-poly-real-alg-def Inr by simp
qed

11

definition min-int-poly-real :: real = int poly where
[simp]: min-int-poly-real = min-int-poly

lemma min-int-poly-real-code-unfold [code-unfold]: min-int-poly = min-int-poly-real
by simp

lemma min-int-poly-real-code|code]: min-int-poly-real (real-of x) = min-int-poly-real-alg
x
by (simp add: min-int-poly-real-alg)

Now let us head for the complex numbers

definition complex-poly :: int poly = int poly = int poly list where
complez-poly re im = (let i = [:1,0,1:]
in factors-of-int-poly (poly-add re (poly-mult im 7)))

lemma complex-poly: assumes re: re represents (Re x)
and im: im represents (Im x)
shows 3 f € set (complez-poly re im). f represents x N\ f. f € set (complex-poly
re im) = poly-cond f
proof —
let ?p = poly-add re (poly-mult im [:1, 0, I:])
from re have re: re represents complex-of-real (Re x) by simp
from im have im: im represents complez-of-real (Im) by simp
have [:1,0,1:] represents i by auto
from represents-add[OF re represents-mult|OF im this||
have ?p represents of-real (Re x) + complex-of-real (Im x) * i by simp
also have of-real (Re x) + complex-of-real (Im z) * 1 = x
by (metis complez-eq mult.commute)
finally have p: ?p represents = by auto
have factors-of-int-poly ?p = complex-poly re im
unfolding complex-poly-def Let-def by simp
from factors-of-int-poly(1)[OF this| factors-of-int-poly(2)[OF this, of x] p
show 3 [€ set (complex-poly re im). f represents © N\ f. f € set (complez-poly
re im) = poly-cond f
unfolding represents-def by auto
qed

definition algebraic-real :: real = bool where
[simp]: algebraic-real = algebraic
lemma algebraic-real-iff [code-unfold]: algebraic = algebraic-real by simp
lemma algebraic-real-code|code]: algebraic-real (real-of ©) = True
proof (cases info-real-alg x)

case (InlT)
show ?thesis using info-real-alg(2)[OF Inl] by (auto simp: algebraic-of-rat)

12

next
case (Inr pair)
then obtain p n where Inr: info-real-alg x = Inr (p,n) by (cases pair, auto)
from info-real-alg(1)[OF Inr] have p represents (real-of) by auto
thus ?thesis by (auto simp: algebraic-altdef-ipoly)
qed

lemma algebraic-complex-iff|code-unfold]: algebraic © «—— algebraic (Re z) A al-
gebraic (Im z)
proof
assume algebraic
from this[unfolded algebraic-altdef-ipoly] obtain p where ipoly p x = 0 p # 0
by auto
from represents-root-poly[OF this| show algebraic (Re x) A algebraic (Im x)
unfolding represents-def algebraic-altdef-ipoly by auto
next
assume algebraic (Re x) A algebraic (Im x)
from this[unfolded algebraic-altdef-ipoly] obtain re im where
re represents (Re x) im represents (Im) by blast
from complez-poly| OF this] show algebraic x
unfolding represents-def algebraic-altdef-ipoly by auto
qged

lemma algebraic-0[simp]: algebraic 0
unfolding algebraic-altdef-ipoly
by (intro exI[of - [:0,1]], auto)

lemma min-int-poly-complex-of-real[simp]: min-int-poly (complez-of-real x) = min-int-poly
x
proof (cases algebraic x)
case Fulse
hence — algebraic (complex-of-real z) unfolding algebraic-complez-iff by auto
with False show ?thesis unfolding min-int-poly-def by auto
next
case True
from min-int-poly-represents| OF True]
have min-int-poly = represents x by auto
thus ?thesis
by (intro min-int-poly-unique, auto simp: lead-coeff-min-int-poly-pos)
qed

TODO: the implemention might be tuned, since the search process should
be faster when using interval arithmetic to figure out the correct factor.
(One might also implement the search via checking ipoly f = = (0::'a), but
because of complex-algebraic-number arithmetic, I think that search would
be slower than the current one via "z € set (complezx-roots-of-int-poly f)
definition min-int-poly-complex :: complex = int poly where

min-int-poly-complex x = (if algebraic x then if Im © = 0 then min-int-poly-real
(Re)

13

else the (find (A f. © € set (complex-roots-of-int-poly f)) (complex-poly
(min-int-poly (Re z)) (min-int-poly (Im x))))
else [:0,1:])

lemma min-int-poly-complex|code-unfold]: min-int-poly = min-int-poly-complex
proof (standard)
fix z
define fs where fs = complex-poly (min-int-poly (Re x)) (min-int-poly (Im x))
let ?f = min-int-poly-complezr x
show min-int-poly © = ?f
proof (cases algebraic)
case Fulse
thus ?thesis unfolding min-int-poly-def min-int-poly-complex-def by auto
next
case True
show ?thesis
proof (cases Im x = 0)
case *: True
have id: ?f = min-int-poly-real (Re z) unfolding min-int-poly-complez-def *
using True by auto
show ?thesis unfolding id min-int-poly-real-code-unfold|symmetric] min-int-poly-complez-of-real[symmetri
using * by (intro arg-cong|of - - min-int-poly] complex-eql, auto)
next
case Fulse
from True[unfolded algebraic-complex-iff] have algebraic (Re z) algebraic (Im
z) by auto
from complez-poly[OF min-int-poly-represents| OF this(1)] min-int-poly-represents| OF
this(2)]]
have fs: 3 f € set fs. ipoly fz = 0 \ f. f € set fs = poly-cond f unfolding
fs-def by auto
let ?fs = find (X f. ipoly fx = 0) fs
let 2fs’ = find (\ f. z € set (complex-roots-of-int-poly f)) fs
have ?f = the ?fs’ unfolding min-int-poly-complex-def fs-def
using True False by auto
also have ?fs’ = 7fs
by (rule find-cong|OF refl], subst complex-roots-of-int-poly, insert fs, auto)
finally have id: ?f = the ?fs .
from fs(1) have ?fs # None unfolding find-None-iff by auto
then obtain f where Some: ?fs = Some f by auto
from find-Some-D[OF this] fs(2)[of f]
show ?thesis unfolding id Some
by (intro min-int-poly-unique, auto)
qed
qed
qed

end

14

4 n-th roots of complex numbers

theory Complex-Roots
imports
Complex-Geometry. More-Complex
Min-Int-Poly-Impl
HOL- Library. Product-Lexorder
begin

4.1 An algorithm to compute all complex roots of (algebraic)
complex numbers

TODO: The filter instruction might be tuned by using interval arithmetic
instead.

definition all-croots :: nat = compler = complex list where
all-croots n x = (if n = 0 then [] else
if algebraic x then
(let p = min-int-poly x;
q = poly-nth-root n p;
xs = complex-roots-of-int-poly q
in filter (A y. y"n = z) x8)
else (SOME ys. set ys = {y. y"n = z}))

lemma all-croots-code[code]:
all-croots n x = (if n = 0 then [] else
if algebraic © then
(let p = min-int-poly x;
q = poly-nth-root n p;
xs = complex-roots-of-int-poly q
in filter (A y. y"n = z) x8)
else Code.abort (STR "all-croots invoked on non—algebraic number’) (A -.
all-croots n x))
by (auto simp: all-croots-def)

lemma all-croots: assumes n0: n # 0 shows set (all-croots n z) = {y. y"n = z}

proof (cases algebraic x)
case True
hence id: (if n = 0 then y else if algebraic x then z else u) = z
for y z u :: complex list using n0 by auto
define p where p = poly-nth-root n (min-int-poly)
show ?thesis unfolding Let-def p-def[symmetric] all-croots-def id
proof (standard, force, standard, simp)
fix y
assume y: Yy n = x
have min-int-poly x represents x using True by auto
from represents-nth-root[OF n0 y this]
have p represents y unfolding p-def by auto
thus y € set (complex-roots-of-int-poly p)

15

by (subst complez-roots-of-int-poly, auto)
qed
next
case Fulse
hence id: (if n = 0 then y else if algebraic x then z else u) = u
for y z u :: complex list using n0 by auto
show ?thesis unfolding Let-def all-croots-def id
by (rule somel-ex, rule finite-list, insert n0, blast)
qed

4.2 A definition of the complex root of a complex number

While the definition of the complex root is quite natural and easy, the main
task is a criterion to determine which of all possible roots of a complex
number is the chosen one.

definition croot :: nat = complex = complex where
croot n x = (reis (root n (e¢mod z)) (arg x / of-nat n))

lemma croot-0[simp]: croot n 0 = 0 croot 0 z = 0
unfolding croot-def by auto

lemma croot-power: assumes n: n # 0
shows (croot nz) "n =z
unfolding croot-def DeMoivre2
by (subst real-root-pow-pos2, insert n, auto simp: rcis-cmod-arg)

lemma arg-of-real: arg (of-real z) =

(if x < 0 then pi else 0)
proof (cases . = 0)

case Fulse

hence z < 0 V z > 0 by auto

thus ?thesis by (intro arg-unique, auto

stmp: complez-sgn-def scaleR-complez.ctr complex-eq-iff)

qed (auto simp: arg-def)

lemma arg-reis-cis[simp|: assumes z > 0
shows arg (rcis z y) = arg (cis y)
using assms unfolding rcis-def by simp

lemma cis-arg-1[simp]: cis (arg 1) = 1
using arg-of-real[of 1] by simp

lemma cis-arg-power[simp|: assumes z # 0
shows cis (arg (x " n)) = cis (arg z * real n)
proof (induct n)
case (Suc n)
show ?case unfolding power.simps
proof (subst cis-arg-mult)

16

show cis (arg x + arg (z ~ n)) = cis (arg x * real (Suc n))
unfolding mult.commute[of arg x] DeMoivre|symmetric]
unfolding power.simps using Suc
by (metis DeMoivre cis-mult mult.commute)

show z * £ ~ n # 0 using assms by auto

qed
qed simp

lemma arg-croot[simpl: arg (croot n x) = arg x / real n
proof (casesn = 0V z = 0)
case True
thus ?thesis by (auto simp: arg-def)
next
case Fulse
hence n: n # 0 and z: x # 0 by auto
let ?root = croot n x
from n have ni: real n > 1 real n > 0 real n # 0 by auto
have bounded: — pi < arg x / real n A\ arg x / real n < pi
proof (cases arg v < 0)

case True
from arg-bounded|of z] have — pi < arg z by auto
also have ... < arg z / real n using n1 True

by (smt (23) div-by-1 divide-minus-left frac-le)
finally have one: — pi < argx / real n .
have arg z / real n < 0 using True nl
by (smt (verit) divide-less-0-iff)
also have ... < pi by simp
finally show ?thesis using one by auto
next
case Fulse
hence az: arg x > 0 by auto
have arg x / real n < arg x using nl ax
by (smt (verit) div-by-1 frac-le)
also have ... < pi using arg-bounded|[of x| by simp
finally have one: arg / real n < pi .
have —pi¢ < 0 by simp

also have ... < arg z / real n using azx nl by simp
finally show ?thesis using one by auto
qed

have arg ?root = arg (cis (arg x / real n))
unfolding croot-def using = n by simp
also have ... = arg z / real n
by (rule arg-unique, force, insert bounded, auto)
finally show ?thesis .
qed

lemma cos-abs[simpl: cos (abs z :: real) = cos x

proof (cases © < 0)
case True

17

hence abs: abs x = — x by simp
show ?thesis unfolding abs by simp
qed simp

lemma cos-mono-le: assumes abs ¢ < pi
and abs y < pi
shows cos ¢ < cos y «—— abs y < abs x

proof —
have cos x < cos y «—— cos (abs z) < cos (abs y) by simp
also have ... «—— abs y < abs z

by (subst cos-mono-le-eq, insert assms, auto)
finally show ?thesis .
qed

‘a 1 linordered-idom

lemma abs-add-2-mult-bound: fixes x ::
assumes zy: |z| < y
shows |z| < |z + 2 % of-int i x y|
proof (cases i = 0)
case i: Fulse
let 20i = of-int :: int = 'a
from zy have y: y > 0 by auto
consider (pp) z > 0i > 0
| (nn) 2 < 0i<0
[(pm) o> 0i<0
| (np) 2 < 0i>0
by linarith
thus ?thesis
proof cases
case pp
thus ?thesis using y by simp
next
case nn
have z >z + 2% %00 i %y
using nn y by (simp add: mult-nonneg-nonpos?2)
with nn show ?thesis by linarith
next
case pn
with 7 have 0 < z ¢ < 0 by auto
define j where j = nat (—i) — 1
define z where z =z — 2 x y
define u where u = 2 x %0i (nat j) * y
have u: v > 0 unfolding u-def using y by auto
have i: i = — int (Suc j)
using ¢ < () unfolding j-def by simp
have id: ¢ + 2% %0iixy =2 — u
unfolding i z-def u-def by (simp add: field-simps)
have z: z < 0 abs z > z using zy y pn(1)
unfolding z-def by auto
show ?thesis unfolding id using pn(I) z u by simp

18

next
case np
with ¢ have 0 > z ¢ > 0 by auto
define j where j = nat i — 1
have i: i = int (Suc j)
using ¢ > () unfolding j-def by simp
define u where u = 2 % %0i (nat j) * y
have u: v > 0 unfolding u-def using y by auto
define z where z = — 2 — 2 x y
have id: v + 2% %0iixy=— 2+ u
unfolding i z-def u-def by (simp add: field-simps)
have z: 2 < 0 abs z > — z using xy y np(1)
unfolding z-def by auto
show ?thesis unfolding id using np(1) z u by simp
qed
qed simp

lemma abs-eq-add-2-mult: fixes y :: 'a :: linordered-idom

assumes abs-id: |z| = |z + 2 * of-int i * y|
and zy: —y<zax <y
and i: i # 0

shows 2 =y A i = —1

proof —

let ?0i = of-int :: int = 'a
from zy have y: y > 0 by auto
consider (pp) z > 0i > 0
| (nn) 2 < 0i<0
| (pn) x> 0%
| (np) z < 01
by linarith
hence ?thesis V © = %0i (— i) * y
proof cases
case pp
thus ?thesis using y abs-id zy ¢ by simp
next
case nn
hence |z + 2 x %0i i x y| =
—(z+ 2% %0ii % y)
using y nn
by (intro abs-of-nonpos add-nonpos-nonpos,
force, simp, intro mult-nonneg-nonpos, auto)
thus ?thesis using y abs-id xzy i nn
by auto
next
case pn
with ¢ have 0 < z ¢ < 0 by auto
define j where j = nat (—i) — 1
define z where z =z — 2 x y
define u where u = 2 % %0i (nat j) * y

19

have u: v > 0 unfolding u-def using y by auto
have i: ¢ = — int (Suc j)
using « < () unfolding j-def by simp
have id: ¢ + 2% %0iixy=2 — u
unfolding i z-def u-def by (simp add: field-simps)
have z: z < 0 abs z > z using zy y pn(1)
unfolding z-def by auto
from abs-id[unfolded id] have z — v = —x
using z u pn by auto
from this|folded id] have z = of-int (—1i) * y
by auto
thus ?thesis by auto
next
case np
with ¢ have 0 > z ¢ > 0 by auto
define j where j = nat ¢ — 1
have i: ¢ = int (Suc j)
using « > () unfolding j-def by simp
define u where u = 2 % %0i (nat j) * y
have u: u > 0 unfolding u-def using y by auto
define z where z = —z — 2% y
have id: x + 2% %0iixy=— 2+ u
unfolding i z-def u-def by (simp add: field-simps)
have z: 2 < 0
using zy y np(1) unfolding z-def by auto
from abs-id[unfolded id] have — z + u = — x
using u z np by auto
from this[folded id] have x = of-int (— i) x y
by auto
thus ?thesis by auto
qed
thus ?thesis
proof
assume ¢ = %0i (— i) x y
with zy i y
show ?thesis
by (smt (verit, ccfv-SIG) less-le minus-less-iff mult-le-cancel-right2 mult-minus1-right
mult-minus-left mult-of-int-commute of-int-hom.hom-one of-int-le-1-iff of-int-minus)
qed
qed

This is the core lemma. It tells us that croot will choose the principal root,
i.e. the root with largest real part and if there are two roots with identical
real part, then the largest imaginary part. This criterion will be crucial for
implementing croot.
lemma croot-principal: assumes n: n # 0

and y: y “n=2z

and neq: y # croot n x
shows Re y < Re (croot n x) V Re y = Re (croot n x) A Im y < Im (croot n x)

20

proof (cases z = 0)
case True
with neq y have Fualse by auto
thus %thesis ..
next
case z: False
let ?root = croot n x
from n have ni: real n > 1 real n > 0 real n # 0 by auto
from z y n have y0: y # 0 by auto
from croot-power[OF n, of z] y
have id: ?root “n =y ~n by simp
hence c¢cmod (?root ~n) = e¢mod (y ~ n) by simp
hence norm-eq: cmod ?root = cmod y using n unfolding norm-power
by (meson gr-zerol norm-ge-zero power-eq-imp-eq-base)
have cis (arg y * real n) = cis (arg (y"n)) by (subst cis-arg-power[OF y0], simp)

also have ... = cis (arg x) using y by simp
finally have ciseq: cis (arg y * real n) = cis (arg x) by simp
from cis-eq[OF ciseq] obtain i where
arg y x real n — arg x = 2 x real-of-int ¢ * pi
by auto
hence arg y * real n = arg x + 2 * real-of-int i * pi by auto
from arg-cong[OF this, of \ z. x / real n| nl
have argy: arg y = arg ?root + 2 x real-of-int i * pi / real n
by (auto simp: field-simps)
have i0: i # 0
proof
assume ¢ = (
hence arg y = arg ?root unfolding argy by simp
with norm-eq have ?root = y by (metis rcis-cmod-arg)
with neq show Fulse by simp
qed
from y0 have cy0: cmod y > 0 by auto
from arg-bounded|of z] have abs-pi: abs (arg) < pi by auto
have Re y < Re ?root «—— Re y / cmod y < Re ?root | cmod y
using cy0 unfolding divide-le-cancel by simp
also have cosy: Re y / emod y = cos (arg y) unfolding cos-arg|OF y0] ..
also have cosrt: Re ?root /| cmod y = cos (arg ?root)
unfolding norm-eq[symmetric] by (subst cos-arg, insert norm-eq cy0, auto)
also have cos (arg y) < cos (arg ?root) «— abs (arg ?root) < abs (arg y)
by (rule cos-mono-le, insert arg-bounded|of y| arg-bounded|of ?root], auto)
also have ... «—— abs (arg ?root) x real n < abs (arg y) * real n
unfolding mult-le-cancel-right using ni1 by simp
also have ... «—— abs (arg z) < |arg x + 2 * real-of-int i * pi
unfolding argy using n! by (simp add: field-simps)
also have ... using abs-pi
by (rule abs-add-2-mult-bound)
finally have le: Re y < Re (croot n) .
show ?thesis

21

proof (cases Re y = Re (croot n x))
case Fulse
with le show ?thesis by auto
next

case True

hence Re y / ¢cmod y = Re ?root | c¢mod y by simp

hence cos (arg y) = cos (arg ?root) unfolding cosy cosrt .

hence cos (abs (arg y)) = cos (abs (arg ?root)) unfolding cos-abs .

from cos-ing-pi|OF - - - - this]

have abs (arg y) = abs (arg ?root)
using arg-bounded[of y] arg-bounded[of ?root] by auto

hence abs (arg y) * real n = abs (arg root) x real n by simp

hence abs (arg z) = |arg x + 2 * real-of-int i * pi| unfolding argy
using nl by (simp add: field-simps)

from abs-eq-add-2-mult|OF this - - <i # 0)] arg-bounded|of]

have argz: arg x = pi and i: i = —1 by auto

have argy: arg y = —pi / real n
unfolding argy arg-croot i argx by simp

have Im %root > Im y «—— Im ?root /| cmod ?root > Im y / cmod y
unfolding norm-eq using cy0
by (meson divide-less-cancel divide-strict-right-mono)

also have ... «— sin (arg ?root) > sin (arg y)
by (subst (1 2) sin-arg, insert y0 norm-eq, auto)

also have ... «— sin (— pi / real n) < sin (pi / real n)
unfolding argy arg-croot argr by simp

also have ...

proof —

have sin (— pi / real n) < 0
using nl by (smt (verit) arg-bounded argy divide-neg-pos sin-gt-zero
sin-minus)
also have ... < sin (pi / real n)
using n1 calculation by fastforce
finally show ¢thesis .
qed
finally show ?thesis using le by auto
qed
qed

lemma croot-unique: assumes n: n # 0

and y: y “n=2=x

and y-maz-Re-Im: \ z. z "n =12 =

Rez< ReyV Rez=ReyANImz<Imy

shows croot n z = y
proof (rule ccontr)

assume croot n x # y

from croot-principal|OF n y this[symmetric||

have Re y < Re (croot n z) V

Re y = Re (croot n) A Im y < Im (croot n) .
with y-maz-Re-Im[OF croot-power| OF n]

22

show Fulse by auto
qed

lemma csqrt-is-croot-2: csqrt = croot 2
proof
fix z
show csqrt © = croot 2 x
proof (rule sym, rule croot-unique, force, force)

let %p = [:—x,0,1:]
let %cx = csqrt x
have p: ?p = [:%cx,1:] * [:—%cx, 1]
by (simp add: power2-eg-square[symmetric])
fix y

assume y 2 = x
hence True «—— poly %p y = 0
by (auto simp: power2-eq-square)
also have ... «—— y = — %cx V y = %cx
unfolding p poly-mult mult-eq-0-iff poly-root-factor by auto
finally have y = — %cx V y = %cx by simp
thus Re y < Re ?cx V Re y = Re %cx N Im y < Im %czx
proof
assume y: y = — cx
show ?thesis
proof (cases Re ?cx = 0)
case Fulse
with csqrt-principal[of z] have Re ?cxz > 0 by simp
thus ?thesis unfolding y by simp
next
case True
with csqrt-principal[of z] have Im ?cz > 0 by simp
thus “thesis unfolding y using True by auto
qed
qed auto
qed
qed

lemma croot-via-root-selection: assumes roots: set ys = { y. y'n = x}
and n: n # 0

shows croot n x = arg-min-list (\ y. (— Re y, — Im y)) ys
(is - = arg-man-list ?f ys)

proof (rule croot-unique[OF n))
let 2y = arg-min-list ?f ys
have rt: croot n x = n = z using n by (rule croot-power)
hence croot n x € set ys unfolding roots by auto
hence ys: ys # [] by auto
from arg-min-list-in[OF this| have ?y € set ys by auto
from this[unfolded roots)
show ?y"n = z by auto
fix z

23

assume z n = x

hence z: z € set ys unfolding roots by auto

from f-arg-min-list-f[OF ys, of ?f] z

have ?f %y < ?f z by simp

thus Re z < Re 2y V Re z = Re 2y A Im z < Im ?y by auto
qed

lemma croot-impl[code]: croot n & = (if n = 0 then 0 else
arg-min-list (X y. (— Re y, — Im y)) (all-croots n x))
proof (cases n = 0)
case n0: False
hence id: (if n = 0 then y else z) = z
for y z u :: complex by auto
show ?thesis unfolding id Let-def
by (rule croot-via-root-selection| OF - n0], rule all-croots|OF n0])
qed auto

end

5 Algorithms to compute all complex and real roots
of a cubic polynomial

theory Cubic-Polynomials
imports
Cardanos-Formula
Complez-Roots
begin

hide-const (open) MPoly-Type.degree
hide-const (open) MPoly-Type.coeffs

lemma complez-of-real-code[code-unfold]: complex-of-real = (A x. Complex x 0)
by (intro ext, auto simp: complex-eq-iff)

The real case where a result is only delivered if the discriminant is negative

definition solve-depressed-cubic-Cardano-real :: real = real = real option where
solve-depressed-cubic-Cardano-real e f = (
if e = 0 then Some (root 3 (—f)) else
letv=— (e "3/ 27) in
case rroots2 [:v,f,1:] of
[u,-] = let rt = root 3 u in Some (1t — e / (3 * rt))
| - = None)

lemma solve-depressed-cubic-Cardano-real:
assumes solve-depressed-cubic-Cardano-real e f = Some y
shows {y. y" 9+ exy + f = 0} = {y}

proof (cases e = 0)

24

case True
have {y. y 3 + ex y + f = 0} = {y. y~3 = —f} unfolding True
by (auto simp add: field-simps)
also have ... = {root 3 (—f)}
using odd-real-root-unique[of 3 - —f] odd-real-root-pow[of 5] by auto
also have root 3 (—f) = y using assms unfolding True solve-depressed-cubic-Cardano-real-def
by auto
finally show ?thesis .
next
case Fulse
define v where v = — (e ~ 3 / 27)
note x = assms[unfolded solve-depressed-cubic-Cardano-real-def Let-def, folded
v-def]
let ?rr = rroots2 [:v,f,1:]
from x Fulse obtain u v’ where rr: ?rr = [u,u]
by (cases ?rr; cases tl ?rr; cases tl (tl ?rr); auto split: if-splits)
from x[unfolded rr list.simps| False
have y: y = root 3 u — e / (3 * root 3 u) by auto
have u € set (rroots2 [:v,f,1:]) unfolding rr by auto
also have set (rroots2 [:v,f,1:]) = {u. poly [:v,f,1:] u = 0}
by (subst rroots2, auto)
finally have u: ™2 + f *x u + v = 0 by (simp add: field-simps power2-eg-square)
note Cardano = solve-cubic-depressed-Cardano-real| OF False v-def u]
have 2: 2 = Suc (Suc 0) by simp
from rr have 0: f2 — / x v # 0 unfolding rroots2-def Let-def
by (auto split: if-splits simp: 2)
hence 0: discriminant-cubic-depressed e f # 0
unfolding discriminant-cubic-depressed-def v-def by auto
show ?thesis using Cardano(1) Cardano(2)[OF 0] unfolding y[symmetric] by
blast
qed

The complex case

definition solve-depressed-cubic-complex :: complex = complex = complex list
where
solve-depressed-cubic-complex e f = (let
ys = (if e = 0 then all-croots 3 (— f) else (let
u = hd (croots2 [: — (e =8/ 27) .f,1]);
zs = all-croots 3 u
inmap (A z. z— e/ (3% z)) z25))
in remdups ys)

lemma solve-depressed-cubic-complez-code[code]:
solve-depressed-cubic-complex e f = (let
ys = (if e = 0 then all-croots 8 (— f) else (let
2=5f/2
u=— f2+ csqrt (f272+e "3/ 27);
28 = all-croots 3 u
inmap (X z. z — e [/ (8 x 2)) zs))

25

in remdups ys)
unfolding solve-depressed-cubic-complex-def Let-def croots2-def
by (simp add: numeral-2-eq-2)

lemma solve-depressed-cubic-complex: y € set (solve-depressed-cubic-complex e f)

— (Y S8+exy+f=0)
proof (cases e = 0)
case True
thus ?thesis by (simp add: solve-depressed-cubic-complex-def Let-def all-croots
eq-neg-iff-add-eq-0)
next
case e(: Fulse
hence id: (if e = 0 then z else y) = y for = y :: complex list by simp
define v where v = — (e 3 / 27)
define p where p = [:v, f, I
have p2: degree p = 2 unfolding p-def by auto
let ?u = hd (croots2 p)
define v where u = ?u
have u € set (croots2 p) unfolding croots2-def Let-def u-def by auto
with croots2[OF p2] have poly p u = 0 by auto
hence u: ™2 + f * u + v = 0 unfolding p-def
by (simp add: field-simps power2-eq-square)
note cube-roots = all-croots[of 3, simplified]
show ?thesis unfolding solve-depressed-cubic-complex-def Let-def set-remdups
set-map id cube-roots
unfolding v-def[symmetric| p-def[symmetric] set-concat set-map
u-def [symmetric]
proof —
have p: {z. poly p x = 0} = {u. u2 + f * u + v = 0} unfolding p-def by
(auto simp: field-simps power2-eq-square)
have cube: |J (set “ all-croots 3 “ {x. poly p x = 0}) = {z. 3 w. v® + f % u +
v=0Az"8=u}
unfolding p by (auto simp: cube-roots)
show (y € Mz.z— e/ (8*2) ‘{y.y " 3=u})=(y " S8+exy+f=0)
using solve-cubic-depressed-Cardano-complez|OF e0 v-def u] cube by blast
qed
qed

For the general real case, we first try Cardano with negative discrimiant

and only if it is not applicable, then we go for the calculation using complex

numbers. Note that for for non-negative delta no filter is required to identify

the real roots from the list of complex roots, since in that case we already

know that all roots are real.

definition solve-depressed-cubic-real :: real = real = real list where
solve-depressed-cubic-real e f = (case solve-depressed-cubic-Cardano-real e f

of Some y = [y]
| None = map Re (solve-depressed-cubic-complex (of-real e) (of-real f)))

26

lemma solve-depressed-cubic-real-code[code]: solve-depressed-cubic-real e f =
(if e = 0 then [root 8 (—f)] else
letv=1¢e¢"8/ 27,
2=f/2
fov=f2"2+vin
if f2v > 0 then
let u = —f2 + sqrt f2u;
rt = 100t 3 U
in [rt — e/ (3 * rt)]

else
let ce3 = of-real e | 3;
u = — of-real f2 + csqrt (of-real f2v) in

map Re (remdups (map (Art. rt — ce8 / rt) (all-croots 3 u))))
proof —
have id: rroots2 [:v, f, 1:] = (let
2=f/2
bac = f22 — v in
if bac = 0 then [— f2] else
if bac < 0 then || else let e = sqrt bac in [— f2 + e, — f2 — ¢]) for v
unfolding rroots2-def Let-def numeral-2-eq-2 by auto
define foo :: real = real = real option where
foo f2v 2 = (case (if f2v = 0 then [— f2] else []) of [| = None | - = None)
for f2v f2
have solve-depressed-cubic-real e f = (if e = 0 then [root 3 (—f)] else
letv=1¢"38/ 27,
2=f/2
fov = 22 + vin
if f2v > 0 then
let u = —f2 + sqrt f2u;
Tt = root 3 u
in[rt — e/ (3 * rt)]
else
(case foo f2v f2 of
None = let u = — cor f2 + csqrt (cor f2v) in
map Re
(remdups (map (Az. z — cor e | (3 x 2)) (all-croots 8 u)))
| Some y = [))
unfolding solve-depressed-cubic-real-def solve-depressed-cubic-Cardano-real-def

solve-depressed-cubic-complex-code
Let-def id foo-def
by (auto split: if-splits)
also have id: foo f2v f2 = None
for f2v f2 unfolding foo-def by auto
ultimately show ?thesis by (auto simp: Let-def)
qed

lemma solve-depressed-cubic-real: y € set (solve-depressed-cubic-real e f)

27

— (Y8 +exy+f=0)
proof (cases solve-depressed-cubic-Cardano-real e f)
case (Some x)
show ?thesis unfolding solve-depressed-cubic-real-def Some option.simps
using solve-depressed-cubic-Cardano-real| OF Some] by auto
next
case None
from this[unfolded solve-depressed-cubic-Cardano-real-def Let-def rroots2-def]
have disc: 0 < discriminant-cubic-depressed e f unfolding discriminant-cubic-depressed-def
by (auto split: if-splits simp: numeral-2-eq-2)
let ?c = complez-of-real

let 2y = %cy
let e = ?ce
let 2f = %¢ f
have sub: set (solve-depressed-cubic-complex ?e ?f) C R
proof
fix y
assume y: y € set (solve-depressed-cubic-complex ?e ?f)
show y € R

by (rule solve-cubic-depressed-Cardano-all-real-roots| OF disc y[unfolded solve-depressed-cubic-complex]))
qged
have y 3+ exy+ f =0+« (9c(y 3+ exy+ f) = ?c 0) unfolding
of-real-eq-iff by simp
also have ... «— 2y~ 3 + %e x 2y + ?f = 0 by simp

also have ... «—— %y € set (solve-depressed-cubic-complex ?e 2f)
unfolding solve-depressed-cubic-complez ..
also have ... «— y € Re ‘ set (solve-depressed-cubic-complex ?e ?f) using sub
by force
finally show ?thesis unfolding solve-depressed-cubic-real-def None by auto
qed

Combining the various algorithms

lemma degree3-coeffs: degree p = 3 =

Jabed p=[d, c,bal]Na#0

by (metis One-nat-def Suc-1 degree2-coeffs degree-pCons-eq-if nat.inject nu-
meral-3-eq-3 pCons-cases zero-neqg-numeral)

definition roots3-generic :: (‘a :: field-char-0 = 'a = 'a list) = 'a poly = 'a list
where
roots3-generic depressed-solver p = (let

cs = coeffs p;

a=cs! 3 b=cs! 2, c=cs! 1;d=cs! 0
ald = 3 x a;

ba3 = b / a3,

b2 = b x b;

b3 = b2 x b;

e=(c—102/a3) / a
f=Wd+2+b3)(27T+a2) —bxc/al)/ a
roots = depressed-solver e f

28

in map (A y. y — ba8) roots)

lemma roots3-generic: assumes deg: degree p = 3
and solver: N\ e fy. y € set (depressed-solver e f) «—— y 3+ exy+ f=0
shows set (roots3-generic depressed-solver p) = {z. poly p © = 0}
proof —
note powers = field-simps power3-eq-cube power2-eq-square
from degree3-coeffs|OF deg] obtain a b ¢ d where
p: p = [:d,c,b,a:] and a: a # 0 by auto
have coeffs: coeffs p! 3 = a coeffsp! 2 =15b coeffsp! 1 = ccoeffsp! 0=4d
unfolding p using a by auto
define e where e = (¢ — 072/ (8% a)) / a
define f where f = (d + 2% 073/ (27 a 2) —bxc/(3%a))/a
note def = roots3-generic-def|of depressed-solver p, unfolded Let-def coeffs,
folded power3-eq-cube, folded power2-eq-square, folded e-def f-def]
{
/!

fix z:: 'a
define y where y =z + b/ (3 * a)
have zy: © = y — b / (8 * a) unfolding y-def by auto
have poly px =0 «— a*x 273+ bx 22+ ¢c*x 2+ d = 0 unfolding p
by (simp add: powers)
alsohave ... «— (y "3+ exy+ f=10)
unfolding to-depressed-cubic|OF a xy e-def f-def] ..
also have ... «—— y € set (depressed-solver e f)
unfolding solver ..
also have ... «—— 1z € set (roots3-generic depressed-solver p) unfolding zy def
by auto
finally have poly p x = 0 «— 1z € set (roots3-generic depressed-solver p) by
auto
}
thus ?thesis by auto
qed

definition croots3 :: complex poly = complex list where
croots3 = roots3-generic solve-depressed-cubic-complex

lemma croots3: assumes deg: degree p = 3
shows set (croots3 p) = { z. poly p x = 0}
unfolding croots3-def by (rule roots3-generic[OF deg solve-depressed-cubic-complex])

definition rroots3 :: real poly = real list where
rrootsd = roots3-generic solve-depressed-cubic-real

lemma rroots3: assumes deg: degree p = 3
shows set (rroots3 p) = { z. poly p x = 0}
unfolding rroots3-def by (rule roots3-generic|OF deg solve-depressed-cubic-real))

end

29

6 Algorithms to compute all complex and real roots
of a quartic polynomial

theory Quartic-Polynomials
imports
Ferraris-Formula
Cubic-Polynomials
begin

The complex case is straight-forward

definition solve-depressed-quartic-complex :: complex = complex = complex =
complex list where
solve-depressed-quartic-complex p q v = remdups (if ¢ = 0 then
(concat (map (X z. let y = csqrt z in [y,—y]) (croots2 [:r,p,1:]))) else
let cubics = croots8 [: — (¢72), 2+« p 2 — 81, 8% p, 8];
m = hd cubics; — select any root of the cubic polynomial
a = csqrt (2 * m);
p2m=1p/ 2+ m;
q2a = q / (2 % a);
b1 = p2m — q2a;
b2 = p2m + q2a
in (croots2 [:b1,a,1:] @ croots2 [:b2,—a,1:]))

lemma solve-depressed-quartic-complex: x € set (solve-depressed-quartic-complex
pqr)
— (Y +pxx2+qgxz+1r=20)
proof —
note powers = field-simps power4-eq-zxxr power3-eq-cube power2-eq-square
show ?thesis
proof (cases ¢ = 0)
case True
have csqrt: 2 = 272 «— (x = csqrt z V & = — csqrt z) for z
by (metis power2-csqrt power2-eq-iff)
have (z "4+ p*x2?+qxaz+r=0)—— (x " f+p*xa’>+r=0)
unfolding True by simp
also have ... «— (3z. 22 + p*x z + r = 0 A z = 2°?) unfolding bi-
quadratic-solution by simp
also have ... «—— (3 z poly [:r,p,1:] 2= 0N z = 2"2)
by (simp add: powers)

also have ... «—— (3 z € set (croots2 [:r,p,1:]). z = z72)
by (subst croots2[symmetric], auto)

also have ... «— (3 z € set (croots2 [:r,p,1:]). © = csqrt z V © = — csqrt z)
unfolding csqrt ..

also have ... «—— (z € set (solve-depressed-quartic-complex p q T))

unfolding solve-depressed-quartic-complex-def id unfolding True Let-def by
auto
finally show ?%thesis ..
next
case q0: Fulse

30

hence id: (if ¢ = 0 then z else y) = y for z y :: complex list by auto
note powers = field-simps powerj-eq-zzxx power3-eq-cube power2-eq-square
let Zpoly = [:— ¢%, 2% p*> — 8% 1, 8 x p, &]
from croots3[of ?poly] have croots: set (croots3 ?poly) = {x. poly ?poly x = 0}
by auto
from fundamental-theorem-of-algebra-alt[of ?poly]
have {z. poly ?poly x = 0} # {} by auto
with croots have croots3 ?poly # [] by auto
then obtain m rest where rts: croots8 ?poly = m # rest by (cases croots3
?poly, auto)
hence hd: hd (croots3 ?poly) = m by auto
from croots[unfolded rts| have poly ?poly m = 0 by auto
hence mrt: 8+m™3 + (8% p)* m 2+ (2 p 2 —8*xr)xm—qg 2=10
and m0: m # 0 using q0
by (auto simp: powers)
define b1 where b1 =p / 2+ m — q/ (2 % csqrt (2 x m))
define b2 where 02 =p / 2+ m + ¢/ (2 * csqrt (2 * m))
have csqrt: csqrt x csqrt x = z for z by (metis power2-csqrt power2-eq-square)
show ?thesis unfolding solve-depressed-quartic-complex-def id Let-def set-remdups
set-append hd
unfolding bI-def[symmetric] b2-def[symmetric]
apply (subst depressed-quartic-Ferrari]OF mrt q0 csqrt b1-def b2-def])
apply (subst (1 2) croots2[symmetric], auto)
done
qed
qged

The main difference in the real case is that a specific cubic root has to be
used, namely a positive one. In the soundness proof we show that such a
cubic root always exists.

definition solve-depressed-quartic-real :: real = real = real = real list where
solve-depressed-quartic-real p q v = remdups (if ¢ = 0 then
(concat (map (A z. rroots2 [:—z,0,1:]) (rroots2 [:r,p,1:]))) else
let cubics = rroots8 [— (¢72), 2% p 2 — 81, 8 x p, 8;
m = the (find (A m. m > 0) cubics); — select any positive root of the
cubic polynomial
a = sqrt (2 * m);
p2m =1p/ 2+ m;
q2a = q / (2 * a);
b1 = p2m — q2a;
b2 = p2m + q2a
in (rroots2 [:b1,a,1:] @ rroots2 [:b2,—a,1]))

lemma solve-depressed-quartic-real: © € set (solve-depressed-quartic-real p q)
— (Y +pxx2+qgxz+1=20)

proof —
note powers = field-simps power/-eq-rxxx power3-eq-cube power2-eq-square
show ?thesis
proof (cases ¢ = 0)

31

case True
have sqrt: z = 272 «— (z € set (rroots2 [:—z,0,1:])) for z
by (subst rroots2[symmetric|, auto simp: powers)
have (z “f+p*x2®+qxa+r=0)— (x " f+p*xa’+r=0)
unfolding True by simp
also have ... «— (3z. 22 + p* z + r = 0 A z = z*) unfolding bi-
quadratic-solution by simp
also have ... «— (3 z poly [:r,p,I:] 2= 0 A z = z72)
by (simp add: powers)
also have ... «—— (3 z € set (rroots2 [:r,p,1}]). z = 27 2)
by (subst rroots2[symmetric], auto)
also have ... «—— (3 z € set (rroots2 [:r,p,I]). © € set (rroots2 [:—z,0,1:]))
unfolding sqrt ..
also have ... «— (z € set (solve-depressed-quartic-real p q T))
unfolding solve-depressed-quartic-real-def id unfolding True Let-def by auto
finally show ?thesis ..
next
case q0: Fulse
hence id: (if ¢ = 0 then z else y) = y for z y :: real list by auto
note powers = field-simps power/-eq-rxrx powers-eq-cube power2-eq-square
let Zpoly = [:— ¢%, 2% p*> — 8% 1, 8 x p, &]

define cubics where cubics = rroots3 ?poly
from rroots3[of ?poly, folded cubics-def]
have rroots: set cubics = {z. poly ?poly x = 0} by auto
from odd-degree-imp-real-root[of ?poly]
have {z. poly ?poly x = 0} # {} by auto
with rroots have cubics # [] by auto
have 3 m. m € set cubics N m > 0
proof (rule ccontr)
assume - ?thesis
from this[unfolded rroots| have rt: poly ?poly m = 0 = m < 0 for m by
auto
have poly ?poly 0 = — (¢72) by simp
also have ... < 0 using ¢0 by auto
finally have It: poly ?poly 0 < 0 by simp
from poly-pinfty-gt-lc[of ?poly] obtain n0 where A n. n > n0 = 8 < poly
Zpoly n by auto
from this[of max n0 0] have poly ?poly (max n0 0) > 0 by auto
from IVT[of poly ?poly, OF It this] obtain m where m > 0 and poly: poly
?poly m = 0 by auto
from rt[OF this(2)] this(1) have m = 0 by auto
thus Fulse using poly q0 by simp
qed
hence find (A m. m > 0) cubics # None unfolding find-None-iff by auto
then obtain m where find: find (A m. m > 0) cubics = Some m by auto
from find-Some-D[OF this] have m: m € set cubics and m-0: m > 0 by auto
with rroots have poly ?poly m = 0 by auto
hence mrt: 8+m™3 + (8% p)* m 2+ (2+xp 2 —8*xr)xm—qg 2=10

32

by (auto simp: powers)
from m-0 have sqrt: sqrt (2 x m) * sqrt (2 x m) = 2 x m by simp
define b1 where b1 =p / 2+ m — q / (2 % sqrt (2 x m))
define b2 where b2 =p / 24+ m + q / (2 * sqrt (2 x m))
show ?thesis unfolding solve-depressed-quartic-real-def id Let-def set-remdups
set-append
cubics-def[symmetric] find option.sel
unfolding b1-def[symmetric] b2-def[symmetric]
apply (subst depressed-quartic-Ferrari|OF mrt q0 sqrt b1-def b2-def])
apply (subst (1 2) rroots2[symmetric], auto)
done
qed
qed

Combining the various algorithms

lemma numeral-4-eq-4: 4 = Suc (Suc (Suc (Suc 0)))
by (simp add: eval-nat-numeral)

lemma degreej-coeffs: degree p = 4 —>

Jabedep=[ed cba]ANa#0

using degree3-coeffs degree-pCons-eq-if nat.inject numeral-3-eq-8 numeral-4-eq-4
pCons-cases zero-neg-numeral

by metis

definition rootsj-generic :: (‘a :: field-char-0 = 'a = 'a = 'a list) = 'a poly =
‘a list where
roots4-generic depressed-solver p = (let

cs = coeffs p;
cs = coeffs p;
af=-cs! ;a8 =cs! 8;a2=cs! 2, al=cs! 1;a0 =cs! 0;
b= a3/ a4;
c= a2/ a4;
d=al/ aj;
e= a0/ a4
b2 = b x b;
b3 = b2 x b;
bl = b3 * b;
b4'=1b/ 4

p=c— 3/8x b2

q= (b3 — fxbxc + 8% d) / &
r=(-83xbj+ 256 xe— 64xbxd+ 16 x b2 x ¢) |/ 256;
roots = depressed-solver p q r

in map (A y. y — b4’) roots)

lemma roots4-generic: assumes deg: degree p =

and solver: \ p qry. y € set (depressed-solver p qr) «— y 4+ p*xy 2+ ¢
xy+r=20

shows set (rootsj-generic depressed-solver p) = {z. poly p x = 0}
proof —

33

note powers = field-simps power4-eq-rxxx power3-eq-cube power2-eq-square
from degree/-coeffs|OF deg] obtain a4 a3 a2 al a0 where
p: p = [:a0,a1,02,a3,04:] and a4: a4 # 0 by auto
have coeffs: coeffs p! 4 = a4 coeffs p! 3 = a8 coeffs p ! 2 = a2 coeffs p ! 1 =
al coeffs p! 0 = a0
unfolding p using a4 by auto
define b where b = a3 / a4
define ¢ where ¢ = a2 / a4
define d where d = al / a4
define e where ¢ = a0 / a4
note def = roots4-generic-def|of depressed-solver p, unfolded Let-def coeffs, folded
b-def c-def d-def e-def,
folded powerj-eq-zzaz, folded power3-eq-cube, folded power2-eq-square]
let 7p=1p
{
fix =
define y where y =z + b / 4
define p where p = ¢ — (3/8) x b2
define ¢ where ¢ = (b73 — 4xbxc+ 8+ d) / 8
define r where r = (=8 % b/ + 256 x e — 64« bx d+ 16 x b2 c) / 256
note def = def[folded p-def q-def r-def]
have zy: © = y — b / 4 unfolding y-def by auto
have poly %px =0« a4 x4+ a3« 2 3+ a2« 1 2+ al xx+ al =0
unfolding p
by (simp add: powers)
alsohave ... «—— (y "4+ p*xy> + gxy+r=10)
unfolding to-depressed-quartic|OF a4 b-def c-def d-def e-def p-def q-def r-def

also have ... «—— y € set (depressed-solver p q r)
unfolding solver ..
also have ... «—— 1z € set (roots/-generic depressed-solver ?p) unfolding zy
def by auto

finally have poly ?p x = 0 «— x € set (roots4-generic depressed-solver ?p)
by auto

}

thus ?thesis by simp
qed

definition croots4 :: complex poly = complex list where
croots4 = roots4-generic solve-depressed-quartic-complex

lemma croots: assumes deg: degree p =
shows set (croots4 p) = { z. poly p x = 0}
unfolding croots4-def by (rule roots/-generic[OF deg solve-depressed-quartic-complez])

definition rroots4 :: real poly = real list where
rroots4 = roots4-generic solve-depressed-quartic-real

lemma rroots/: assumes deg: degree p = 4

34

shows set (rroots4 p) = { z. poly p x = 0}
unfolding rroots-def by (rule roots4-generic[OF deg solve-depressed-quartic-real])

end

References

[1] G. Cardano. Ars Magna, The Great Art or the Rules of Algebra. 1545.
https://en.wikipedia.org/wiki/Ars_ Magna_ (Cardano_ book).

[2] R. Thiemann, A. Yamada, and S. Joosten. Algebraic numbers in Is-
abelle/HOL. Archive of Formal Proofs, Dec. 2015. https://isa-afp.org/
entries/Algebraic_ Numbers.html, Formal proof development.

35

https://en.wikipedia.org/wiki/Ars_Magna_(Cardano_book)
https://isa-afp.org/entries/Algebraic_Numbers.html
https://isa-afp.org/entries/Algebraic_Numbers.html

	Ferrari's formula for solving quartic equations
	Translation to depressed case
	Solving the depressed case via Ferrari's formula

	Cardano's formula for solving cubic equations
	Translation to depressed case
	Solving the depressed case in arbitrary fields
	Solving the depressed case for complex numbers
	Solving the depressed case for real numbers

	Implementation of the minimal polynomial of a real or complex algebraic number
	n-th roots of complex numbers
	An algorithm to compute all complex roots of (algebraic) complex numbers
	A definition of the complex root of a complex number

	Algorithms to compute all complex and real roots of a cubic polynomial
	Algorithms to compute all complex and real roots of a quartic polynomial

