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Abstract

Meet semidistributive varieties are in a sense the last of the most im-

portant classes in universal algebra for which it is unknown whether it can

be characterized by a strong Maltsev condition. We present a new, rela-

tively simple Maltsev condition characterizing the meet-semidistributive

varieties, and provide a candidate for a strong Maltsev condition.

1 Introduction

The tame congruence theory (TCT) [4], a structure theory of general finite
algebras, has revealed that there are only 5 possibly local behaviors of a finite
algebra:

(1) algebra having only unary functions,

(2) one-dimensional vector space,

(3) the two-element boolean algebra,

(4) the two-element lattice,

(5) the two element semilattice.

If there is a local behavior of type (i) in an algebra A, the algebra is said
to have type (i). A V variety have type (i) if there is an algebra A ∈ V
that have (i). If an algebra or variety does not have a type (i), it is said
to omit. type (i). The set of “bad” types that are omitted in a variety is an
important structural information; for instance, it plays a significant role in the
fixed-template constraint satisfaction problem [3]. The “worst” type is type (1)
and omitting it has been characterized in many equivalent ways, one of which
is given in the following theorem.
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Theorem 1.1. [9] A locally finite variety V omits type (1) if and only if there is
an idempotent WNU (weak near unanimity) term in A, that is a term satisfying
the following identities:

• idempotence: t(x, x, x, . . . , x) = x,

• weak near unanimity: t(y, x, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y)

for any x, y ∈ A.

Such a characterization of varieties of algebras by means of the existence of
terms satisfying certain identities are in general called Maltsev conditions. More
precisely, a strong Maltsev condition is given by a finite set of term symbols and
a finite set of identities. A given strong Maltsev condition is satisfied in a variety
V if we can substitute the term symbols by actual terms in the variety in such
a way that all the identities are satisfied. A general Maltsev condition is then
a disjuction of countably many strong Maltsev conditions (as in the example of
Theorem 1.1).

Whenever a variety V satisfies a certain Maltsev condition and W is inter-
pretable into W , then W satisfies the Maltsev condition too. For the notion of
interpretability, we refer the reader to [4]. There are following relations between
types of locally finite varieties and the interpretability.

• Any variety that has type (1) is interpretable into any variety.

• Any variety is interpretable into a variety that has type (3).

• Any variety that has type (5) is interpretable into a variety that has type
(4).

Therefore, it is reasonable to ask for the Maltsev conditions for the following
classes:

M{1},M{1,2},M{1,5},M{1,2,5},M{1,4,5},M{1,2,4,5},

where MS is the class of all the algebras that omits all the types from the set
S. There is an appropriate Maltsev condition for all six classes.

It was proved that M{1} andM{1,2} can be characterized by strong Maltsev
conditions. Recall that idempotent term is a term t satisfying the equation
t(x, x, . . . , x) = x.

Theorem 1.2. [7] A locally finite variety omits type (1) if and only if it has
an idempotent 4-ary term s satisfying s(r, a, r, e) = s(a, r, e, a).

Theorem 1.3 (Theorem 2.8 of [8]). A locally finite variety omits types (1)
and (2) if and only if it has three-ary and four-ary idempotent terms w3, w4

satisfying equations

w3(yxx) = w3(xyx) = w3(xxy) = w4(yxxx)

= w4(xyxx) = w4(xxyx) = w4(xxxy).
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In the same paper [8] the authors have demostrated that the remaining
classes, that is M1,5,M1,2,5,M1,4,5,M1,2,4,5, cannot be characterized by strong
Maltsev conditions.

Although types in the TCT are defined only for locally finite varieties (be-
cause only finite algebras are assigned types), the type-omitting classes have
alternative characterizations which do not refer to the type-set. They are shown
in the following table taken from [8].

Type Omitting Class Equivalent property,

M{1} satisfies a nontrivial idempotent Maltsev condition,
M{1,5} satisfies a nontrivial congruence identity,
M{1,4,5} congruence n-permutable, for some n > 1,
M{1,2} congruence meet semidistributive,
M{1,2,5} congruence join semidistributive,
M{1,2,4,5} congruence n-permutable for some n and congruence

join semidistributive.

Each of the properties in the right column of the table is characterized by
an idempotent Maltsev condition [4] for general (not necessarily locally finite)
varieties. However, Theorems 1.2, 1.3 giving strong Maltsev conditions are not
guaranteed to work. Indeed, there is an example of an idempotent algebra that
satisfy a non-trivial Maltsev condition, but has no term s(r, a, r, e) = s(a, r, e, a),
see [5]. However, it turned out that the first property is characterized by another
strong Maltsev condition.

Theorem 1.4. [11] An idempotent algebra satisfy a non-trivial Maltsev condi-
tion if and only if it has a term t such that

t(yxx, xyy) = t(xyx, yxy) = t(xxy, yyx).

The finite counterexamples to strong Maltsev conditions for

M{1,5},M{1,2,5},M{1,4,5},M{1,2,4,5}

work as counterexamples for the general case, so the remaining question is the
following.

Question 1.1. Is there a strong Maltsev condition that is equivalent to congru-
ence meet-semidistributivity?

1.1 Congruence meet-semidistributivity

By Con(A) we denote the lattice of congruences of A. A variety V is said to
be congruence meet-semidistributive (shortly SD(∧)) if for any A ∈ V , and any
three congruences α, β, γ ∈ Con(A) such that

α ∧ γ = β ∧ γ,
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we have
α ∧ γ = β ∧ γ = (α ∨ β) ∧ γ.

This property has many equivalent definitions, see Theorem 8.1 in [2], we
mention some of them.

Theorem 1.5. Let V be a variety. The following are equivalent.

• V is a congruence meet-semidistributive variety.

• No member of V has a non-trivial abelian congruence.

• [α, β] = α ∧ β for all α, β ∈ Con(A) and all A ∈ V, where [α, β] denotes
the commutator of congruences.

• The diamond lattice M3 is not embeddable in Con(A) for any A ∈ V,

• V satisfies an idempotent Maltsev condition that fails in any finite one-
dimensional vector space over a non-trivial field (equivalently in any mod-
ule).

In this paper we are going to study the Maltsev conditions satisfied by every
SD(∧) variety. Not only is it not known whether there is a strong Maltsev
condition characterizing the SD(∧) varieties, but the known Maltsev conditions
for SD(∧) were quite complicated. Probably the simplest Maltsev condition for
SD(∧) which was available before this work is the following one.

Let [n] denote the set {1, 2, . . . , n}. Consider some n, and a self-inverse
bijection ϕ : [2n] → [2n] without fixed points, such that whenever i < j < ϕ(i),
then also i < ϕ(j) < ϕ(i). Such a bijection corresponds to a proper bracketing
sequence with n opening and n closing brackets. Then the bracket terms are
ternary terms b1, . . . , b2n satisfying the following identities

b1(x, y, z) = x, b2n(x, y, z) = z,

b2i(y, x, x) = b2i−1(y, x, x), b2i(x, x, y) = b2i+1(x, x, y),

bi(x, y, x) = bϕ(i)(x, y, x),

for any i where it makes sense.

Theorem 1.6 (Theorem 1 in [1]). A variety V satisfies the SD(∧) property if
and only if it has some bracket terms.

1.2 The new terms

In this paper we define (m1+m2)-terms as a triple of idempotent terms (f, g1, g2),
where g1 is m1-ary, g2 is m2-ary, f is (m1 +m2)-ary, and they satisfy the iden-
tities

f(x, x, . . . , x, y
i

, x, . . . , x) = g1(x, x, . . . , x, y
i

, x, . . . , x) for any i = 1, . . . ,m1,
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f(x, x, . . . , x, y
n1+i

, x, . . . , x) = g2(x, x, . . . , x, y
i

, x, . . . , x) for any i = 1, . . . ,m2.

We prove the following theorem.

Theorem 1.7. A variety V is congruence meet-semidistributive if and only if
it has (3 +m)-terms for some m.

Checking the backward implication is easy. For a contradiction, assume that
the identities of (m1 +m2)-terms were satisfied in modules. That means that
f , g1, g2 are represented by linear combinations. In particular, let

f(x1, x2, . . . , xm1+m2
) = a1x1 + ·+ am1+m2

xm1+m2

g1(x1, x2, . . . , xm1
) = b1x1+·+bm1

xm1
, g2(x1, x2, . . . , xm2

) = c1x1+·+cm2
xm2

,

By plugging x = 0, y 6= 0 into the identities for f and g1, we get ai = bi for
i = 1, . . . ,m1. If we make the same substitution in the second identity, we get
am1+i = ci for i = 1, . . . ,m2. Moreover, idempotency identity enforces

m1+m2∑

i=1

ai =

m1∑

i=1

bi =

m2∑

i=1

ci = 1.

Therefore we get

1 =

m1+m2∑

i=1

ai =

m1∑

i=1

bi +

m2∑

i=1

ci = 2,

which contradicts that our field was non-trivial. Thus, we proved the backward
implication.

To prove the forward implication, we take a detour through a generalized
version of (m1 + m2)-terms. Given n,m, we define n × (n + 1) × m-terms as
follows.

Let i have values from 1 to n, j have values from 1 to n + 1, and k have
values from 1 to m. The n × (n + 1) ×m-terms are idempotent (n + 1)m-ary
terms fi (variables are indexed by pairs (j, k)) and idempotent nm-ary terms
gj (variables are indexed by pairs (i, k)) such that for every i, j, k they satisfy
the equation

fi(x, x, . . . , x, y
(j,k)

, x, . . . , x) = gj(x, x, . . . , x, y
(i,k)

, x, . . . , x).

By definition, 1× 2×m-terms are equivalent to the (m+m)-terms. On the
other hand, for large enough n,m, it is simple to derive the n×(n+1)×m-terms
from another Maltsev condition not satisfiable in vector spaces.

Proposition 1.1. Let V be a SD(∧) variety. Then V has n×(n+1)×m-terms
for some n,m.
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Proof. By Theorem 1.6, we may assume that there are bracket terms b1, . . . , b2n
corresponding to a bijection ϕ : [2n] → [2n]. Notice that since ϕ forms a proper
bracketing, ϕ(i) has a different parity than i for any i. Let ψ(i) = ϕ(2i − 1)/2
and ψ′(i) = (ϕ(2i) + 1)/2. In other words, we splited [2n] to odd and even part
and labeled them as [n]; then ψ corresponds to the mapping ϕ odd → even, and
ψ′ to its inverse. We construct n× (n+ 1)× 3-terms as follows. We set

g1(x1,1, . . . , xϕ(1),2, . . .) = x1,1 = b1(x1,1, xψ(1),2, x),

gi(. . . , xi,1, . . . , xψ(i),2, . . . , xi−1,3, . . .) = b2i−1(xi,1, xψ(i),2, xi−1,3)

gn+1(. . . , xn,3) = xn,3

fi(. . . , xi,1, . . . , xψ′(i),2, . . . , xi+1,3, . . .) = b2i(xi,1, xψ′(i),2, xi+1,3)

All the n× (n+1)× 3-identities follows directly from the bracket identities.

1.3 Outline

The rest of the proof is divided into two sections. In Section 2 we show that
in n × (n + 1) × m-terms, we can decrease n by one increasing m enough.
It follows that any SD(∧) variety has (m + m)-terms a large enough m. In
Section 3, we improve that result to (3 + m)-terms. Section 4 then provides
a few counterexamples showing that requesting (2 + m)-terms would be too
strong. Finally, in Section 5 we discuss remaining open questions.

2 Simplifying n× (n+ 1)×m-terms

2.1 Semirings

We will need some basic facts about semirings for our first proof.
Semiring is a general algebra A = (A,+, ·, 0, 1) where (A,+, 0) is a commu-

tative monoid, (A, ·, 1) is a monoid, zero absorbes everything in multiplication
(0 ·x = x·0 = 0), and distributive laws are satisfied, that is, a ·(b+c) = a ·b+a ·c
and (a + b) · c = a · c + b · c. As usual, the binary multiplication operation · is
often ommited writing ab instead of a · b.

Let A be an alphabet. The elements of the free monoid A∗ generated by A
are represented by finite words in the alphabet, multiplication concatenates the
words and the constant 1 corresponds to the empty word. Finally, the elements
of the free semiring generated by A are represented as finite multisets (formal
sums) of words in A∗. The addition in the free semiring is defined as sums
(disjoint unions) of the corresponding multisets, and the product p · q is defined
as piecewise product of the monomials, that is {u · v : u ∈ p, v ∈ q}.

Let F be the free semiring generated by some alphabet A, and E be a set of
equations of the form e1 = 1, e2 = 1, e3 = 1, . . . where ei ∈ F. We are going to
provide a description of the conguence on F generated by E.
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Take a monomial u ∈ A∗. By a single expansion. of u we mean any element
of F of the form veiw where vw = u. A single expansion. on a general element
of F is then defined as performing a single expansion on one of its summands.
Finally, we say that p is an expansion. of q if we can obtain p by performing
consecutive single expansion steps on q.

Proposition 2.1. For any pair (p, q) of elements in F, these two elements
are congruent modulo the congruence generated by E if and only if there is a
common expansion r of both p and q.

Proof. The backward implication is obvious: If r is an expansion of p, then r is
clearly congruent to p. Analogously, r is congruent to q, therefore p is congruent
to q. We are going to prove the forward implication.

For p, q ∈ F we define a relation p ∼ q if there is a common expansion of p
and q. Clearly each ei ∼ 1. To show that ∼ includes the congruence generated
by E, it remains to prove that ∼ is a congruence. Symmetry and reflexivity is
apparently satisfied, so we have to prove that ∼ is transitive and compatible
with the operations. To do that, let us introduce some notation.

Let p ≤ q denote that q is an expansion of p and let p 4 q denote that q can
be obtained by applying single expansion steps on a subset of summands of p.
So p 4 q is stronger than p ≤ q but weaker that q being a single expansion of p.

These orderings are clearly closed under addition. In particular, if p =
∑n
i pi,

q =
∑n

i qi and pi 4 qi, then p 4 q.

Claim 2.1. For any p, q, r, s ∈ F such that p 4 q we have rps 4 rqs.

To verify that, let p =
∑P

i pi, q =
∑P

i qi, r =
∑R

i ri, s =
∑S

i si, where
pi, ri, si are monomials and pi 4 qi. Then

rps =

R∑

i

P∑

j

S∑

k

ripjkk, rqs =

R∑

i

P∑

j

S∑

k

riqjsk.

Since pj 4 qj , we can write pj = ujvj so that qj = ujxjvj where xj < 1, that
is, x = 1 or x one of the elements ei. So we can write ripjsk = (riuj)(vjsk) and
riqj = (riuj)xj(vjsk). Therefore ripjsk 4 riqjsk and thus rps 4 rqs.

Claim 2.2. For any p, q, r ∈ F such that r 4 p and r 4 q there exists s ∈ F

such that p 4 s and q 4 s.

First, we prove the claim if r is a monomial. So polynomials p, q are con-
structed by inserting p′, q′ somewhere into r respectively, where p′, q′ < 1.
Without loss of generality, q′ is inserted at the same position as p′ or later, so
we can write r = uvw, p = up′vw, q = uvq′w. Now we choose s = up′vq′w. By
Claim 2.1 and p′, q′ < 1 we get the required

p = (up′v)(w) 4 (up′v)q′(w) = s, q = (u)(vq′w) 4 (u)p′(vq′w) = s.

For a general r =
∑n

i ri where ri are monomials, we decompose p =
∑n

i pi,
q =

∑n

i qi so that ri 4 pi, qi. Therefore, we find elements si such that si < pi, qi,
and eventually s =

∑n

i < p, q.
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We are finally ready to prove the transitivity of ∼ and compatibility with
operations.

Claim 2.3. If x, r, y ∈ F, x ∼ r and r ∼ y, then x ∼ y.

By definition of ∼, there are p, q ∈ F such that x, r ≤ p and r, y ≤ q. We
break the expansion r ≤ p into finite number of single expansion steps getting
a sequence

r = s0,0 4 s1,0 4 · · · 4 sP,0 = p.

Similarly, there is a sequence

r = s0,0 4 s0,1 4 · · · 4 s0,Q = q.

By repeated application of Claim 2.2, we fill in the matrix (si,j) ∈ FP×Q in such
a way that si,j 4 si+1,j and si,j 4 si,j+1 where they are defined. Eventually, we
get s = sP,Q such that s ≥ p, q. Therefore s ≥ p ≥ x and s ≥ q ≥ y, so x ∼ y.

Compatibility of ∼ with addition and multiplication is straightforward. For
p1, q1, p2, q2 ∈ F such that p1 ∼ q1, and p2 ∼ q2, there are r1, r2 such that
p1, q1 ≤ r1 and p2, q2 ≤ r2. Thus p1 + p2 ≤ r1 + r2 and q1 + q2 ≤ r1 + r2.
Therefore p1 + p2 ∼ q1 + q2, so ∼ is compatible with addition.

Regarding multiplication, consider any p, q, s ∈ F such that p ∼ q. There is
r such that p, q ≤ r. By Claim 2.1 and p ≤ r, we get sp, sq ≤ sr and ps, qs ≤ rs.
Therefore sp ∼ sq and ps ∼ qs.

This is sufficient for compatibility with multiplication: If p1 ∼ q1 and p2 ∼
q2, then p1p2 ∼ q1p2 ∼ q1q2, so p1p2 ∼ q1q2 by transitivity.

2.2 Decreasing n

Theorem 2.4. Let A be an idempotent algebra with n× (n+1)×m-terms for
some n > 1,m > 0. Then there exists m′ such that A has (n−1)×n×m′-terms.

Proof. Without loss of generality, we can assume that the n× (n+1)×m-terms
f1, . . . , fnm, g1, . . . , g(n+1)m are the only basic operations of A, and A is free
idempotent algebra generated by two symbols 0 and 1 modulo the equations
describing the n× (n+ 1)×m-terms.

Consider the subuniverse R ≤ Aω generated by all the infinite sequences
that have the element 1 at exactly one position and the element 0 everywhere
else.

Notice that R is invariant under all permutations of ω and since A is idem-
potent, every sequence in R has only finitely many nonzero values.

By Â we denote the free commutative monoid generated by all the non-zero
elements of A. We identify the element 0 ∈ A with the neutral element in Â.
For x̄ ∈ R, let x̂ denote the sum of all nonzero values of x̄, and let R̂ be the set
{x̂ : x̄ ∈ R}.

Claim 2.5. To prove the theorem, it suffices to find

x1, x2, . . . , xn−1, y1, y2, . . . , yn ∈ R̂
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such that x1 + · · ·+ xn−1 = y1 + · · ·+ yn.

If that happens, we can choose large enough m′ and express the elements
xi, yi ∈ Â as follows:

xi =
n∑

j

m′

∑

k

zi,j,k for any i = 1, . . . , n− 1,

yj =

n−1∑

i

m′

∑

k

zi,j,k for any j = 1, . . . , n,

where zi,j,k ∈ A for i = 1, . . . n − 1, j = 1, . . . n, k = 1, . . . ,m′. Since elements

xi are in R̂, there are (nm′)-ary terms f ′
i such that if we put the element 1

at the position (j, k), and zeros otherwise in fi, we get zi,j,k. Similarly, since

elements yj are in R̂, there are ((n − 1)m′)-ary terms g′j such that if we put
1 at the position (i, k) and zeros otherwise into the term g′j, we get zi,j,k. So
the equations of (n− 1)× n×m′-terms are satisfied by terms f ′

i , g
′
j if variables

x, y are substituted by 0 and 1, respectively. Then the equations are satisfied
in general, since 0, 1 are the generators of the free algebra A.

Every element of A is a binary function t(0, 1) on A in variables 0, 1. We
regard them as unary functions t(1) where 0 is a constant and 1 is the vari-
able. With this viewpoint, there is a multiplication on A defined as usual func-
tion composition. (t1t2)(1) = t1(t2(1)). This defines a structure of monoid
on A where 1 is the neutral element and 0 is an absorbing element. For
i = 1, . . . , n, j = 1, . . . , (n + 1), k = 1, . . . ,m, let bi,j,k ∈ A be the element
of the monoid defined by

bi,j,k = fi(0, 0, . . . , 0, 1
(j,k)

, 0, . . . , 0) = gj(0, 0, . . . , 0, 1
(i,k)

, 0, . . . , 0),

and let B be the submonoid generated the elements bi,j,k. Finally, let B̂ =

(B̂,+, ·, 0, 1) be the additive submonoid of Â generated by elements of B with

multiplicative structure inherited from B, so B̂ is the free semiring generated
by elements bi,j,k. Notice that the universe of B̂ is a subset of the universe of

Â.
We equip the semiring B̂ with equations E of the form

n∑

i

m∑

k

bi,j,k = 1 for all j = 1, . . . , (n+ 1),

n+1∑

j

m∑

k

bi,j,k = 1 for all i = 1, . . . , n.

In other words, these equations actually say that

fi(1, 0, . . . , 0) + fi(0, 1, . . . , 0) + · · ·+ fi(0, 0, . . . , 1) = 1,
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gi(1, 0, . . . , 0) + gi(0, 1, . . . , 0) + · · ·+ gi(0, 0, . . . , 1) = 1.

Let ∼ be the congruence generated by these equations E.

Claim 2.6. If p, q ∈ B̂ such that q is a single expansion of p using equations E
and p ∈ R̂, then also q ∈ R̂.

Let t be a term in ω variables (using just finitely many of them) that takes
the generators of R and outputs some r̄ ∈ R such that r̂ = p. We prove the
claim by induction on the complexity of t. Let p = uv + s and q = uev + s
where u, v are monomials, s is a polynomial, and e is a single expansion of 1. If
u = 1, we prove the claim directly. Any single expansion e of 1 is of the form

h(1, 0, . . . , 0) + h(0, 1, 0, . . . , 0) + · · ·+ h(0, . . . , 0, 1),

where h is a basic operation of A. Let us denote the arity of h as k and the
summands as bi for i = 1, . . . , k. So we can write e =

∑k

i=0 bi. We take k
different representations r̄1, . . . r̄k ∈ R that differs only in the possition of v (if
there are multiple v in r̄, we vary the position of one of them and fix the rest).
Then h(r̄1, . . . , r̄k) correspond to the polynomial ev + s = q.

If u 6= 1, we use the induction hypothesis. Assume that r̄ = h(r̄1, . . . , r̄k) for
an elementary operation h, where all the construction terms for r̄1, . . . , r̄k are
simpler. We follow the position of uv in the sequence r̄. On that position, we see
uv = h(w1, . . . , wk). There are two possibilities. Either idempotency is applied
and w1 = · · · = wk, or one more letter is appended to the word, therefore all the
elements wi except one are zeros. In the case of idempotency, we use a single
expansion step to all the sequences r̄i in the same way – we replace the position
with uv by multiple positions covering uev. We denote these modified sequences
r̄i as r̄

′
i. The sequences r̄′i were obtained from r̄i using a single expansion step,

so they are in R by induction hypothesis. Finally, r̄′ = h(r̄1, . . . , r̄k) ∈ R and
q = r̂′.

In the other case, there is one non-zero wi = u2v, where u = u1u2 and u1 is
one of the generators of B. Again, we replace the u2v in R by u2ev in r̄i, getting
r̄′i ∈ R by induction hypothesis. For j 6= i, we obtain r̄′j just by expanding the
number of zeros at the position of uv so that the corresponding positions still
match. Finally, r̄′ = h(r̄′1, . . . , r̄

′
k) ∈ R and q = r̂′.

Claim 2.7. To prove the theorem, it suffices to show that n− 1 ∼ n in B̂.

Indeed, if n−1 ∼ n, there is a common expansion s by Proposition 2.1. Since
s is an expansion of n − 1, there are x1, . . . , xn−1 such that

∑n−1
i xi = s, and

every xi is an expansion of 1. Similarly, since s is an expansion of n, there are
y1, . . . , yn−1 such that

∑n
i yi = s, and every yi is an expansion of 1. Therefore

all the elements xi, yi ∈ R̂ and the assumptions of Claim 2.5 are satisfied.
Now we translated the original problem into the language of the semiring

B̂ modulo ∼. Before general reasoning, we show the idea on the example
n = 2,m = 1. So B̂ is generated by b11, b12, b13, b21, b22, b23, congruence ∼
is generated by

1 ∼ b11 + b12 + b13 ∼ b21 + b22 + b23 ∼ b11 + b21 ∼ b12 + b22 ∼ b13 + b23,

10



and we want to prove 1 ∼ 2. Clearly 2 ∼ 3 since

2 ∼ (b11+b12+b13)+(b21+b22+b23) = (b11+b21)+(b12+b22)+(b13+b23) ∼ 3.

Now, let us expand 1 a bit.

1 ∼ b11+b12+b13 ∼ b11(b21+b22+b23)+(b11+b12+b13)b12+(b11+b12+b13)b13

= b11(b22 + b12 + b23 + b13) + · · · ∼ 2b11 + · · ·

We managed to get 2b11 in the expanded 1. Since 2 ∼ 3, we get an extra b11, and
then collapse the expression using the reverse process. Therefore 1 ∼ 1 + b11.
But there is nothing special about the generator b11, If we swapped b11 ↔ b21,
b12 ↔ b22, b13 ↔ b23, we would get 1 ∼ 1+b21 by the same reasoning. Therefore

1 ∼ 1 + b21 ∼ (1 + b11) + b21 = 1+ (b11 + b21) ∼ 2.

Now, let us return to the general setup with generators bi,j,k for i = 1, . . . , n, j =
1, . . . (n+ 1), k = 1, . . . ,m, and the congruence ∼ is generated by

1 ∼

n∑

i

m∑

k

bi,j,k for all j = 1, . . . , (n+ 1),

1 ∼
n+1∑

j

m∑

k

bi,j,k for all i = 1, . . . , n.

From the equations, we derive n ∼ n+ 1

n ∼

n∑

i





n+1∑

j

m∑

k

bi,j,k



 =

n+1∑

j

(
n∑

i

m∑

k

bi,j,k

)

= n+ 1.

We fix i′, j′, k′. To prove that (n − 1) ∼ (n − 1) + bi′,j′,k′ it suffices to get
nbi′,j′,k′ ∼ (n+ 1)bi′,j′,k′ in an expanded form of n− 1.

In the following calculations, by x > y we mean (∃z : x = y + z).

n− 1 ∼ (n− 1)

n+1∑

j

m∑

k

bi′,j,k > (n− 1)bi′,j′,k′ +

n+1∑

j 6=j′

m∑

k

bi′,j,k

= bi′,j′,k′ ·

n∑

i6=i′

1 + 1 ·

n+1∑

j 6=j′

m∑

k

bi′,j,k

∼ bi′,j′,k′





n∑

i6=i′

n+1∑

j

m∑

k

bi,j,k



 +





n+1∑

j

m∑

k

bi′,j,k









n+1∑

j 6=j′

m∑

k

bi′,j,k





> bi′,j′,k′





n∑

i6=i′

n+1∑

j 6=j′

m∑

k

bi,j,k +

n+1∑

j 6=j′

m∑

k

bi′,j,k





11



= bi′,j′,k′





n+1∑

j 6=j′

n∑

i

m∑

k

bi,j,k



 ∼ bi′,j′,k′ ·

n+1∑

j 6=j′

1 = nbi′,j′,k′ .

Hence n− 1 ∼ n− 1+ bi,j,k for any i, j, k. We finaly get the desired congruence

n− 1 ∼ n− 1 + b1,1,1 ∼ n− 1 + b1,1,1 + b1,2,1 ∼ · · · ∼ n− 1 +

n+1∑

j

m∑

k

b1,j,k ∼ n.

Corollary 2.1. Every SD(∧) variety has (m+m)-terms for some m.

3 Getting to (3 +m)-terms

In this section, we prove the following

Theorem 3.1. Every SD(∧) variety V has a (3 +m′)-terms for large enough
m′.

By Corollary 2.1 we know that the variety has the (m+m)-terms for some
m, denote them f, g1, g2. For simplicity, we may assume that the idempotent
terms f, g1, g2 are the only basic operations of the variety, and that they satisfy
only the idempotence, (m+m)-equations and their consequences. Let A be the
V-free algebra generated by elements 0, 1

Similarly as in the proof of Theorem 2.4, we define Rn to be a n-ary relation
generated by tuples with exactly one element 1 and zeros everywhere else, where
n ∈ {1, 2, . . . , ω}.

For an algebra B ∈ V , we define a B-pendant to be any subuniverse P ⊂
B×Aω that is invariant under all permutations of the ω positions on Aω.

For any B-pendant P we define P |0, P |1 ≤ B as follows

P |0 = {b ∈ B : (b, (0, 0, . . . , 0)) ∈ P}, P |1 = {b ∈ B : ∃r̄ ∈ Rω : (b, r̄) ∈ P}.

If P |0 and P |1 intersect, we call the pendant P zipped. For a subuniverse C ≤ B

and an element b ∈ B, let C[b] denote the smallest B-pendant P satisfying
C ≤ P |0 and {b} × Rω ≤ P . Therefore C = C[b]|0 and b ∈ C[b]|1. Clearly, if
b ∈ C, the pendant C[b] is zipped since b is contained in both C[b]|0 and C[b]|1.

Claim 3.2. To prove the theorem, it suffices to show that the A3-pendant
R3[(0, 0, 0)] is zipped.

Indeed, the pendant P = R3[(0, 0, 0)] is just Rω viewed as a subuniverse
of A3 × Aω. So when that pendant is zipped, there is a common element
r̄3 ∈ P |0 = R3 and r̄3 ∈ P |1. By expanding the definition of P |1, we get
r̄ω ∈ Rω such that (r̄3, r̄ω) ∈ P = Rω. Let g

′
1 be the term producing r̄3 from the

generators of R3, g
′
2 be the term producing r̄ω from the generators of Rω and f ′

be the term producing (r̄3, r̄ω) from the generators of Rω. We can choose large

12



enough m′ such that g′2 uses at most first m′ generators and f ′ uses at most
first 3 +m′ of them. So we perceive g′2 as m′-ary and f ′ as (3 +m′)-ary. Since

g1









1
0
0









0
1
0









0
0
1







 = r̄3, g2















1
0
...
0








· · ·








0
...
0
1















= r̄ω,

f















1
0
...
0








· · ·








0
...
0
1















=

(
r̄3
r̄ω

)

,

the equations of (3 +m′)-terms are satisfied when we plug in x = 0 and y = 1.
However, the elements 0, 1 are the generators of a free algebra, so the equations
are satisfied in general.

Lemma 3.3. Let B be an idempotent algebra, C ≤ B its subuniverse, b ∈ B

an element and P be a B-pendant such that C ≤ P |0 and b ∈ P |1. Then
(C[b])|1 ≤ P |1.

Proof. To see that, take an element (b, r̄ω) ∈ P such that r̄ω ∈ Rω. Let r̄ω be of
the form (x1, x2, . . . , xn, 0, 0, . . .) for some large enough n. Since P is invariant
under permutations on Aω, it contains all the elements of the form

(b, (0, 0, . . . , 0, x1, x2, . . . , xn, 0, 0, . . .))

We construct a homomorphism ϕ : A → An by mapping its generators

0 7→ (0, 0, . . . , 0), 1 7→ (x1, . . . , xn).

We naturally extend ϕ to mapping Aω → (An)ω = Aω. Notice that ϕ is an
endomorphism of Rω since it maps generators of Rω into Rω.

To finish the proof of the lemma, we take any b′ ∈ C[b]|1 and show that
b′ ∈ P |1. There is r̄ω ∈ Rω such that (b′, r̄ω) ∈ C[b]. Then ϕ(r̄ω) ∈ Rω and
moreover (b′, ϕ(r̄ω)) ∈ P . The latter holds since the endomorphism ψ : B×Aω

defined by ψ((y, x)) = (y, ϕ(x)) maps the generators of C[b] into P . In particular
P contains all the elements ψ(b, (0, . . . , 0, 1, 0, . . .)) for any position of 1, and
ψ(c, (0, 0, . . .) for any c ∈ C. So b′ ∈ P and this finishes the proof of the
lemma.

Now, let h be the binary term defined as

h(x, y) = f(xx . . . x
︸ ︷︷ ︸

m

, yy . . . y
︸ ︷︷ ︸

m

),

Lemma 3.4. For any B-pendant P and x ∈ P |0, y ∈ P |1, we have h(x, y), h(y, x) ∈
P |1.

13



Proof. Without loss of generality, we may assume that (y, (1, 0, . . . , 0)) ∈ P . If
not, we use Lemma 3.3 and work with (P |0)[y] instead of P . Then the lemma
follows from the identities

f















x x . . . x, y y . . . y
0 0 . . . 0, 1 0 . . . 0
0 0 . . . 0, 0 1 . . . 0

...
...

...
. . .

...
0 0 . . . 0, 0 0 . . . 1
0 0 . . . 0, 0 0 . . . 0

...
...















= g2













h(x, y)
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

...













,

f















y y . . . y, x x . . . x
1 0 . . . 0, 0 0 . . . 0
0 1 . . . 0, 0 0 . . . 0
...

...
. . .

...
...

0 0 . . . 1, 0 0 . . . 0
0 0 . . . 0, 0 0 . . . 0

...
...















= g1













h(y, x)
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

...













,

The columns of the identities encode such sequences in B×Aω that

• are contained in P : This is apparent from the left hand side,

• has elements h(x, y), h(y, x) at their first coordinates,

• the other part is contained in Rω: This is apparent from the right hand
side.

Therefore h(x, y), h(y, h) ∈ P |1.

Lemma 3.5. Let B1,B2 be idempotent algebras, P be a (B1 × B2)-pendant.
Assume that there exist x, y ∈ B1 and u, v ∈ B2 such that (x, u), (y, u), (x, v) ∈
P |0 and (y, v) ∈ P |1. Then P is zipped.

Proof. The pair (h(x, y), h(v, u)) is in the intersection P |0 ∩ P |1. Indeed, it is
contained in P |0 since we can write

(
h(x, y)
h(v, u)

)

= h

(
x y
v u

)

.

Alternatively, we can use the following expansion of (h(x, y), h(v, u)):

(
h(x, y)
h(v, u)

)

= h

(

h

(
x, x
v, u

)

, h

(
y, y
v, u

))

.

By Lemma 3.4 used twice, the pair is also an element of P |1, which completes
the proof.
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Lemma 3.6. Let B1,B2 be idempotent algebras and R ≤ B1 × B2 be a com-
patible relation. Assume that there are elements x ∈ B1, u, v ∈ B2 such that
(x, u), (x, v) ∈ R. Then for any y ∈ B1 the (B1×B2)-pendant R[(y, u)] is zipped
if and only if the (B1 ×B2)-pendant R[(y, v)] is zipped.

Proof. It suffices to show the forward implication. Since R[(y, u)] is zipped,
there is some (y0, u0) ∈ R ∩R[(y, u)]|1. Consider the 4-ary relation

R′ = {(a1, a1, a2, a2) : (a1, a2) ∈ R},

and the (B2
1 × B2

2)-pendant P = R′[(x, y, u, v)]. Since (y0, u0) ∈ R[(y, u)]|1,
we can find a quadruple (x0, y0, u0, v0) in P |1 for some additionally generated
elements x0, v0. So

(x0, u0) ∈ R[(x, u)]|1, (x0, v0) ∈ R[(x, v)]|1, (y0, v0) ∈ R[(y, v)]|1.

Since (x, u), (x, v) ∈ R, also (x0, u0), (x0, v0) ∈ R. Let Q be the pendant
R[(y, v)]. We have (x0, u0).(x0, v0).(y0, u0) ∈ Q|0 and (y0, v0) ∈ Q|1. There-
fore, the pendant Q is zipped by Lemma 3.5.

Finally, we define a relation ⋉ on A as follows. We write x⋉ y if there are
u, v ∈ R3 such that

• (x, u, v) ∈ R3,

• The A3-pendant R3[(y, u, v)] is zipped.

Notice that ⋉ is reflexive: Indeed for any x, there are u, v such that (x, u, v) ∈
R3. Then also R[(x, u, v)] is zipped, so x⋉ x.

Lemma 3.7. If x⋉y and there are c, x′, y′ ∈ A such that the triples (x, c, x′), (y, c, y′)
are in R3, then x

′ ⋉ y′.

Proof. Consider u, v as in the definition of the relation ⋉. We will show that
x′ ⋉ y′ by finding approptiate u′, v′. We set u′ = c, v′ = y, so the condition (ii)
is satisfied since (y′, c, y) ∈ R3 by symmetry of R3. To establish x ⋉ y we need
to prove that R3[(x

′, c, y)] is zipped, equivalently, that R3[(y, c, x
′)] is zipped.

We interpret A3 as A×A2 and use Lemma 3.6. We plug in

x 7→ x, y 7→ y, u 7→ (u, v), v 7→ (c, x′),

Indeed (x, u, v), (x, c, x′) ∈ R3 and R3[(y, u, v)]| is zipped. So the assumptions
of Lemma 3.6 are satisfied, and consequently R[(y, c, x′)] is zipped.

We are finally ready to prove the theorem. We start with g1(100 . . .0) ⋉
f(100 . . .0) and get to 1⋉ h(1, 0) using Lemma 3.7 and the following triples in
R3:





g1(10 . . .)
g1(010 . . .)
g1(0011 . . .)









f(10 . . .)
f(010 . . .)
f(0011 . . .)



 ,





g1(0011 . . .)
0

g1(1100 . . .)









f(0011 . . .)
0

f(1100 . . .)



 ,
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



g1(110 . . .)
g1(0010 . . .)
g1(0001 . . .)









f(110 . . .)
f(0010 . . .)
f(0001 . . .)



 , . . . ,





g1(0 . . . 0)
0

g1(1 . . . 1)









h(0, 1)
0

h(1, 0)



 .

So, there are u, v such that (1, u, v) ∈ R3 andR3[(h(1, 0), u, v)] is zipped. The
first condition enforces u = v = 0, so R3[(h(1, 0), 0, 0)] is zipped. However, by
Lemma 3.4 (h(1, 0), 0, 0) ∈ R3[(0, 0, 0)]|1, so R3[(0, 0, 0)] is zipped (Lemma 3.3,
universality of pendant construction), and the proof is finished by Claim 3.2.

4 A counterexample for (2 +m)-terms

Based on the result of the previous chapter that some (3+m)-terms are satisfied
in every SD(∧) variety, one could ask whether the result could be strengthened
to (2 +m)-terms. However, as we demonstrate in this section, such a general-
ization is not possible. Not only that there is an algebra in a SD(∧) variety
that does not have (2+m)-terms but there is even such an algebra that belongs
to a congruence distributive variety.

Even stronger Maltsev condition than congruence distributivity is the exis-
tence of a near unanimity term. A near unanimity term (NU term for short) is
a term t satisfying

t(x, x, . . . , x, y
i

, x, . . . , x) = x

for any position i.
There is no algebra having an NU term and no (2+m)-terms, since putting

g2 to be the NU term and f, g1 to be just the projections on the first coordinate
meet the requirements of the (2 +m)-terms. However, in our first example we
demonstrate that one existence of an NU term does not imply (2 + m)-terms
for a fixed m.

Consider the following symmetric n-ary operations tAn , t
B
n for n ≥ 5 on ra-

tional numbers: Let x1 ≤ x2 · · · ≤ xn be a sorted input of such an operation.
Then

tAn (x1, . . . , xn) =
x2 + · · ·+ xn−1

n− 2
, tBn (x1, . . . , xn) =

x3 + · · ·+ xn−2

n− 4
.

If the input is not sorted, we first sort it and then perform the calculation.
These operations are clearly NU, that is,

tAn (x, x, . . . , x, y, x, . . . x) = tBn (x, x, . . . , x, y, x, . . . x) = x

for any position of y.
For proving key properties of t, we need a lemma.

Lemma 4.1. Let x1, . . . , xn, y1, . . . , yn ∈ Q be such that xi ≤ yi for all i =
1, . . . , n. Let x′1, . . . , x

′
n be x1, x2, . . . , xn sorted in increasing order, and let

y′1, . . . , y
′
n be sorted y1, . . . yn. Then x′i ≤ y′i for all i and the set {i : x′i < y′i} is

at least as large as the set {i : xi < yi}.
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Proof. Without loss of generality, let the numbers xi be increasing in lexico-
graphical order. Therefore xi = x′i for all i. It is possible to sort the sequence
yi by consecutive application of sorting transpositions, that is swaping yi with
yj if i < j and yi > yj . An example of such an process is the well known bubble
sort algorithm. We show that one sorting transposition preserves the condition
xi ≤ yi for all i, and does not shrink the set {i : xi < yi}. In one such transpo-
sition, the swapped positions i, j are independent of all the others, so we may
assume that there are no others. In particular n = 2, x1 ≤ x2, y1 > y2, x1 ≤ y1,
x2 ≤ y2, y

′
1 = y2, y

′
2 = y1. First x1 ≤ x2 ≤ y2 and x2 ≤ y2 < y1, so x1 ≤ y′1 and

x2 < y′2. This shows that xi ≤ yi for all i. Now, let us investigate the number
of strict inequalities. Since x2 < y′2, the size of the set {i : x′i < y′i} is at least 1.
If the size equals two, we are done. Otherwise x1 = y′1, so x1 = x2 = y2. Since
x2 = y2, the size of the set {i : xi < yi} is at most one, so it is not larger than
{i : x′i < y′i}.

Claim 4.2. For any x1, . . . , xn, y1, . . . , yn ∈ Q such that xi ≤ yi for all i, we
have tAn (x1, . . . , xn) ≤ tAn (y1, . . . , yn). The inequality is strict if xi < yi for at
least three i.

Indeed, we can assume that xi and yi are sorted by Lemma 4.1. The first
part is then clear from definition of tA. If xi < yi for at least three i, it happens
for at least one i 6= 1, n, and that xi < yi causes the strict inequality.

Consider the algebras An = (Q, tAn ), Bn = (Q, tBn ). For m ≥ 1 define the
sets U ⊂ Q2, Vm ⊂ Qm,Wm ⊂ Q2+m as follows:

U = {(a1, a2) : a1 + a2 = 1},

Vm = {(b1, . . . , bm) : b1 . . . bm ≥ 0 and there is a nonzero bi.}

Wm = {(a1, a2, b1, . . . , bm) :

(a1 + a2 < 1 and b1 . . . bm ≥ 0) or (a1 + a2 = 1 and b1 = · · · = bm = 0))}

Claim 4.3. For any n ≥ 5, the set U is a subuniverse of A2
n.

The claim follows from the fact that if x1, x2, . . . , xn is non-decreasing, then
also 1− xn, . . . , 1− x2, 1− x1 is non-decreasing.

Claim 4.4. For any n ≥ 5, 2m < n the set Vm is a subuniverse of Bm
n .

Indeed, if at least three of x1, . . . , xn are non-zero, then tB is also non-zero.
Consider m-tuples x̄1, x̄2, . . . , x̄n. Every m-tuple x̄i has a non-zero position pi.
Since 2m < n, one of the positions has to repeat three times, p = pi1 = pi2 = pi3 .
So the m-tuple t(x̄1, . . . x̄n) has a non-zero element at the position p.

Claim 4.5. For any m ≥ 1, n ≥ 5, the set Wm is a subuniverse of A2
n ×Bm

n .

For the same reason as in Claim 4.3, the projection of Wi to A2 is a sub-
universe of A2. The question is about subtle detail how it interacts with
the Bm-part. Let us take (2 + m)-tuples x̄1, . . . , x̄n ∈ Wm and show that
t(x̄1, . . . , x̄n) belongs to Wm as well. Let ai,j , bi,j be matrices such that x̄j =
(a1,j , a2,j, b1,j , . . . , bm,j). We analyze two cases:
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1. For at most two columns j it happens that a1,j + a2,j < 1. Then all the
other columns have zero Bm-part, so tB(bi,1) = 0 for any B-row i. Hence
t(x̄1, . . . , x̄n) ∈Wm.

2. For at least three columns j it happens that a1,j + a2,j < 1. In other
words, at these three positions j it happens that a1,j < 1 − a2,j while
non-strict inequality is satisfied everywhere. Thus, by Claim 4.2, we have

tA(a1,1, . . . , a1,n) < tA(1 − a2,1, . . . , 1− a2,n) = 1− tA(a2,1, . . . , a2,n).

Equivalently,

tA(a1,1, . . . , a1,n) + tA(a2,1, . . . , a2,n) < 1,

so t(x̄1, . . . , x̄n) belongs to Wi.

So, in both cases, the result belongs to Wm, and the claim is established.
We are now ready to construct the counterexamples.

Theorem 4.6. For any n,m such that n ≥ 5 and 2m < n, there is an algebra
having an n-ary NU-term, n ≥ 5, but no (2 +m)-terms.

Proof. The algebra is Cn = An × Bn. For a contradiction, suppose that Cn

has (2 +m)-terms f, g1, g2. These terms are common for all the algebras in the
variety generated by C. In particular, there are operations gA1 , g

A
2 , f

A on An

and gB1 , g
B
2 , f

B on Bn such that

gA1 (1, 0) = fA(1, 0, 0, 0, 0 . . . , 0, 0) = a1,

gA1 (0, 1) = fA(0, 1, 0, 0, 0 . . . , 0, 0) = a2,

gB2 (1, 0, 0, . . . , 0, 0) = fB(0, 0, 1, 0, 0 . . . , 0, 0) = b1,

gB2 (0, 1, 0, . . . , 0, 0) = fB(0, 0, 0, 1, 0 . . . , 0, 0) = b2,

...

gB2 (0, 0, 0, . . . , 0, 1) = fB(0, 0, 0, 0, 0 . . . , 0, 1) = bm.

The tuple (a1, a2, b1, . . . , bn) belongs to Wm since Wm contains all the columns
on the right hand side. Similarly, (a1, a2) ∈ U and (b1, . . . , bm) ∈ Vm by left
hand side. But there are is no such tuple Wm that is composed from the tuples
in U and Vm.

Theorem 4.7. There is an algebra in a congruence distributive variety that has
no (2 +m)-terms.

Proof. The proof is similar, we take the algebra C6 = A6×B6. We just modify
it a bit in order to make Vm a subuniverse for any m. Let s be the following
4-ary minor of t

s(x, y, z, w) = t(x, y, z, w, w,w).
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Consider the algebra C′ = (Q2, sC). The algebra C′ is congruence distributive,
since it has the following directed Jónsson terms written as minors of the term
s:

s(xyzz) = t(xyzzzz),

s(xxyz) = t(xxyzzz),

s(zzyx) = t(xxxyzz),

s(zyxx) = t(xxxxyz).

For the definition of directed Jónsson terms, we refer the reader to [6].
On the other hand, C′ does not have any (2+m)-terms. For a contradiction,

let us assume that there are term operations fC, gC1 , g
C
2 in the algebra C. So

there are such terms even in A′ = (Q, sA) and B′ = (Q, sB). We consider the
same 2 + m equalities as in the previous proof, resulting in a1, a2, b1, . . . , bm.
Since the basic operations of algebras A′,B′ are defined from the operations of
the algebrasA,B, the set U is still a subuniverse of (A′)2 and the setWm is still
a subuniverse of (A′)2 × (B′)m. So (a1, a2) ∈ U and (a1, a2, b1, . . . , bm) ∈ Wm.
We cannot directly use Claim 4.4 to ensure that Vm is a subuniverse of (B′)m

since the claim assumes 2m < 6. However, it is still true. We can check it
manually: If x̄, ȳ, z̄, w̄ ∈ V and wi > 0 for some i, then even

sB(xi, yi, zi, wi) = tB(xi, yi, zi, wi, wi, wi) > 0,

so sB(x̄, ȳ, z̄, w̄) has a non-zero position. Therefore Vm is a subuniverse of (B′)m,
(b1, . . . , bm) ∈ Vm, and we get the same contradiction as in the previous proof.

5 Further work

Since Question 1.1 remained open, the main objective is still to find out whether
or not the SD(∧) property is characterized by a strong Maltsev condition. The
(3 + n)-terms are general enough for SD(∧) while the (2 + n)-terms are too
strong. Therefore we suggest (3+3)-terms as the candidate for a strong Maltsev
condition, or a good starting point for proving the opposite.

Question 5.1. Is there a SD(∧) variety that does not have (3 + 3)-terms?

It is also reasonable to start with a stronger property than congruence meet-
semidistributivity, namely simple congruence distributivity, or the one in The-
orem 1.3.

Question 5.2. Are (3 + 3)-terms implied by

(a) directed Jónsson terms? (equivalent to congruence distributivity, see [6])
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(b) ternary and 4-ary weak NU terms w3.w4 such that w3(y, x, x) = w4(y, x, x, x)?

Miklós Maróti with Ralph McKenzie (see Theorem 1.3 of [10]) proved that
congruence distributivity implies the existence of all at least ternary weak NU
terms. However, the catalogue of counterexamples is so weak, that even the
“glued” weak NU terms, as in item (b), are still plausible candidates for the
strong Maltsev condition too. On the other hand, congruence distributivity is
the weakest general condition under which we know about the weak NU terms.
So we ask the following.

Question 5.3. Is the existence of a weak NU term implied by the SD(∧) prop-
erty? In particular, is it implied by (3 + 3)-terms?
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