
Solving Cubic and Quartic Equations

René Thiemann

September 3, 2021

Abstract

We formalize Cardano’s formula to solve a cubic equation

ax3 + bx2 + cx + d = 0,

as well as Ferrari’s formula to solve a quartic equation [1]. We further
turn both formulas into executable algorithms based on the algebraic
number implementation in the AFP [2]. To this end we also slightly
extended this library, namely by making the minimal polynomial of an
algebraic number executable, and by defining and implementing n-th
roots of complex numbers.

Contents
1 Ferrari’s formula for solving quartic equations 2

1.1 Translation to depressed case 2
1.2 Solving the depressed case via Ferrari’s formula 2

2 Cardano’s formula for solving cubic equations 4
2.1 Translation to depressed case 4
2.2 Solving the depressed case in arbitrary fields 4
2.3 Solving the depressed case for complex numbers 5
2.4 Solving the depressed case for real numbers 7

3 Implementation of the minimal polynomial of a real or com-
plex algebraic number 11

4 n-th roots of complex numbers 15
4.1 An algorithm to compute all complex roots of (algebraic)

complex numbers . 15
4.2 A definition of the complex root of a complex number 16

5 Algorithms to compute all complex and real roots of a cubic
polynomial 24

1

6 Algorithms to compute all complex and real roots of a quar-
tic polynomial 30

1 Ferrari’s formula for solving quartic equations
theory Ferraris-Formula

imports
Polynomial-Factorization.Explicit-Roots
Polynomial-Interpolation.Ring-Hom-Poly
Complex-Geometry.More-Complex

begin

1.1 Translation to depressed case

Solving an arbitrary quartic equation can easily be turned into the depressed
case, i.e., where there is no cubic part.
lemma to-depressed-quartic: fixes a4 :: ′a :: field-char-0

assumes a4: a4 6= 0
and b: b = a3 / a4
and c: c = a2 / a4
and d: d = a1 / a4
and e: e = a0 / a4
and p: p = c − (3/8) ∗ b^2
and q: q = (b^3 − 4∗b∗c + 8 ∗ d) / 8
and r : r = (−3 ∗ b^4 + 256 ∗ e − 64 ∗ b ∗ d + 16 ∗ b^2 ∗ c) / 256
and x: x = y − b/4

shows a4 ∗ x^4 + a3 ∗ x^3 + a2 ∗ x^2 + a1 ∗ x + a0 = 0
←→ y^4 + p ∗ y^2 + q ∗ y + r = 0

proof −
have a4 ∗ x^4 + a3 ∗ x^3 + a2 ∗ x^2 + a1 ∗ x + a0 = 0 ←→

(a4 ∗ x^4 + a3 ∗ x^3 + a2 ∗ x^2 + a1 ∗ x + a0) / a4 = 0 using a4 by auto
also have (a4 ∗ x^4 + a3 ∗ x^3 + a2 ∗ x^2 + a1 ∗ x + a0) / a4

= x^4 + b ∗ x^3 + c ∗ x^2 + d ∗ x + e
unfolding b c d e using a4 by (simp add: field-simps)

also have . . . = y^4 + p ∗ y^2 + q ∗ y + r
unfolding x p q r
by (simp add: field-simps power4-eq-xxxx power3-eq-cube power2-eq-square)

finally show ?thesis .
qed

lemma biquadratic-solution: fixes p q :: ′a :: field-char-0
shows y^4 + p ∗ y^2 + q = 0 ←→ (∃ z. z^2 + p ∗ z + q = 0 ∧ z = y^2)
by (auto simp: field-simps power4-eq-xxxx power2-eq-square)

1.2 Solving the depressed case via Ferrari’s formula
lemma depressed-quartic-Ferrari: fixes p q r :: ′a :: field-char-0

2

assumes cubic-root: 8∗m^3 + (8 ∗ p) ∗ m^2 + (2 ∗ p^2 − 8 ∗ r) ∗ m − q^2
= 0

and q0: q 6= 0 — otherwise m might be zero, so a is zero and then there is a
division by zero in b1 and b2

and sqrt: a ∗ a = 2 ∗ m
and b1: b1 = p / 2 + m − q / (2 ∗ a)
and b2: b2 = p / 2 + m + q / (2 ∗ a)
shows y^4 + p ∗ y^2 + q ∗ y + r = 0 ←→ poly [:b1,a,1:] y = 0 ∨ poly [:b2,−a,1:]

y = 0
proof −

let ?N = y^2 + p / 2 + m
let ?M = a ∗ y − q / (2 ∗ a)
from cubic-root q0 have m0: m 6= 0 by auto
from sqrt m0 have a0: a 6= 0 by auto
define N where N = ?N
define M where M = ?M
note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
from cubic-root have 8∗m^3 = − (8 ∗ p) ∗ m^2 − (2 ∗ p^2 − 8 ∗ r) ∗ m +

q^2
by (simp add: powers)

from arg-cong[OF this, of (∗) 4]
have id: 32 ∗ m^3 = 4 ∗ (− (8 ∗ p) ∗ m^2 − (2 ∗ p^2 − 8 ∗ r) ∗ m + q^2) by

simp
let ?add = 2 ∗ y^2 ∗ m + p ∗ m + m^2
have y^4 + p ∗ y^2 + q ∗ y + r = 0 ←→

(y^2 + p / 2)^2 = −q ∗ y − r + p^2 / 4
by (simp add: powers, algebra)

also have . . . ←→ (y^2 + p / 2)^2 + ?add = −q ∗ y − r + p^2 / 4 + ?add
by simp

also have . . . ←→ ?N^2 = 2 ∗ m ∗ y^2 − q ∗ y + m^2 + m ∗ p + p^2 / 4 − r
by (simp add: powers)

also have 2 ∗ m ∗ y^2 − q ∗ y + m^2 + m ∗ p + p^2 / 4 − r =
?M ^ 2 using m0 id a0 sqrt by (simp add: powers, algebra)

also have ?N^2 = ?M^2 ←→ (?N + ?M) ∗ (?N − ?M) = 0
unfolding N-def [symmetric] M-def [symmetric] by algebra

also have . . . ←→ ?N + ?M = 0 ∨ ?N − ?M = 0 by simp
also have ?N + ?M = y2 + a ∗ y + b1

by (simp add: b1)
also have ?N − ?M = y2 − a ∗ y + b2

by (simp add: b2)
also have y2 + a ∗ y + b1 = 0 ←→ poly [:b1,a,1:] y = 0

by (simp add: powers)
also have y2 − a ∗ y + b2 = 0 ←→ poly [:b2,−a,1:] y = 0

by (simp add: powers)
finally show ?thesis .

qed

end

3

2 Cardano’s formula for solving cubic equations
theory Cardanos-Formula

imports
Polynomial-Factorization.Explicit-Roots
Polynomial-Interpolation.Ring-Hom-Poly
Complex-Geometry.More-Complex
Algebraic-Numbers.Complex-Roots-Real-Poly

begin

2.1 Translation to depressed case

Solving an arbitrary cubic equation can easily be turned into the depressed
case, i.e., where there is no quadratic part.
lemma to-depressed-cubic: fixes a :: ′a :: field-char-0

assumes a: a 6= 0
and xy: x = y − b / (3 ∗ a)
and e: e = (c − b^2 / (3 ∗ a)) / a
and f : f = (d + 2 ∗ b^3 / (27 ∗ a^2) − b ∗ c / (3 ∗ a)) / a

shows (a ∗ x ^ 3 + b ∗ x2 + c ∗ x + d = 0) ←→ y^3 + e ∗ y + f = 0
proof −

let ?yexp = y^3 + e ∗ y + f
have a ∗ x^3 + b ∗ x^2 + c ∗ x + d = 0 ←→ (a ∗ x^3 + b ∗ x^2 + c ∗ x +

d) / a = 0
using a by auto

also have (a ∗ x^3 + b ∗ x^2 + c ∗ x + d) / a = ?yexp unfolding xy e f
power3-eq-cube power2-eq-square using a

by (simp add: field-simps)
finally show ?thesis .

qed

2.2 Solving the depressed case in arbitrary fields
lemma cubic-depressed: fixes e :: ′a :: field-char-0

assumes yz: e 6= 0 =⇒ z^2 − y ∗ z − e / 3 = 0
and u: e 6= 0 =⇒ u = z^3
and v: v = − (e ^ 3 / 27)

shows y^3 + e ∗ y + f = 0 ←→ (if e = 0 then y^3 = −f else u2 + f ∗ u + v =
0)
proof −

let ?yexp = y^3 + e ∗ y + f
show ?thesis
proof (cases e = 0)

case False
note yz = yz[OF False]
from yz have eyz: e = 3 ∗ (z^2 − y ∗ z) by auto
from yz False have z0: z 6= 0 by auto
have ?yexp = 0 ←→ z^3 ∗ ?yexp = 0 using z0 by simp
also have z^3 ∗ ?yexp = z^6 + f ∗ z^3 − e^3/27 unfolding eyz by algebra

4

also have . . . = u^2 + f ∗ u + v unfolding u[OF False] v by algebra
finally show ?thesis using False by auto

next
case True
show ?thesis unfolding True by (auto, algebra)

qed
qed

2.3 Solving the depressed case for complex numbers

In the complex-numbers-case, the quadratic equation for u is always solvable,
and the main challenge here is prove that it does not matter which solution
of the quadratic equation is considered (this is the diff:False case in the proof
below.)
lemma solve-cubic-depressed-Cardano-complex: fixes e :: complex

assumes e0: e 6= 0
and v: v = − (e ^ 3 / 27)
and u: u^2 + f ∗ u + v = 0

shows y^3 + e ∗ y + f = 0 ←→ (∃ z. z^3 = u ∧ y = z − e / (3 ∗ z))
proof −

from v e0 have v0: v 6= 0 by auto
from e0 have (if e = 0 then x else y) = y for x y :: bool by auto
note main = cubic-depressed[OF - - v, unfolded this]
show ?thesis (is ?l = ?r)
proof

assume ?r
then obtain z where z: z^3 = u and y: y = z − e / (3 ∗ z) by auto
from u v0 have u0: u 6= 0 by auto
from z u0 have z0: z 6= 0 by auto
show ?l
proof (subst main)

show u2 + f ∗ u + v = 0 by fact
show u = z^3 unfolding z by simp
show z2 − y ∗ z − e / 3 = 0 unfolding y using z0

by (auto simp: field-simps power2-eq-square)
qed

next
assume ?l
let ?yexp = y^3 + e ∗ y + f
have y0: ?yexp = 0 using 〈?l〉 by auto
define p where p = [: −e/3, −y, 1:]
have deg: degree p = 2 unfolding p-def by auto
define z where z = hd (croots2 p)
have z ∈ set (croots2 p) unfolding croots2-def Let-def z-def by auto
with croots2[OF deg] have pz: poly p z = 0 by auto
from pz e0 have z0: z 6= 0 unfolding p-def by auto
from pz have yz: y ∗ z = z ∗ z − e / 3 unfolding p-def by (auto simp:

field-simps)

5

from arg-cong[OF this, of λ x. x / z] z0 have y = z − e / (3 ∗ z)
by (auto simp: field-simps)

have ∃ u z. u2 + f ∗ u + v = 0 ∧ z^3 = u ∧ y = z − e / (3 ∗ z)
proof (intro exI conjI)

show y = z − e / (3 ∗ z) by fact
from y0 have 0 = ?yexp ∗ z^3 by auto
also have . . . = (y ∗ z)^3 + e ∗ (y ∗ z) ∗ z^2 + f ∗ z^3 by algebra
also have . . . = (z^3)^2 + f ∗ (z^3) + v unfolding yz v by algebra
finally show (z^3)^2 + f ∗ (z^3) + v = 0 by simp

qed simp
then obtain uu z where
∗: uu2 + f ∗ uu + v = 0 z ^ 3 = uu y = z − e / (3 ∗ z) by blast
show ?r

proof (cases uu = u)
case True
thus ?thesis using ∗ by auto

next
case diff : False
define p where p = [:v,f ,1:]
have p2: degree p = 2 unfolding p-def by auto
have poly: poly p u = 0 poly p uu = 0 using u ∗(1) unfolding p-def

by (auto simp: field-simps power2-eq-square)
have u0: u 6= 0 uu 6= 0 using poly v0 unfolding p-def by auto
{

from poly(1) have [:−u,1:] dvd p by (meson poly-eq-0-iff-dvd)
then obtain q where pq: p = q ∗ [:−u,1:] by auto
from poly(2)[unfolded pq poly-mult] diff have poly q uu = 0 by auto
hence [:−uu,1:] dvd q by (meson poly-eq-0-iff-dvd)
then obtain q ′ where qq ′: q = q ′ ∗ [:−uu,1:] by auto
with pq have pq: p = q ′ ∗ [:−uu,1:] ∗ [:−u,1:] by auto
from pq[unfolded p-def] have q ′: q ′ 6= 0 by auto
from arg-cong[OF pq, of degree, unfolded p2]
have 2 = degree (q ′ ∗ [:− uu, 1:] ∗ [:− u, 1:]) .
also have . . . = degree q ′ + degree [:− uu, 1:] + degree [:− u, 1:]

apply (subst degree-mult-eq)
subgoal using q ′ by (metis mult-eq-0-iff pCons-eq-0-iff zero-neq-one)
subgoal by force
by (subst degree-mult-eq[OF q ′], auto)

also have . . . = degree q ′ + 2 by simp
finally have dq: degree q ′ = 0 by simp
from dq obtain c where q ′: q ′ = [: c:] by (metis degree-eq-zeroE)
from pq[unfolded q ′ p-def] have c = 1 by auto
with q ′ have q ′ = 1 by simp
with pq have [: −u, 1:] ∗ [: −uu, 1 :] = p by simp

}
from this[unfolded p-def , simplified] have prod: uu ∗ u = v by simp
hence uu: u = v / uu using u0 by (simp add: field-simps)
define zz where zz = − e / (3 ∗ z)
show ?r using ∗(2−) uu unfolding v using u0

6

by (intro exI [of - zz], auto simp: zz-def field-simps)
qed

qed
qed

2.4 Solving the depressed case for real numbers
definition discriminant-cubic-depressed :: ′a :: comm-ring-1 ⇒ ′a ⇒ ′a where

discriminant-cubic-depressed e f = − (4 ∗ e^3 + 27 ∗ f^2)

lemma discriminant-cubic-depressed: assumes [:−x,1:] ∗ [:−y,1:] ∗ [:−z,1:] =
[:f ,e,0,1:]

shows discriminant-cubic-depressed e f = (x−y)^2 ∗ (x − z)^2 ∗ (y − z)^2
proof −

from assms have f : f = − (z ∗ (y ∗ x)) and e: e = y ∗ x − z ∗ (− y − x) and
z: z = − y − x by auto

show ?thesis unfolding discriminant-cubic-depressed-def e f z
by (simp add: power2-eq-square power3-eq-cube field-simps)

qed

If the discriminant is negative, then there is exactly one real root
lemma solve-cubic-depressed-Cardano-real: fixes e f v u :: real

defines y1 ≡ root 3 u − e / (3 ∗ root 3 u)
and ∆ ≡ discriminant-cubic-depressed e f

assumes e0: e 6= 0
and v: v = − (e ^ 3 / 27)
and u: u2 + f ∗ u + v = 0

shows y1^3 + e ∗ y1 + f = 0
∆ 6= 0 =⇒ y^3 + e ∗ y + f = 0 =⇒ y = y1

proof −
let ?c = complex-of-real
let ?y = ?c y
let ?e = ?c e
let ?u = ?c u
let ?v = ?c v
let ?f = ?c f
{

fix y :: real
let ?y = ?c y
have y^3 + e ∗ y + f = 0 ←→ ?c (y^3 + e ∗ y + f) = ?c 0

using of-real-eq-iff by blast
also have . . . ←→ ?y^3 + ?e ∗ ?y + ?f = 0 by simp
also have . . . ←→ (∃ z. z^3 = ?u ∧ ?y = z − ?e / (3 ∗ z))
proof (rule solve-cubic-depressed-Cardano-complex)

show ?e 6= 0 using e0 by auto
show ?v = − (?e ^ 3 / 27) unfolding v by simp
show ?u2 + ?f ∗ ?u + ?v = 0 using arg-cong[OF u, of ?c] by simp

qed
finally have y^3 + e ∗ y + f = 0 ←→ (∃ z. z^3 = ?u ∧ ?y = z − ?e / (3 ∗

7

z)) .
} note pre = this
show y1: y1^3 + e ∗ y1 + f = 0 unfolding pre y1-def

by (intro exI [of - ?c (root 3 u)], simp only: of-real-power [symmetric],
simp del: of-real-power add: odd-real-root-pow)

from u have {z. poly [:v,f ,1:] z = 0} 6= {}
by (auto simp add: field-simps power2-eq-square)

hence set (rroots2 [:v,f ,1:]) 6= {}
by (subst rroots2[symmetric], auto)

hence rroots2 [:v,f ,1:] 6= [] by simp
from this[unfolded rroots2-def Let-def , simplified]
have f^2 − 4 ∗ v ≥ 0

by (auto split: if-splits simp: numeral-2-eq-2 field-simps power2-eq-square)
hence delta-le-0: ∆ ≤ 0 unfolding ∆-def discriminant-cubic-depressed-def v by

auto

assume Delta-non-0: ∆ 6= 0
with delta-le-0 have delta-neg: ∆ < 0 by simp
let ?p = [:f ,e,0,1:]
have poly: poly ?p y = 0 ←→ y^3 + e ∗ y + f = 0 for y

by (simp add: field-simps power2-eq-square power3-eq-cube)
from y1 have poly ?p y1 = 0 unfolding poly .
hence [:−y1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
then obtain q where pq: ?p = [:−y1,1:] ∗ q by blast
{

fix y2
assume poly ?p y2 = 0 y2 6= y1
from this[unfolded pq] poly-mult have poly q y2 = 0 by auto
from this[unfolded poly-eq-0-iff-dvd] obtain r where qr : q = [:−y2,1:] ∗ r by

blast
{

have r0: r 6= 0 using pq unfolding qr poly-mult by auto
have 3 = degree ?p by simp
also have . . . = 2 + degree r unfolding pq qr

apply (subst degree-mult-eq, force)
subgoal using r0 pq qr by force
by (subst degree-mult-eq[OF - r0], auto)

finally have degree r = 1 by simp
from degree1-coeffs[OF this] obtain yy a where r : r = [:yy,a:] by auto
define y3 where y3 = −yy
with r have r : r = [:−y3,a:] by auto
from pq[unfolded qr r] have a = 1 by auto
with r have ∃ y3. r = [:−y3,1:] by auto

}
then obtain y3 where r : r = [:−y3,1:] by auto
have py: ?p = [:−y1,1:] ∗ [:−y2,1:] ∗ [:−y3,1:] unfolding pq qr r by algebra
from discriminant-cubic-depressed[OF this[symmetric], folded ∆-def]
have delta: ∆ = (y1 − y2)2 ∗ (y1 − y3)2 ∗ (y2 − y3)2 .
have d0: ∆ ≥ 0 unfolding delta by auto

8

with delta-neg have False by auto
}
with y1 show y^3 + e ∗ y + f = 0 =⇒ y = y1 unfolding poly by auto

qed

If the discriminant is non-negative, then all roots are real
lemma solve-cubic-depressed-Cardano-all-real-roots: fixes e f v :: real and y ::
complex

defines ∆ ≡ discriminant-cubic-depressed e f
assumes Delta: ∆ ≥ 0
and rt: y^3 + e ∗ y + f = 0

shows y ∈ IR
proof −

note powers = field-simps power3-eq-cube power2-eq-square
let ?c = complex-of-real
let ?e = ?c e
let ?f = ?c f
let ?cp = [:?f ,?e,0,1:]
let ?p = [:f ,e,0,1:]
from odd-degree-imp-real-root[of ?p] obtain x1 where poly ?p x1 = 0 by auto
hence [:−x1,1:] dvd ?p using poly-eq-0-iff-dvd by blast
then obtain q where pq: ?p = [:−x1,1:] ∗ q by auto
from arg-cong[OF pq, of degree]
have 3 = degree ([:−x1,1:] ∗ q) by simp
also have . . . = 1 + degree q

by (subst degree-mult-eq, insert pq, auto)
finally have dq: degree q = 2 by auto
let ?cc = map-poly ?c
let ?q = ?cc q
have cpq: ?cc ?p = ?cc [:−x1,1:] ∗ ?q unfolding pq hom-distribs by simp
let ?x1 = ?c x1
have dq ′: degree ?q = 2 using dq by simp
have ¬ constant (poly ?q) using dq by (simp add: constant-degree)
from fundamental-theorem-of-algebra[OF this] obtain x2 where x2: poly ?q x2

= 0 by blast
have x2 ∈ IR
proof (rule ccontr)

assume x2r : x2 /∈ IR
define x3 where x3 = cnj x2
from x2r have x23: x2 6= x3 unfolding x3-def using Reals-cnj-iff by force
have x3: poly ?q x3 = 0 unfolding x3-def

by (rule complex-conjugate-root[OF - x2], auto)
from x2[unfolded poly-eq-0-iff-dvd] obtain r where qr : ?q = [:−x2,1:] ∗ r by

auto
from arg-cong[OF this[symmetric], of λ x. poly x x3, unfolded poly-mult x3

mult-eq-0-iff] x23
have x3: poly r x3 = 0 by auto
from arg-cong[OF qr , of degree]
have 2 = degree ([:−x2,1:] ∗ r) using dq ′ by simp

9

also have . . . = 1 + degree r by (subst degree-mult-eq, insert pq qr , auto)
finally have degree r = 1 by simp
from degree1-coeffs[OF this] obtain a b where r : r = [:a,b:] by auto
from cpq[unfolded qr r] have b1: b = 1 by simp
with x3 r have a + x3 = 0 by simp
hence a = − x3 by algebra
with b1 r have r : r = [:−x3,1:] by auto
have ?cc ?p = ?cc [:−x1,1:] ∗ [:−x2,1:] ∗ [:−x3,1:] unfolding cpq qr r by

algebra
also have ?cc [:−x1,1:] = [:−?x1,1:] by simp
also have ?cc ?p = ?cp by simp
finally have id: [:−?x1,1:] ∗ [:−x2,1:] ∗ [:−x3,1:] = ?cp by simp
define x23 where x23 = − 4 ∗ (Im x2)^2
define x12c where x12c = ?x1 − x2
define x12 where x12 = (Re x12c) ^ 2 + (Im x12c)^2
have x23-0: x23 < 0 unfolding x23-def using x2r using complex-is-Real-iff

by force
have Im x12c 6= 0 unfolding x12c-def using x2r using complex-is-Real-iff by

force
hence (Im x12c)^2 > 0 by simp
hence x12: x12 > 0 unfolding x12-def using sum-power2-gt-zero-iff by auto
from discriminant-cubic-depressed[OF id]
have ?c ∆ = ((?x1 − x2)2 ∗ (?x1 − x3)2) ∗ (x2 − x3)2

unfolding ∆-def discriminant-cubic-depressed-def by simp
also have (x2 − x3)^2 = ?c x23 unfolding x3-def x23-def by (simp add:

complex-eq-iff power2-eq-square)
also have (?x1 − x2)2 ∗ (?x1 − x3)2 = ((?x1 − x2) ∗ (?x1 − x3))^2

by (simp add: power2-eq-square)
also have ?x1 − x3 = cnj (?x1 − x2) unfolding x3-def by simp
also have (?x1 − x2) = x12c unfolding x12c-def ..
also have x12c ∗ cnj x12c = ?c x12 by (simp add: x12-def complex-eq-iff

power2-eq-square)
finally have ?c ∆ = ?c (x12^2 ∗ x23) by simp
hence ∆ = x12^2 ∗ x23 by (rule of-real-hom.injectivity)
also have . . . < 0 using x12 x23-0 by (meson mult-pos-neg zero-less-power)
finally show False using Delta by simp

qed
with x2 obtain x2 where poly ?q (?c x2) = 0 unfolding Reals-def by auto
hence x2: poly q x2 = 0 by simp
from x2[unfolded poly-eq-0-iff-dvd] obtain r where qr : q = [:−x2,1:] ∗ r by

auto
from arg-cong[OF qr , of degree]
have 2 = degree ([:−x2,1:] ∗ r) using dq ′ by simp
also have . . . = 1 + degree r by (subst degree-mult-eq, insert pq qr , auto)
finally have degree r = 1 by simp
from degree1-coeffs[OF this] obtain a b where r : r = [:a,b:] by auto
from pq[unfolded qr r] have b1: b = 1 by simp
define x3 where x3 = −a
have r : r = [:−x3,1:] unfolding r b1 x3-def by simp

10

let ?pp = [:−x1,1:] ∗ [:−x2,1:] ∗ [:−x3,1:]
have id: ?p = ?pp unfolding pq qr r by linarith
have True ←→ y^3 + e ∗ y + f = 0 using rt by auto
also have y^3 + e ∗ y + f = poly (?cc ?p) y by (simp add: powers)
also have . . . = poly (?cc ?pp) y unfolding id by simp
also have ?cc ?pp = [:−?c x1, 1:] ∗ [:−?c x2, 1:] ∗ [:− ?c x3, 1:]

by simp
also have poly . . . y = 0 ←→ y = ?c x1 ∨ y = ?c x2 ∨ y = ?c x3

unfolding poly-mult mult-eq-0-iff by auto
finally show y ∈ IR by auto

qed

end

3 Implementation of the minimal polynomial of a
real or complex algebraic number

This theory provides implementation of the minimal-representing-polynomial
of an algebraic number, for both the real-numbers and the complex-numbers.
theory Min-Int-Poly-Impl

imports
Hermite-Lindemann.Min-Int-Poly
Algebraic-Numbers.Real-Algebraic-Numbers
Algebraic-Numbers.Complex-Algebraic-Numbers

begin

definition min-int-poly-real-alg :: real-alg ⇒ int poly where
min-int-poly-real-alg x = (case info-real-alg x of Inl r ⇒ poly-rat r | Inr (p,-) ⇒

p)

lemma min-int-poly-of-rat: min-int-poly (of-rat r :: ′a :: {field-char-0, field-gcd})
= poly-rat r

by (intro min-int-poly-unique, auto)

lemma min-int-poly-real-alg: min-int-poly-real-alg x = min-int-poly (real-of x)
proof (cases info-real-alg x)

case (Inl r)
show ?thesis unfolding info-real-alg(2)[OF Inl] min-int-poly-real-alg-def Inl

by (simp add: min-int-poly-of-rat)
next

case (Inr pair)
then obtain p n where Inr : info-real-alg x = Inr (p,n) by (cases pair , auto)
hence poly-cond p by (transfer , transfer , auto simp: info-2-card)
hence min-int-poly (real-of x) = p using info-real-alg(1)[OF Inr]

by (intro min-int-poly-unique, auto)
thus ?thesis unfolding min-int-poly-real-alg-def Inr by simp

qed

11

definition min-int-poly-real :: real ⇒ int poly where
[simp]: min-int-poly-real = min-int-poly

lemma min-int-poly-real-code-unfold [code-unfold]: min-int-poly = min-int-poly-real

by simp

lemma min-int-poly-real-code[code]: min-int-poly-real (real-of x) = min-int-poly-real-alg
x

by (simp add: min-int-poly-real-alg)

Now let us head for the complex numbers
definition complex-poly :: int poly ⇒ int poly ⇒ int poly list where

complex-poly re im = (let i = [:1,0,1:]
in factors-of-int-poly (poly-add re (poly-mult im i)))

lemma complex-poly: assumes re: re represents (Re x)
and im: im represents (Im x)

shows ∃ f ∈ set (complex-poly re im). f represents x
∧

f . f ∈ set (complex-poly
re im) =⇒ poly-cond f
proof −

let ?p = poly-add re (poly-mult im [:1, 0, 1:])
from re have re: re represents complex-of-real (Re x) by simp
from im have im: im represents complex-of-real (Im x) by simp
have [:1,0,1:] represents i by auto
from represents-add[OF re represents-mult[OF im this]]
have ?p represents of-real (Re x) + complex-of-real (Im x) ∗ i by simp
also have of-real (Re x) + complex-of-real (Im x) ∗ i = x

by (metis complex-eq mult.commute)
finally have p: ?p represents x by auto
have factors-of-int-poly ?p = complex-poly re im

unfolding complex-poly-def Let-def by simp
from factors-of-int-poly(1)[OF this] factors-of-int-poly(2)[OF this, of x] p
show ∃ f ∈ set (complex-poly re im). f represents x

∧
f . f ∈ set (complex-poly

re im) =⇒ poly-cond f
unfolding represents-def by auto

qed

definition algebraic-real :: real ⇒ bool where
[simp]: algebraic-real = algebraic

lemma algebraic-real-iff [code-unfold]: algebraic = algebraic-real by simp

lemma algebraic-real-code[code]: algebraic-real (real-of x) = True
proof (cases info-real-alg x)

case (Inl r)
show ?thesis using info-real-alg(2)[OF Inl] by (auto simp: algebraic-of-rat)

12

next
case (Inr pair)
then obtain p n where Inr : info-real-alg x = Inr (p,n) by (cases pair , auto)
from info-real-alg(1)[OF Inr] have p represents (real-of x) by auto
thus ?thesis by (auto simp: algebraic-altdef-ipoly)

qed

lemma algebraic-complex-iff [code-unfold]: algebraic x ←→ algebraic (Re x) ∧ al-
gebraic (Im x)
proof

assume algebraic x
from this[unfolded algebraic-altdef-ipoly] obtain p where ipoly p x = 0 p 6= 0

by auto
from represents-root-poly[OF this] show algebraic (Re x) ∧ algebraic (Im x)

unfolding represents-def algebraic-altdef-ipoly by auto
next

assume algebraic (Re x) ∧ algebraic (Im x)
from this[unfolded algebraic-altdef-ipoly] obtain re im where

re represents (Re x) im represents (Im x) by blast
from complex-poly[OF this] show algebraic x

unfolding represents-def algebraic-altdef-ipoly by auto
qed

lemma algebraic-0[simp]: algebraic 0
unfolding algebraic-altdef-ipoly
by (intro exI [of - [:0,1:]], auto)

lemma min-int-poly-complex-of-real[simp]: min-int-poly (complex-of-real x) = min-int-poly
x
proof (cases algebraic x)

case False
hence ¬ algebraic (complex-of-real x) unfolding algebraic-complex-iff by auto
with False show ?thesis unfolding min-int-poly-def by auto

next
case True
from min-int-poly-represents[OF True]
have min-int-poly x represents x by auto
thus ?thesis

by (intro min-int-poly-unique, auto simp: lead-coeff-min-int-poly-pos)
qed

TODO: the implemention might be tuned, since the search process should
be faster when using interval arithmetic to figure out the correct factor.
(One might also implement the search via checking ipoly f x = (0:: ′a), but
because of complex-algebraic-number arithmetic, I think that search would
be slower than the current one via ”x ∈ set (complex-roots-of-int-poly f)
definition min-int-poly-complex :: complex ⇒ int poly where

min-int-poly-complex x = (if algebraic x then if Im x = 0 then min-int-poly-real
(Re x)

13

else the (find (λ f . x ∈ set (complex-roots-of-int-poly f)) (complex-poly
(min-int-poly (Re x)) (min-int-poly (Im x))))

else [:0,1:])

lemma min-int-poly-complex[code-unfold]: min-int-poly = min-int-poly-complex
proof (standard)

fix x
define fs where fs = complex-poly (min-int-poly (Re x)) (min-int-poly (Im x))
let ?f = min-int-poly-complex x
show min-int-poly x = ?f
proof (cases algebraic x)

case False
thus ?thesis unfolding min-int-poly-def min-int-poly-complex-def by auto

next
case True
show ?thesis
proof (cases Im x = 0)

case ∗: True
have id: ?f = min-int-poly-real (Re x) unfolding min-int-poly-complex-def ∗

using True by auto
show ?thesis unfolding id min-int-poly-real-code-unfold[symmetric] min-int-poly-complex-of-real[symmetric]

using ∗ by (intro arg-cong[of - - min-int-poly] complex-eqI , auto)
next

case False
from True[unfolded algebraic-complex-iff] have algebraic (Re x) algebraic (Im

x) by auto
from complex-poly[OF min-int-poly-represents[OF this(1)] min-int-poly-represents[OF

this(2)]]
have fs: ∃ f ∈ set fs. ipoly f x = 0

∧
f . f ∈ set fs =⇒ poly-cond f unfolding

fs-def by auto
let ?fs = find (λ f . ipoly f x = 0) fs
let ?fs ′ = find (λ f . x ∈ set (complex-roots-of-int-poly f)) fs
have ?f = the ?fs ′ unfolding min-int-poly-complex-def fs-def

using True False by auto
also have ?fs ′ = ?fs

by (rule find-cong[OF refl], subst complex-roots-of-int-poly, insert fs, auto)
finally have id: ?f = the ?fs .
from fs(1) have ?fs 6= None unfolding find-None-iff by auto
then obtain f where Some: ?fs = Some f by auto
from find-Some-D[OF this] fs(2)[of f]
show ?thesis unfolding id Some

by (intro min-int-poly-unique, auto)
qed

qed
qed

end

14

4 n-th roots of complex numbers
theory Complex-Roots

imports
Complex-Geometry.More-Complex
Min-Int-Poly-Impl
HOL−Library.Product-Lexorder

begin

4.1 An algorithm to compute all complex roots of (algebraic)
complex numbers

TODO: The filter instruction might be tuned by using interval arithmetic
instead.
definition all-croots :: nat ⇒ complex ⇒ complex list where

all-croots n x = (if n = 0 then [] else
if algebraic x then

(let p = min-int-poly x;
q = poly-nth-root n p;
xs = complex-roots-of-int-poly q
in filter (λ y. y^n = x) xs)

else (SOME ys. set ys = {y. y^n = x}))

lemma all-croots-code[code]:
all-croots n x = (if n = 0 then [] else

if algebraic x then
(let p = min-int-poly x;

q = poly-nth-root n p;
xs = complex-roots-of-int-poly q
in filter (λ y. y^n = x) xs)

else Code.abort (STR ′′all-croots invoked on non−algebraic number ′′) (λ -.
all-croots n x))

by (auto simp: all-croots-def)

lemma all-croots: assumes n0: n 6= 0 shows set (all-croots n x) = {y. y^n = x}

proof (cases algebraic x)
case True
hence id: (if n = 0 then y else if algebraic x then z else u) = z

for y z u :: complex list using n0 by auto
define p where p = poly-nth-root n (min-int-poly x)
show ?thesis unfolding Let-def p-def [symmetric] all-croots-def id
proof (standard, force, standard, simp)

fix y
assume y: y ^n = x
have min-int-poly x represents x using True by auto
from represents-nth-root[OF n0 y this]
have p represents y unfolding p-def by auto
thus y ∈ set (complex-roots-of-int-poly p)

15

by (subst complex-roots-of-int-poly, auto)
qed

next
case False
hence id: (if n = 0 then y else if algebraic x then z else u) = u

for y z u :: complex list using n0 by auto
show ?thesis unfolding Let-def all-croots-def id

by (rule someI-ex, rule finite-list, insert n0, blast)
qed

4.2 A definition of the complex root of a complex number

While the definition of the complex root is quite natural and easy, the main
task is a criterion to determine which of all possible roots of a complex
number is the chosen one.
definition croot :: nat ⇒ complex ⇒ complex where

croot n x = (rcis (root n (cmod x)) (arg x / of-nat n))

lemma croot-0[simp]: croot n 0 = 0 croot 0 x = 0
unfolding croot-def by auto

lemma croot-power : assumes n: n 6= 0
shows (croot n x) ^ n = x
unfolding croot-def DeMoivre2
by (subst real-root-pow-pos2, insert n, auto simp: rcis-cmod-arg)

lemma arg-of-real: arg (of-real x) =
(if x < 0 then pi else 0)

proof (cases x = 0)
case False
hence x < 0 ∨ x > 0 by auto
thus ?thesis by (intro arg-unique, auto

simp: complex-sgn-def scaleR-complex.ctr complex-eq-iff)
qed (auto simp: arg-def)

lemma arg-rcis-cis[simp]: assumes x > 0
shows arg (rcis x y) = arg (cis y)
using assms unfolding rcis-def by simp

lemma cis-arg-1[simp]: cis (arg 1) = 1
using arg-of-real[of 1] by simp

lemma cis-arg-power [simp]: assumes x 6= 0
shows cis (arg (x ^ n)) = cis (arg x ∗ real n)

proof (induct n)
case (Suc n)
show ?case unfolding power .simps
proof (subst cis-arg-mult)

16

show cis (arg x + arg (x ^ n)) = cis (arg x ∗ real (Suc n))
unfolding mult.commute[of arg x] DeMoivre[symmetric]
unfolding power .simps using Suc
by (metis DeMoivre cis-mult mult.commute)

show x ∗ x ^ n 6= 0 using assms by auto
qed

qed simp

lemma arg-croot[simp]: arg (croot n x) = arg x / real n
proof (cases n = 0 ∨ x = 0)

case True
thus ?thesis by (auto simp: arg-def)

next
case False
hence n: n 6= 0 and x: x 6= 0 by auto
let ?root = croot n x
from n have n1: real n ≥ 1 real n > 0 real n 6= 0 by auto
have bounded: − pi < arg x / real n ∧ arg x / real n ≤ pi
proof (cases arg x < 0)

case True
from arg-bounded[of x] have − pi < arg x by auto
also have . . . ≤ arg x / real n using n1 True

by (smt (z3) div-by-1 divide-minus-left frac-le)
finally have one: − pi < arg x / real n .
have arg x / real n ≤ 0 using True n1

by (smt (verit) divide-less-0-iff)
also have . . . ≤ pi by simp
finally show ?thesis using one by auto

next
case False
hence ax: arg x ≥ 0 by auto
have arg x / real n ≤ arg x using n1 ax

by (smt (verit) div-by-1 frac-le)
also have . . . ≤ pi using arg-bounded[of x] by simp
finally have one: arg x / real n ≤ pi .
have −pi < 0 by simp
also have . . . ≤ arg x / real n using ax n1 by simp
finally show ?thesis using one by auto

qed
have arg ?root = arg (cis (arg x / real n))

unfolding croot-def using x n by simp
also have . . . = arg x / real n

by (rule arg-unique, force, insert bounded, auto)
finally show ?thesis .

qed

lemma cos-abs[simp]: cos (abs x :: real) = cos x
proof (cases x < 0)

case True

17

hence abs: abs x = − x by simp
show ?thesis unfolding abs by simp

qed simp

lemma cos-mono-le: assumes abs x ≤ pi
and abs y ≤ pi

shows cos x ≤ cos y ←→ abs y ≤ abs x
proof −

have cos x ≤ cos y ←→ cos (abs x) ≤ cos (abs y) by simp
also have . . . ←→ abs y ≤ abs x

by (subst cos-mono-le-eq, insert assms, auto)
finally show ?thesis .

qed

lemma abs-add-2-mult-bound: fixes x :: ′a :: linordered-idom
assumes xy: |x| ≤ y
shows |x| ≤ |x + 2 ∗ of-int i ∗ y|

proof (cases i = 0)
case i: False
let ?oi = of-int :: int ⇒ ′a
from xy have y: y ≥ 0 by auto
consider (pp) x ≥ 0 i ≥ 0
| (nn) x ≤ 0 i ≤ 0
| (pn) x ≥ 0 i ≤ 0
| (np) x ≤ 0 i ≥ 0
by linarith

thus ?thesis
proof cases

case pp
thus ?thesis using y by simp

next
case nn
have x ≥ x + 2 ∗ ?oi i ∗ y

using nn y by (simp add: mult-nonneg-nonpos2)
with nn show ?thesis by linarith

next
case pn
with i have 0 ≤ x i < 0 by auto
define j where j = nat (−i) − 1
define z where z = x − 2 ∗ y
define u where u = 2 ∗ ?oi (nat j) ∗ y
have u: u ≥ 0 unfolding u-def using y by auto
have i: i = − int (Suc j)

using 〈i < 0〉 unfolding j-def by simp
have id: x + 2 ∗ ?oi i ∗ y = z − u

unfolding i z-def u-def by (simp add: field-simps)
have z: z ≤ 0 abs z ≥ x using xy y pn(1)

unfolding z-def by auto
show ?thesis unfolding id using pn(1) z u by simp

18

next
case np
with i have 0 ≥ x i > 0 by auto
define j where j = nat i − 1
have i: i = int (Suc j)

using 〈i > 0〉 unfolding j-def by simp
define u where u = 2 ∗ ?oi (nat j) ∗ y
have u: u ≥ 0 unfolding u-def using y by auto
define z where z = − x − 2 ∗ y
have id: x + 2 ∗ ?oi i ∗ y = − z + u

unfolding i z-def u-def by (simp add: field-simps)
have z: z ≤ 0 abs z ≥ − x using xy y np(1)

unfolding z-def by auto
show ?thesis unfolding id using np(1) z u by simp

qed
qed simp

lemma abs-eq-add-2-mult: fixes y :: ′a :: linordered-idom
assumes abs-id: |x| = |x + 2 ∗ of-int i ∗ y|
and xy: − y < x x ≤ y
and i: i 6= 0

shows x = y ∧ i = −1
proof −

let ?oi = of-int :: int ⇒ ′a
from xy have y: y > 0 by auto
consider (pp) x ≥ 0 i ≥ 0
| (nn) x < 0 i ≤ 0
| (pn) x ≥ 0 i ≤ 0
| (np) x < 0 i ≥ 0
by linarith

hence ?thesis ∨ x = ?oi (− i) ∗ y
proof cases

case pp
thus ?thesis using y abs-id xy i by simp

next
case nn
hence |x + 2 ∗ ?oi i ∗ y| =
− (x + 2 ∗ ?oi i ∗ y)
using y nn
by (intro abs-of-nonpos add-nonpos-nonpos,

force, simp, intro mult-nonneg-nonpos, auto)
thus ?thesis using y abs-id xy i nn

by auto
next

case pn
with i have 0 ≤ x i < 0 by auto
define j where j = nat (−i) − 1
define z where z = x − 2 ∗ y
define u where u = 2 ∗ ?oi (nat j) ∗ y

19

have u: u ≥ 0 unfolding u-def using y by auto
have i: i = − int (Suc j)

using 〈i < 0〉 unfolding j-def by simp
have id: x + 2 ∗ ?oi i ∗ y = z − u

unfolding i z-def u-def by (simp add: field-simps)
have z: z ≤ 0 abs z ≥ x using xy y pn(1)

unfolding z-def by auto
from abs-id[unfolded id] have z − u = −x

using z u pn by auto
from this[folded id] have x = of-int (−i) ∗ y

by auto
thus ?thesis by auto

next
case np
with i have 0 ≥ x i > 0 by auto
define j where j = nat i − 1
have i: i = int (Suc j)

using 〈i > 0〉 unfolding j-def by simp
define u where u = 2 ∗ ?oi (nat j) ∗ y
have u: u ≥ 0 unfolding u-def using y by auto
define z where z = − x − 2 ∗ y
have id: x + 2 ∗ ?oi i ∗ y = − z + u

unfolding i z-def u-def by (simp add: field-simps)
have z: z ≤ 0

using xy y np(1) unfolding z-def by auto
from abs-id[unfolded id] have − z + u = − x

using u z np by auto
from this[folded id] have x = of-int (− i) ∗ y

by auto
thus ?thesis by auto

qed
thus ?thesis
proof

assume x = ?oi (− i) ∗ y
with xy i y
show ?thesis
by (smt (verit, ccfv-SIG) less-le minus-less-iff mult-le-cancel-right2 mult-minus1-right

mult-minus-left mult-of-int-commute of-int-hom.hom-one of-int-le-1-iff of-int-minus)
qed

qed

This is the core lemma. It tells us that croot will choose the principal root,
i.e. the root with largest real part and if there are two roots with identical
real part, then the largest imaginary part. This criterion will be crucial for
implementing croot.
lemma croot-principal: assumes n: n 6= 0

and y: y ^ n = x
and neq: y 6= croot n x

shows Re y < Re (croot n x) ∨ Re y = Re (croot n x) ∧ Im y < Im (croot n x)

20

proof (cases x = 0)
case True
with neq y have False by auto
thus ?thesis ..

next
case x: False
let ?root = croot n x
from n have n1: real n ≥ 1 real n > 0 real n 6= 0 by auto
from x y n have y0: y 6= 0 by auto
from croot-power [OF n, of x] y
have id: ?root ^ n = y ^ n by simp
hence cmod (?root ^ n) = cmod (y ^ n) by simp
hence norm-eq: cmod ?root = cmod y using n unfolding norm-power

by (meson gr-zeroI norm-ge-zero power-eq-imp-eq-base)
have cis (arg y ∗ real n) = cis (arg (y^n)) by (subst cis-arg-power [OF y0], simp)

also have . . . = cis (arg x) using y by simp
finally have ciseq: cis (arg y ∗ real n) = cis (arg x) by simp
from cis-eq[OF ciseq] obtain i where

arg y ∗ real n − arg x = 2 ∗ real-of-int i ∗ pi
by auto

hence arg y ∗ real n = arg x + 2 ∗ real-of-int i ∗ pi by auto
from arg-cong[OF this, of λ x. x / real n] n1
have argy: arg y = arg ?root + 2 ∗ real-of-int i ∗ pi / real n

by (auto simp: field-simps)
have i0: i 6= 0
proof

assume i = 0
hence arg y = arg ?root unfolding argy by simp
with norm-eq have ?root = y by (metis rcis-cmod-arg)
with neq show False by simp

qed
from y0 have cy0: cmod y > 0 by auto
from arg-bounded[of x] have abs-pi: abs (arg x) ≤ pi by auto
have Re y ≤ Re ?root ←→ Re y / cmod y ≤ Re ?root / cmod y

using cy0 unfolding divide-le-cancel by simp
also have cosy: Re y / cmod y = cos (arg y) unfolding cos-arg[OF y0] ..
also have cosrt: Re ?root / cmod y = cos (arg ?root)

unfolding norm-eq[symmetric] by (subst cos-arg, insert norm-eq cy0, auto)
also have cos (arg y) ≤ cos (arg ?root) ←→ abs (arg ?root) ≤ abs (arg y)

by (rule cos-mono-le, insert arg-bounded[of y] arg-bounded[of ?root], auto)
also have . . . ←→ abs (arg ?root) ∗ real n ≤ abs (arg y) ∗ real n

unfolding mult-le-cancel-right using n1 by simp
also have . . . ←→ abs (arg x) ≤ |arg x + 2 ∗ real-of-int i ∗ pi|

unfolding argy using n1 by (simp add: field-simps)
also have . . . using abs-pi

by (rule abs-add-2-mult-bound)
finally have le: Re y ≤ Re (croot n x) .
show ?thesis

21

proof (cases Re y = Re (croot n x))
case False
with le show ?thesis by auto

next
case True
hence Re y / cmod y = Re ?root / cmod y by simp
hence cos (arg y) = cos (arg ?root) unfolding cosy cosrt .
hence cos (abs (arg y)) = cos (abs (arg ?root)) unfolding cos-abs .
from cos-inj-pi[OF - - - - this]
have abs (arg y) = abs (arg ?root)

using arg-bounded[of y] arg-bounded[of ?root] by auto
hence abs (arg y) ∗ real n = abs (arg ?root) ∗ real n by simp
hence abs (arg x) = |arg x + 2 ∗ real-of-int i ∗ pi| unfolding argy

using n1 by (simp add: field-simps)
from abs-eq-add-2-mult[OF this - - 〈i 6= 0〉] arg-bounded[of x]
have argx: arg x = pi and i: i = −1 by auto
have argy: arg y = −pi / real n

unfolding argy arg-croot i argx by simp
have Im ?root > Im y ←→ Im ?root / cmod ?root > Im y / cmod y

unfolding norm-eq using cy0
by (meson divide-less-cancel divide-strict-right-mono)

also have . . . ←→ sin (arg ?root) > sin (arg y)
by (subst (1 2) sin-arg, insert y0 norm-eq, auto)

also have . . . ←→ sin (− pi / real n) < sin (pi / real n)
unfolding argy arg-croot argx by simp

also have . . .
proof −

have sin (− pi / real n) < 0
using n1 by (smt (verit) arg-bounded argy divide-neg-pos sin-gt-zero

sin-minus)
also have . . . < sin (pi / real n)

using n1 calculation by fastforce
finally show ?thesis .

qed
finally show ?thesis using le by auto

qed
qed

lemma croot-unique: assumes n: n 6= 0
and y: y ^ n = x
and y-max-Re-Im:

∧
z. z ^ n = x =⇒

Re z < Re y ∨ Re z = Re y ∧ Im z ≤ Im y
shows croot n x = y
proof (rule ccontr)

assume croot n x 6= y
from croot-principal[OF n y this[symmetric]]
have Re y < Re (croot n x) ∨

Re y = Re (croot n x) ∧ Im y < Im (croot n x) .
with y-max-Re-Im[OF croot-power [OF n]]

22

show False by auto
qed

lemma csqrt-is-croot-2: csqrt = croot 2
proof

fix x
show csqrt x = croot 2 x
proof (rule sym, rule croot-unique, force, force)

let ?p = [:−x,0,1:]
let ?cx = csqrt x
have p: ?p = [:?cx,1:] ∗ [:−?cx,1:]

by (simp add: power2-eq-square[symmetric])
fix y
assume y^2 = x
hence True ←→ poly ?p y = 0

by (auto simp: power2-eq-square)
also have . . . ←→ y = − ?cx ∨ y = ?cx

unfolding p poly-mult mult-eq-0-iff poly-root-factor by auto
finally have y = − ?cx ∨ y = ?cx by simp
thus Re y < Re ?cx ∨ Re y = Re ?cx ∧ Im y ≤ Im ?cx
proof

assume y: y = − ?cx
show ?thesis
proof (cases Re ?cx = 0)

case False
with csqrt-principal[of x] have Re ?cx > 0 by simp
thus ?thesis unfolding y by simp

next
case True
with csqrt-principal[of x] have Im ?cx ≥ 0 by simp
thus ?thesis unfolding y using True by auto

qed
qed auto

qed
qed

lemma croot-via-root-selection: assumes roots: set ys = { y. y^n = x}
and n: n 6= 0

shows croot n x = arg-min-list (λ y. (− Re y, − Im y)) ys
(is - = arg-min-list ?f ys)

proof (rule croot-unique[OF n])
let ?y = arg-min-list ?f ys
have rt: croot n x ^ n = x using n by (rule croot-power)
hence croot n x ∈ set ys unfolding roots by auto
hence ys: ys 6= [] by auto
from arg-min-list-in[OF this] have ?y ∈ set ys by auto
from this[unfolded roots]
show ?y^n = x by auto
fix z

23

assume z^n = x
hence z: z ∈ set ys unfolding roots by auto
from f-arg-min-list-f [OF ys, of ?f] z
have ?f ?y ≤ ?f z by simp
thus Re z < Re ?y ∨ Re z = Re ?y ∧ Im z ≤ Im ?y by auto

qed

lemma croot-impl[code]: croot n x = (if n = 0 then 0 else
arg-min-list (λ y. (− Re y, − Im y)) (all-croots n x))

proof (cases n = 0)
case n0: False
hence id: (if n = 0 then y else z) = z

for y z u :: complex by auto
show ?thesis unfolding id Let-def

by (rule croot-via-root-selection[OF - n0], rule all-croots[OF n0])
qed auto

end

5 Algorithms to compute all complex and real roots
of a cubic polynomial

theory Cubic-Polynomials
imports

Cardanos-Formula
Complex-Roots

begin

hide-const (open) MPoly-Type.degree
hide-const (open) MPoly-Type.coeffs

lemma complex-of-real-code[code-unfold]: complex-of-real = (λ x. Complex x 0)
by (intro ext, auto simp: complex-eq-iff)

The real case where a result is only delivered if the discriminant is negative
definition solve-depressed-cubic-Cardano-real :: real ⇒ real ⇒ real option where

solve-depressed-cubic-Cardano-real e f = (
if e = 0 then Some (root 3 (−f)) else
let v = − (e ^ 3 / 27) in
case rroots2 [:v,f ,1:] of

[u,-] ⇒ let rt = root 3 u in Some (rt − e / (3 ∗ rt))
| - ⇒ None)

lemma solve-depressed-cubic-Cardano-real:
assumes solve-depressed-cubic-Cardano-real e f = Some y
shows {y. y^3 + e ∗ y + f = 0} = {y}

proof (cases e = 0)

24

case True
have {y. y^3 + e ∗ y + f = 0} = {y. y^3 = −f } unfolding True

by (auto simp add: field-simps)
also have . . . = {root 3 (−f)}

using odd-real-root-unique[of 3 - −f] odd-real-root-pow[of 3] by auto
also have root 3 (−f) = y using assms unfolding True solve-depressed-cubic-Cardano-real-def

by auto
finally show ?thesis .

next
case False
define v where v = − (e ^ 3 / 27)
note ∗ = assms[unfolded solve-depressed-cubic-Cardano-real-def Let-def , folded

v-def]
let ?rr = rroots2 [:v,f ,1:]
from ∗ False obtain u u ′ where rr : ?rr = [u,u ′]

by (cases ?rr ; cases tl ?rr ; cases tl (tl ?rr); auto split: if-splits)
from ∗[unfolded rr list.simps] False
have y: y = root 3 u − e / (3 ∗ root 3 u) by auto
have u ∈ set (rroots2 [:v,f ,1:]) unfolding rr by auto
also have set (rroots2 [:v,f ,1:]) = {u. poly [:v,f ,1:] u = 0}

by (subst rroots2, auto)
finally have u: u^2 + f ∗ u + v = 0 by (simp add: field-simps power2-eq-square)
note Cardano = solve-cubic-depressed-Cardano-real[OF False v-def u]
have 2: 2 = Suc (Suc 0) by simp
from rr have 0: f 2 − 4 ∗ v 6= 0 unfolding rroots2-def Let-def

by (auto split: if-splits simp: 2)
hence 0: discriminant-cubic-depressed e f 6= 0

unfolding discriminant-cubic-depressed-def v-def by auto
show ?thesis using Cardano(1) Cardano(2)[OF 0] unfolding y[symmetric] by

blast
qed

The complex case
definition solve-depressed-cubic-complex :: complex ⇒ complex ⇒ complex list
where

solve-depressed-cubic-complex e f = (let
ys = (if e = 0 then all-croots 3 (− f) else (let

u = hd (croots2 [: − (e ^ 3 / 27) ,f ,1:]);
zs = all-croots 3 u
in map (λ z. z − e / (3 ∗ z)) zs))

in remdups ys)

lemma solve-depressed-cubic-complex-code[code]:
solve-depressed-cubic-complex e f = (let

ys = (if e = 0 then all-croots 3 (− f) else (let
f2 = f / 2;
u = − f2 + csqrt (f2^2 + e ^ 3 / 27);
zs = all-croots 3 u
in map (λ z. z − e / (3 ∗ z)) zs))

25

in remdups ys)
unfolding solve-depressed-cubic-complex-def Let-def croots2-def
by (simp add: numeral-2-eq-2)

lemma solve-depressed-cubic-complex: y ∈ set (solve-depressed-cubic-complex e f)

←→ (y^3 + e ∗ y + f = 0)
proof (cases e = 0)

case True
thus ?thesis by (simp add: solve-depressed-cubic-complex-def Let-def all-croots

eq-neg-iff-add-eq-0)
next

case e0: False
hence id: (if e = 0 then x else y) = y for x y :: complex list by simp
define v where v = − (e ^ 3 / 27)
define p where p = [:v, f , 1:]
have p2: degree p = 2 unfolding p-def by auto
let ?u = hd (croots2 p)
define u where u = ?u
have u ∈ set (croots2 p) unfolding croots2-def Let-def u-def by auto
with croots2[OF p2] have poly p u = 0 by auto
hence u: u^2 + f ∗ u + v = 0 unfolding p-def

by (simp add: field-simps power2-eq-square)
note cube-roots = all-croots[of 3, simplified]
show ?thesis unfolding solve-depressed-cubic-complex-def Let-def set-remdups

set-map id cube-roots
unfolding v-def [symmetric] p-def [symmetric] set-concat set-map

u-def [symmetric]
proof −

have p: {x. poly p x = 0} = {u. u^2 + f ∗ u + v = 0} unfolding p-def by
(auto simp: field-simps power2-eq-square)

have cube:
⋃

(set ‘ all-croots 3 ‘ {x. poly p x = 0}) = {z. ∃ u. u2 + f ∗ u +
v = 0 ∧ z ^ 3 = u}

unfolding p by (auto simp: cube-roots)
show (y ∈ (λz. z − e / (3 ∗ z)) ‘ {y. y ^ 3 = u}) = (y ^ 3 + e ∗ y + f = 0)

using solve-cubic-depressed-Cardano-complex[OF e0 v-def u] cube by blast
qed

qed

For the general real case, we first try Cardano with negative discrimiant
and only if it is not applicable, then we go for the calculation using complex
numbers. Note that for for non-negative delta no filter is required to identify
the real roots from the list of complex roots, since in that case we already
know that all roots are real.
definition solve-depressed-cubic-real :: real ⇒ real ⇒ real list where

solve-depressed-cubic-real e f = (case solve-depressed-cubic-Cardano-real e f
of Some y ⇒ [y]
| None ⇒ map Re (solve-depressed-cubic-complex (of-real e) (of-real f)))

26

lemma solve-depressed-cubic-real-code[code]: solve-depressed-cubic-real e f =
(if e = 0 then [root 3 (−f)] else
let v = e ^ 3 / 27 ;

f2 = f / 2;
f2v = f2^2 + v in

if f2v > 0 then
let u = −f2 + sqrt f2v;

rt = root 3 u
in [rt − e / (3 ∗ rt)]

else
let ce3 = of-real e / 3;

u = − of-real f2 + csqrt (of-real f2v) in
map Re (remdups (map (λrt. rt − ce3 / rt) (all-croots 3 u))))

proof −
have id: rroots2 [:v, f , 1:] = (let

f2 = f / 2;
bac = f22 − v in
if bac = 0 then [− f2] else
if bac < 0 then [] else let e = sqrt bac in [− f2 + e, − f2 − e]) for v

unfolding rroots2-def Let-def numeral-2-eq-2 by auto
define foo :: real ⇒ real ⇒ real option where

foo f2v f2 = (case (if f2v = 0 then [− f2] else []) of [] ⇒ None | - ⇒ None)
for f2v f2

have solve-depressed-cubic-real e f = (if e = 0 then [root 3 (−f)] else
let v = e ^ 3 / 27 ;

f2 = f / 2;
f2v = f22 + v in

if f2v > 0 then
let u = −f2 + sqrt f2v;

rt = root 3 u
in [rt − e / (3 ∗ rt)]

else
(case foo f2v f2 of

None ⇒ let u = − cor f2 + csqrt (cor f2v) in
map Re
(remdups (map (λz. z − cor e / (3 ∗ z)) (all-croots 3 u)))
| Some y ⇒ []))
unfolding solve-depressed-cubic-real-def solve-depressed-cubic-Cardano-real-def

solve-depressed-cubic-complex-code
Let-def id foo-def

by (auto split: if-splits)
also have id: foo f2v f2 = None

for f2v f2 unfolding foo-def by auto
ultimately show ?thesis by (auto simp: Let-def)

qed

lemma solve-depressed-cubic-real: y ∈ set (solve-depressed-cubic-real e f)

27

←→ (y^3 + e ∗ y + f = 0)
proof (cases solve-depressed-cubic-Cardano-real e f)

case (Some x)
show ?thesis unfolding solve-depressed-cubic-real-def Some option.simps

using solve-depressed-cubic-Cardano-real[OF Some] by auto
next

case None
from this[unfolded solve-depressed-cubic-Cardano-real-def Let-def rroots2-def]
have disc: 0 ≤ discriminant-cubic-depressed e f unfolding discriminant-cubic-depressed-def

by (auto split: if-splits simp: numeral-2-eq-2)
let ?c = complex-of-real
let ?y = ?c y
let ?e = ?c e
let ?f = ?c f
have sub: set (solve-depressed-cubic-complex ?e ?f) ⊆ IR
proof

fix y
assume y: y ∈ set (solve-depressed-cubic-complex ?e ?f)
show y ∈ IR
by (rule solve-cubic-depressed-Cardano-all-real-roots[OF disc y[unfolded solve-depressed-cubic-complex]])

qed
have y^3 + e ∗ y + f = 0 ←→ (?c (y^3 + e ∗ y + f) = ?c 0) unfolding

of-real-eq-iff by simp
also have . . . ←→ ?y^3 + ?e ∗ ?y + ?f = 0 by simp
also have . . . ←→ ?y ∈ set (solve-depressed-cubic-complex ?e ?f)

unfolding solve-depressed-cubic-complex ..
also have . . . ←→ y ∈ Re ‘ set (solve-depressed-cubic-complex ?e ?f) using sub

by force
finally show ?thesis unfolding solve-depressed-cubic-real-def None by auto

qed

Combining the various algorithms
lemma degree3-coeffs: degree p = 3 =⇒
∃ a b c d. p = [: d, c, b, a :] ∧ a 6= 0
by (metis One-nat-def Suc-1 degree2-coeffs degree-pCons-eq-if nat.inject nu-

meral-3-eq-3 pCons-cases zero-neq-numeral)

definition roots3-generic :: (′a :: field-char-0 ⇒ ′a ⇒ ′a list) ⇒ ′a poly ⇒ ′a list
where

roots3-generic depressed-solver p = (let
cs = coeffs p;
a = cs ! 3; b = cs ! 2; c = cs ! 1; d = cs ! 0;
a3 = 3 ∗ a;
ba3 = b / a3;
b2 = b ∗ b;
b3 = b2 ∗ b;
e = (c − b2 / a3) / a;
f = (d + 2 ∗ b3 / (27 ∗ a^2) − b ∗ c / a3) / a;
roots = depressed-solver e f

28

in map (λ y. y − ba3) roots)

lemma roots3-generic: assumes deg: degree p = 3
and solver :

∧
e f y. y ∈ set (depressed-solver e f) ←→ y^3 + e ∗ y + f = 0

shows set (roots3-generic depressed-solver p) = {x. poly p x = 0}
proof −

note powers = field-simps power3-eq-cube power2-eq-square
from degree3-coeffs[OF deg] obtain a b c d where

p: p = [:d,c,b,a:] and a: a 6= 0 by auto
have coeffs: coeffs p ! 3 = a coeffs p ! 2 = b coeffs p ! 1 = c coeffs p ! 0 = d

unfolding p using a by auto
define e where e = (c − b^2 / (3 ∗ a)) / a
define f where f = (d + 2 ∗ b^3 / (27 ∗ a^2) − b ∗ c / (3 ∗ a)) / a
note def = roots3-generic-def [of depressed-solver p, unfolded Let-def coeffs,

folded power3-eq-cube, folded power2-eq-square, folded e-def f-def]
{

fix x :: ′a
define y where y = x + b / (3 ∗ a)
have xy: x = y − b / (3 ∗ a) unfolding y-def by auto
have poly p x = 0 ←→ a ∗ x^3 + b ∗ x^2 + c ∗ x + d = 0 unfolding p

by (simp add: powers)
also have . . . ←→ (y ^ 3 + e ∗ y + f = 0)

unfolding to-depressed-cubic[OF a xy e-def f-def] ..
also have . . . ←→ y ∈ set (depressed-solver e f)

unfolding solver ..
also have . . . ←→ x ∈ set (roots3-generic depressed-solver p) unfolding xy def

by auto
finally have poly p x = 0 ←→ x ∈ set (roots3-generic depressed-solver p) by

auto
}
thus ?thesis by auto

qed

definition croots3 :: complex poly ⇒ complex list where
croots3 = roots3-generic solve-depressed-cubic-complex

lemma croots3: assumes deg: degree p = 3
shows set (croots3 p) = { x. poly p x = 0}
unfolding croots3-def by (rule roots3-generic[OF deg solve-depressed-cubic-complex])

definition rroots3 :: real poly ⇒ real list where
rroots3 = roots3-generic solve-depressed-cubic-real

lemma rroots3: assumes deg: degree p = 3
shows set (rroots3 p) = { x. poly p x = 0}
unfolding rroots3-def by (rule roots3-generic[OF deg solve-depressed-cubic-real])

end

29

6 Algorithms to compute all complex and real roots
of a quartic polynomial

theory Quartic-Polynomials
imports

Ferraris-Formula
Cubic-Polynomials

begin

The complex case is straight-forward
definition solve-depressed-quartic-complex :: complex ⇒ complex ⇒ complex ⇒
complex list where

solve-depressed-quartic-complex p q r = remdups (if q = 0 then
(concat (map (λ z. let y = csqrt z in [y,−y]) (croots2 [:r ,p,1:]))) else
let cubics = croots3 [: − (q^2), 2 ∗ p^2 − 8 ∗ r , 8 ∗ p, 8:];

m = hd cubics; — select any root of the cubic polynomial
a = csqrt (2 ∗ m);
p2m = p / 2 + m;
q2a = q / (2 ∗ a);
b1 = p2m − q2a;
b2 = p2m + q2a

in (croots2 [:b1,a,1:] @ croots2 [:b2,−a,1:]))

lemma solve-depressed-quartic-complex: x ∈ set (solve-depressed-quartic-complex
p q r)
←→ (x^4 + p ∗ x^2 + q ∗ x + r = 0)

proof −
note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
show ?thesis
proof (cases q = 0)

case True
have csqrt: z = x^2 ←→ (x = csqrt z ∨ x = − csqrt z) for z

by (metis power2-csqrt power2-eq-iff)
have (x ^ 4 + p ∗ x2 + q ∗ x + r = 0) ←→ (x ^ 4 + p ∗ x2 + r = 0)

unfolding True by simp
also have . . . ←→ (∃ z. z2 + p ∗ z + r = 0 ∧ z = x2) unfolding bi-

quadratic-solution by simp
also have . . . ←→ (∃ z. poly [:r ,p,1:] z = 0 ∧ z = x^2)

by (simp add: powers)
also have . . . ←→ (∃ z ∈ set (croots2 [:r ,p,1:]). z = x^2)

by (subst croots2[symmetric], auto)
also have . . . ←→ (∃ z ∈ set (croots2 [:r ,p,1:]). x = csqrt z ∨ x = − csqrt z)

unfolding csqrt ..
also have . . . ←→ (x ∈ set (solve-depressed-quartic-complex p q r))
unfolding solve-depressed-quartic-complex-def id unfolding True Let-def by

auto
finally show ?thesis ..

next
case q0: False

30

hence id: (if q = 0 then x else y) = y for x y :: complex list by auto
note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
let ?poly = [:− q2, 2 ∗ p2 − 8 ∗ r , 8 ∗ p, 8:]
from croots3[of ?poly] have croots: set (croots3 ?poly) = {x. poly ?poly x = 0}

by auto
from fundamental-theorem-of-algebra-alt[of ?poly]
have {x. poly ?poly x = 0} 6= {} by auto
with croots have croots3 ?poly 6= [] by auto
then obtain m rest where rts: croots3 ?poly = m # rest by (cases croots3

?poly, auto)
hence hd: hd (croots3 ?poly) = m by auto
from croots[unfolded rts] have poly ?poly m = 0 by auto
hence mrt: 8∗m^3 + (8 ∗ p) ∗ m^2 + (2 ∗ p^2 − 8 ∗ r) ∗ m − q^2 = 0

and m0: m 6= 0 using q0
by (auto simp: powers)

define b1 where b1 = p / 2 + m − q / (2 ∗ csqrt (2 ∗ m))
define b2 where b2 = p / 2 + m + q / (2 ∗ csqrt (2 ∗ m))

have csqrt: csqrt x ∗ csqrt x = x for x by (metis power2-csqrt power2-eq-square)
show ?thesis unfolding solve-depressed-quartic-complex-def id Let-def set-remdups

set-append hd
unfolding b1-def [symmetric] b2-def [symmetric]
apply (subst depressed-quartic-Ferrari[OF mrt q0 csqrt b1-def b2-def])
apply (subst (1 2) croots2[symmetric], auto)
done

qed
qed

The main difference in the real case is that a specific cubic root has to be
used, namely a positive one. In the soundness proof we show that such a
cubic root always exists.
definition solve-depressed-quartic-real :: real ⇒ real ⇒ real ⇒ real list where

solve-depressed-quartic-real p q r = remdups (if q = 0 then
(concat (map (λ z. rroots2 [:−z,0,1:]) (rroots2 [:r ,p,1:]))) else
let cubics = rroots3 [: − (q^2), 2 ∗ p^2 − 8 ∗ r , 8 ∗ p, 8:];

m = the (find (λ m. m > 0) cubics); — select any positive root of the
cubic polynomial

a = sqrt (2 ∗ m);
p2m = p / 2 + m;
q2a = q / (2 ∗ a);
b1 = p2m − q2a;
b2 = p2m + q2a

in (rroots2 [:b1,a,1:] @ rroots2 [:b2,−a,1:]))

lemma solve-depressed-quartic-real: x ∈ set (solve-depressed-quartic-real p q r)
←→ (x^4 + p ∗ x^2 + q ∗ x + r = 0)

proof −
note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
show ?thesis
proof (cases q = 0)

31

case True
have sqrt: z = x^2 ←→ (x ∈ set (rroots2 [:−z,0,1:])) for z

by (subst rroots2[symmetric], auto simp: powers)
have (x ^ 4 + p ∗ x2 + q ∗ x + r = 0) ←→ (x ^ 4 + p ∗ x2 + r = 0)

unfolding True by simp
also have . . . ←→ (∃ z. z2 + p ∗ z + r = 0 ∧ z = x2) unfolding bi-

quadratic-solution by simp
also have . . . ←→ (∃ z. poly [:r ,p,1:] z = 0 ∧ z = x^2)

by (simp add: powers)
also have . . . ←→ (∃ z ∈ set (rroots2 [:r ,p,1:]). z = x^2)

by (subst rroots2[symmetric], auto)
also have . . . ←→ (∃ z ∈ set (rroots2 [:r ,p,1:]). x ∈ set (rroots2 [:−z,0,1:]))

unfolding sqrt ..
also have . . . ←→ (x ∈ set (solve-depressed-quartic-real p q r))
unfolding solve-depressed-quartic-real-def id unfolding True Let-def by auto

finally show ?thesis ..
next

case q0: False
hence id: (if q = 0 then x else y) = y for x y :: real list by auto
note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
let ?poly = [:− q2, 2 ∗ p2 − 8 ∗ r , 8 ∗ p, 8:]

define cubics where cubics = rroots3 ?poly
from rroots3[of ?poly, folded cubics-def]
have rroots: set cubics = {x. poly ?poly x = 0} by auto
from odd-degree-imp-real-root[of ?poly]
have {x. poly ?poly x = 0} 6= {} by auto
with rroots have cubics 6= [] by auto
have ∃ m. m ∈ set cubics ∧ m > 0
proof (rule ccontr)

assume ¬ ?thesis
from this[unfolded rroots] have rt: poly ?poly m = 0 =⇒ m ≤ 0 for m by

auto
have poly ?poly 0 = − (q^2) by simp
also have . . . < 0 using q0 by auto
finally have lt: poly ?poly 0 ≤ 0 by simp
from poly-pinfty-gt-lc[of ?poly] obtain n0 where

∧
n. n ≥ n0 =⇒ 8 ≤ poly

?poly n by auto
from this[of max n0 0] have poly ?poly (max n0 0) ≥ 0 by auto
from IVT [of poly ?poly, OF lt this] obtain m where m ≥ 0 and poly: poly

?poly m = 0 by auto
from rt[OF this(2)] this(1) have m = 0 by auto
thus False using poly q0 by simp

qed
hence find (λ m. m > 0) cubics 6= None unfolding find-None-iff by auto
then obtain m where find: find (λ m. m > 0) cubics = Some m by auto
from find-Some-D[OF this] have m: m ∈ set cubics and m-0: m > 0 by auto
with rroots have poly ?poly m = 0 by auto
hence mrt: 8∗m^3 + (8 ∗ p) ∗ m^2 + (2 ∗ p^2 − 8 ∗ r) ∗ m − q^2 = 0

32

by (auto simp: powers)
from m-0 have sqrt: sqrt (2 ∗ m) ∗ sqrt (2 ∗ m) = 2 ∗ m by simp
define b1 where b1 = p / 2 + m − q / (2 ∗ sqrt (2 ∗ m))
define b2 where b2 = p / 2 + m + q / (2 ∗ sqrt (2 ∗ m))
show ?thesis unfolding solve-depressed-quartic-real-def id Let-def set-remdups

set-append
cubics-def [symmetric] find option.sel

unfolding b1-def [symmetric] b2-def [symmetric]
apply (subst depressed-quartic-Ferrari[OF mrt q0 sqrt b1-def b2-def])
apply (subst (1 2) rroots2[symmetric], auto)
done

qed
qed

Combining the various algorithms
lemma numeral-4-eq-4: 4 = Suc (Suc (Suc (Suc 0)))

by (simp add: eval-nat-numeral)

lemma degree4-coeffs: degree p = 4 =⇒
∃ a b c d e. p = [: e, d, c, b, a :] ∧ a 6= 0
using degree3-coeffs degree-pCons-eq-if nat.inject numeral-3-eq-3 numeral-4-eq-4

pCons-cases zero-neq-numeral
by metis

definition roots4-generic :: (′a :: field-char-0 ⇒ ′a ⇒ ′a ⇒ ′a list) ⇒ ′a poly ⇒
′a list where

roots4-generic depressed-solver p = (let
cs = coeffs p;
cs = coeffs p;
a4 = cs ! 4; a3 = cs ! 3; a2 = cs ! 2; a1 = cs ! 1; a0 = cs ! 0;
b = a3 / a4;
c = a2 / a4;
d = a1 / a4;
e = a0 / a4;
b2 = b ∗ b;
b3 = b2 ∗ b;
b4 = b3 ∗ b;
b4 ′ = b / 4;
p = c − 3/8 ∗ b2;
q = (b3 − 4∗b∗c + 8 ∗ d) / 8;
r = (−3 ∗ b4 + 256 ∗ e − 64 ∗ b ∗ d + 16 ∗ b2 ∗ c) / 256;
roots = depressed-solver p q r
in map (λ y. y − b4 ′) roots)

lemma roots4-generic: assumes deg: degree p = 4
and solver :

∧
p q r y. y ∈ set (depressed-solver p q r) ←→ y^4 + p ∗ y^2 + q

∗ y + r = 0
shows set (roots4-generic depressed-solver p) = {x. poly p x = 0}

proof −

33

note powers = field-simps power4-eq-xxxx power3-eq-cube power2-eq-square
from degree4-coeffs[OF deg] obtain a4 a3 a2 a1 a0 where

p: p = [:a0,a1,a2,a3,a4:] and a4: a4 6= 0 by auto
have coeffs: coeffs p ! 4 = a4 coeffs p ! 3 = a3 coeffs p ! 2 = a2 coeffs p ! 1 =

a1 coeffs p ! 0 = a0
unfolding p using a4 by auto

define b where b = a3 / a4
define c where c = a2 / a4
define d where d = a1 / a4
define e where e = a0 / a4
note def = roots4-generic-def [of depressed-solver p, unfolded Let-def coeffs, folded

b-def c-def d-def e-def ,
folded power4-eq-xxxx, folded power3-eq-cube, folded power2-eq-square]

let ?p = p
{

fix x
define y where y = x + b / 4
define p where p = c − (3/8) ∗ b^2
define q where q = (b^3 − 4∗b∗c + 8 ∗ d) / 8
define r where r = (−3 ∗ b^4 + 256 ∗ e − 64 ∗ b ∗ d + 16 ∗ b^2 ∗ c) / 256
note def = def [folded p-def q-def r-def]
have xy: x = y − b / 4 unfolding y-def by auto
have poly ?p x = 0 ←→ a4 ∗ x^4 + a3 ∗ x^3 + a2 ∗ x^2 + a1 ∗ x + a0 = 0

unfolding p
by (simp add: powers)

also have . . . ←→ (y ^ 4 + p ∗ y2 + q ∗ y + r = 0)
unfolding to-depressed-quartic[OF a4 b-def c-def d-def e-def p-def q-def r-def

xy] ..
also have . . . ←→ y ∈ set (depressed-solver p q r)

unfolding solver ..
also have . . . ←→ x ∈ set (roots4-generic depressed-solver ?p) unfolding xy

def by auto
finally have poly ?p x = 0 ←→ x ∈ set (roots4-generic depressed-solver ?p)

by auto
}
thus ?thesis by simp

qed

definition croots4 :: complex poly ⇒ complex list where
croots4 = roots4-generic solve-depressed-quartic-complex

lemma croots4: assumes deg: degree p = 4
shows set (croots4 p) = { x. poly p x = 0}
unfolding croots4-def by (rule roots4-generic[OF deg solve-depressed-quartic-complex])

definition rroots4 :: real poly ⇒ real list where
rroots4 = roots4-generic solve-depressed-quartic-real

lemma rroots4: assumes deg: degree p = 4

34

shows set (rroots4 p) = { x. poly p x = 0}
unfolding rroots4-def by (rule roots4-generic[OF deg solve-depressed-quartic-real])

end

References

[1] G. Cardano. Ars Magna, The Great Art or the Rules of Algebra. 1545.
https://en.wikipedia.org/wiki/Ars_Magna_(Cardano_book).

[2] R. Thiemann, A. Yamada, and S. Joosten. Algebraic numbers in Is-
abelle/HOL. Archive of Formal Proofs, Dec. 2015. https://isa-afp.org/
entries/Algebraic_Numbers.html, Formal proof development.

35

https://en.wikipedia.org/wiki/Ars_Magna_(Cardano_book)
https://isa-afp.org/entries/Algebraic_Numbers.html
https://isa-afp.org/entries/Algebraic_Numbers.html

	Ferrari's formula for solving quartic equations
	Translation to depressed case
	Solving the depressed case via Ferrari's formula

	Cardano's formula for solving cubic equations
	Translation to depressed case
	Solving the depressed case in arbitrary fields
	Solving the depressed case for complex numbers
	Solving the depressed case for real numbers

	Implementation of the minimal polynomial of a real or complex algebraic number
	n-th roots of complex numbers
	An algorithm to compute all complex roots of (algebraic) complex numbers
	A definition of the complex root of a complex number

	Algorithms to compute all complex and real roots of a cubic polynomial
	Algorithms to compute all complex and real roots of a quartic polynomial

