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The local loop lemma

Miroslav Oľsák

Abstract. We prove that an idempotent operation generates a loop from a
strongly connected digraph containing directed closed walks of all lengths
under very mild (local) algebraic assumptions. Using the result, we re-
prove the existence of weakest non-trivial idempotent equations, and that
a finite strongly connected digraph of algebraic length 1 compatible with
a Taylor operation has a loop.
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1. Introduction

Theorems that give a loop in a directed graph (digraph) under certain algebraic
and structural assumptions play an important role in universal algebra and the
constraint satisfaction problem. One example of such a “loop lemma” is the
following one.

Theorem 1.1 (loop lemma) [2,1]. If a finite digraph G

• is weakly connected,
• is smooth (has no sources and no sinks),
• has algebraic length 1 (cannot be homomorphically mapped to a directed

cycle of length at least 2) and
• is compatible with a Taylor operation,

then G contains a loop (a vertex adjacent to itself).

The consequences of this loop lemma include the following.
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• [2] If a digraph G has no sources and no sinks, and G has a component
that cannot be homomorphically mapped to a directed cycle of length at
least 2, then the constraint satisfaction problem over G is NP-complete.
This was an influential result generalizing the Hell-Nešetřil dichotomy for
undirected graphs [8]. See [3] for a survey on the algebraic approach to
constraint satisfaction problems.

• [9] Every locally-finite Taylor algebra has a term operation s satisfying
s(r, a, r, e) = s(a, r, e, a). Taylor algebras are of major significance in uni-
versal algebra, especially in tame congruence theory and in the study of
Maltsev conditions. The fact that locally finite Taylor algebras can be
characterized by such a simple condition was utterly unexpected in uni-
versal algebra, and a similar condition was later found for infinite Taylor
algebras [10].

• [1] Every finite Taylor algebra A has cyclic terms of all prime number
arities bigger than |A|. This indirect application of the loop lemma ranks
among the strongest characterizations of finite Taylor algebras.
The modern proof [1] of the loop lemma above requires idempotency

of A and is based on absorption. An operation f is said to be idempotent
if f(x, x, . . . , x) = x for any x. The definition of absorption is slightly more
complex. Let A be a set, X,Y subsets of A, and f an idempotent n-ary oper-
ation on A. We say that X absorbs Y with respect to f if, for any coordinate
i = 0, . . . , n − 1 and any elements x0, x1, . . . , xi−1, y, xi+1, . . . , xn−1 ∈ A such
that y ∈ Y and each xj ∈ X, we have

f(x0, x1, . . . , xi−1, y, xi+1, . . . , xn−1) ∈ X.

Another loop lemma based on absorption, which was used for the proof
that there exist weakest non-trivial idempotent equations [10] and which drops
the finiteness assumption, has the following form.

Theorem 1.2. Let G be an undirected graph that contains an odd cycle and is
compatible with an idempotent operation f . Assume that for every non-isolated
node x ∈ G, the set of neighbors of x absorbs {x} with respect to f . Then G

has a loop.

The absorption assumption in Theorem 1.2 is not particularly strong. It
is weaker than compatibility with a near unanimity operation, or absorption of
the diagonal by the edges of G, see Proposition 4.5 in [10]. On the other hand,
it still requires some form of homogeneity – it has to be satisfied for every
non-isolated node x, and there is further universal quantifier in the definition
of absorption. The idea that such level of homogeneity may not be necessary
was expressed by the following question in [10].

Question 1.3. Let G be an undirected graph, containing a cycle of odd length
with an element a. Moreover, let f be an idempotent operation compatible
with G such that the neighborhood of the node a absorbs {a} with respect to
f . Does G necessarily contain a loop?

Progress in this direction was made before. L. Barto has found a proof
for finite graph G, and also a general proof in the case of a cycle of length 3
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was found. The main result of this paper is a version of the loop lemma under
significantly weaker assumptions than the original question. This makes our
“local loop lemma” one of the strongest, even among finite loop lemmata.

Theorem 1.4 (local loop lemma). Consider a set A, operation t : An → A, a
digraph G on A, and vertices αi,j ∈ G for i, j ∈ {0, . . . , n − 1} such that

(1) t is idempotent,
(2) G is compatible with t,
(3) G is either a strongly connected digraph containing directed closed walks

of all lengths starting with two, or G is an undirected connected non-
bipartite graph,

(4) for every i ∈ {0, . . . , n − 1}, there is a G-edge

αi,i → t(αi,0, αi,1, . . . , αi,n−1).

Then G contains a loop.

Proof of the positive answer to Question 1.3. Consider an element x ∈ A in
an odd cycle such that the neighborhood of x absorbs {x}. Then the compo-
nent of x is closed under t (see Corollary 2.6 for detailed explanation), so we
can restrict to that component. Item (4) is satisfied by putting αi,i = x and
αi,j = y otherwise, where y is any element in the neighborhood of x. Then
t(y, . . . , y, x, y, . . . , y) is in the neighborhood by absorption, so

αi,i = x → t(y, . . . , y, x, y, . . . , y) = t(αi,0, . . . , αi,n−1).

Note that the absorption approach is not the only existing one used to
tackle loop lemmata. The oldest method is based mostly on performing pp-
definitions and pp-interpretations. This resulted in older, weaker versions of
Theorem 1.1, see [6,8], but also provided a state-of-the-art version of loop
lemma for oligomorphic clones [4]. The most recent technique is based on a
correspondence of certain loop lemmata with Maltsev conditions, see [11,12,7].
However, none of the available methods are local enough for our purposes. We
have chosen a different approach, a blindly straightforward one. We provide a
description of what exactly to plug into a star-power of the operation t to get
a loop. Yet, such an approach appears to be among the most efficient ones.

1.1. Outline

In Section 2 we give proper definitions of the terms used, alongside with no-
tation for finite sequences that will be used in the main proof. In Section 3 we
prove our main result, Theorem 1.4. In Section 4, we prove a stronger local
version of the existence of a weakest non-trivial equations, the main result from
[10]. In Section 5, we obtain further strengthening of Theorem 1.4 that yields
a version of Theorem 1.1 with a slightly stronger relational assumption (that
G be a strongly connected digraph) but slightly weaker algebraic assumptions.
In Section 6, we discuss possible further generalizations of the main result.
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2. Preliminaries and notation

2.1. Words, integer intervals

Consider a set A representing an alphabet. By a word, we mean a finite se-
quence of elements in A. The set of all words in the alphabet A of length n is
denoted by An. For manipulation with words, we use a Python-like syntax.

• x = [a0, a1, . . . , an−1] represents a word of length n, The length of x is
denoted by |x|.

• Elements of the word x can be extracted using an index in square brackets
after the word, that is x[i] = ai. The first position is indexed by zero. By
a position in a word we mean an integer that represents a valid index.

• Words can be concatenated using symbol +, that is

[a0, . . . , an−1] + [b0, . . . , bm−1] = [a0, . . . , an−1, b0, . . . , bn−1].

• For 0 ≤ i ≤ j ≤ n we define a subword

x[i : j] = [ai, ai+1, . . . , aj−1].

This syntax is known in Python as slice notation. Notice that the interval
includes i and does not include j, so then x[i : j] + x[j : k] = x[i : k] and
|x[i : j]| = j − i for 0 ≤ i ≤ j ≤ k ≤ |x|.

• If i or j is omitted, the boundaries of the word are used.

x[i :] = [ai, . . . , an−1], x[: j] = [a0, . . . , aj−1]

• Inspired by the slice notation, we use single [i : j] to represent an integer
interval. That is [i : j] = {i, i + 1, . . . , j − 1}, where i, j can be arbitrary
integers. Notice that i is included in that interval while j is not. If i is
omitted, it is meant implicitly as zero, that is [: n] = {0, 1, . . . , n − 1}.
The set of all integers is denoted by Z.

A word x is said to be periodic with a period k ≥ 1, or briefly k-periodic,
if x[i] = x[i + k] whenever both i and i + k are valid indices. Alternatively,
x ∈ An is k-periodic if k ≥ n or x[: n − k] = x[k :]. A 1-periodic word is also
called a constant word. In our proof, we use the following well-known property
of periodic words.

Proposition 2.1 (Periodicity lemma). Let a, b be positive integers and x be a
word of length at least a + b − gcd(a, b). If x is both a-periodic and b-periodic,
then it is also gcd(a, b)-periodic.

Corollary 2.2. Let x be a word and k ≥ 2 be the shortest period of x. If y is a
subword of x such that |y| ≥ 2k − 2, then k is the shortest period of y.

Proof. The word y is k-periodic. To obtain a contradiction, let k′ ≤ k − 1 be
another period of y. Since |y| ≥ k′ + k − 1, the word y is gcd(k, k′)-periodic.
Since |y| ≥ k and y is a subword of the k-periodic word x, we have that x is
gcd(k, k′)-periodic, which contradicts the minimality of k. �
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2.2. Operations, star powers

For a given n-ary operation t and a non-negative integer k we recursively define
the k-th star power of t, denoted t∗k, to be nk-ary operation given by

t∗0(x) = x,

t∗(k+1)(x0, . . . , xnk+1−1)

= t(t∗k(x0, . . . , xnk−1), . . . , t
∗k(x(n−1)nk , . . . , xnk+1−1)).

We consider variables in star powers as being indexed by words in [: n]k, where
the left-most letters corresponds to the outer-most position in the composition
tree. More precisely, a substitution of variables in a star power t∗k is repre-
sented by a function f : [: n]k → A. If k = 0, then t∗0(f) = f([]). Otherwise,
we can compute t∗k(f) by

t∗k(f) = t
(
t∗k(f0), t∗k(f1), . . . , t∗k(fn−1)

)
or t∗k(f) = t∗(k−1)(f ′),

where fi, f
′ : [: n]k−1 are defined by

fi(x) = f([i] + x) and f ′(x) = t
(
f(x + [0]), f(x + [1]), . . . , f(x + [n − 1])

)
.

2.3. Equations

An equation in a signature Σ is a pair of terms in Σ written as t0 ≈ t1. An
equational condition C is a system of equations in a fixed signature Σ. An
algebra A (in any signature) is said to satisfy an equational condition C if it
is possible to assign some term operations in A to the symbols in Σ so that
all the equations in C hold for any choice of variables in A.

Equational conditions are thoroughly studied in universal algebra in the
form of strong Maltsev conditions (equational conditions consisting of finitely
many equations) and Maltsev conditions (an infinite disjunction of strong
Maltsev conditions). Of particular interest are Taylor equations since every
idempotent algebra satisfying a non-trivial Maltsev condition also have a term
satisfying some Taylor system of equations. A Taylor system of equations is
any system of n equations using an n-ary symbol t of the following form.

t(x, ?, ?, . . . , ?, ?) ≈ t(y, ?, ?, . . . , ?, ?),

t(?, x, ?, . . . , ?, ?) ≈ t(?, y, ?, . . . , ?, ?),
...

t(?, ?, ?, . . . , ?, x) ≈ t(?, ?, ?, . . . , ?, y),

t(x, x, x, . . . , x, x) ≈ x,

where each question mark stands for either x or y. A Taylor operation is any
operation satisfying some Taylor system of equations. A quasi Taylor system
of equations is a Taylor system of equations without the last one requiring
idempotency. For our proofs, we enumerate the first n (quasi) Taylor equations
from top to bottom by integers from 0 to n − 1. For more background on
universal algebra, we refer the reader to [5]. Note that it was recently proved
[10] that the property of an algebra having a Taylor term can be characterized
by a strong Maltsev condition. We reprove this fact in Section 4.
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2.4. Relations, digraphs

An n-ary relation on a set A is any subset of An. A relation R is said to be
compatible with an m-ary operation t, if for any words r0, r1, . . . , rm−1 ∈ R,
the the result of t(r0, r1, . . . , rm−1) is in R as well, where the operation t is
applied to r0, . . . rm−1 component-wise. A relation is said to be compatible with
an algebra A if it is compatible with all basic operations of A, or algebraically,
if it is a subuniverse of an algebraic power An. Notice that if a relation R is
compatible with an algebra A, it is compatible with all term operations in A.
In particular, if R is compatible with an operation t, then R is compatible
with any star power of t.

A relational structure R = (A,R0, R1 . . .) on A is the set A together with
a collection of relations R0, R1 . . . on A. An algebra A, or an operation t on
A is compatible with a relational structure R on A, if A, or t, is compatible
with all the relations in R.

A digraph G = (V,E) is a relational structure with a single binary rela-
tion. If the set E of edges is symmetric, we call G an undirected graph. Given a
digraph G = (V,E), we usually denote the edges by u → v instead of [u, v] ∈ E.
By a n-walk from v0 to vn, or simply a walk, we mean a sequence (word) of
vertices in the digraph

[v0, v1, . . . , vn]

such that vi → vi+1 for all i ∈ [: n]. While we use most of the notation we
have for words also for walks, we redefine a length of a walk to be n, that is
one less than the length of the appropriate word of vertices. A closed walk of
length n, or closed n-walk, is an n-walk w such that w[0] = w[n].

The n-th relational power G◦n of a digraph G is a digraph with the same
set of vertices, and u → v in G

◦n if and only if there is a n-walk in G from u to
v. Notice that if a digraph G is compatible with an algebra A, any relational
power of G is compatible with A as well.

A digraph is said to be strongly connected, if there is a walk from u to v
for any pair of vertices u, v. We say that a digraph has an algebraic length 1
if it cannot be homomorphically mapped to a directed cycle of length greater
than one.

We finish this section by proving some basic combinatorial properties of
strongly connected digraphs of algebraic length 1.

Proposition 2.3. Let u be a vertex in a strongly connected digraph G with al-
gebraic length 1. Then there are directed closed walks containing u of any
sufficiently large length.

Proof. First, observe that if all closed walks in G are divisible by some n ≥ 2
and G is strongly connected, then G can be homomorphically mapped to the
directed cycle of length n.

Therefore, since G has algebraic length 1, there are some closed walks
c0, . . . ck−1 such that the greatest common divisor of the lengths of the closed
walks equals one. Let wi denote a walk from u to ci[0] and w′

i denote a walk
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from ci[0] to u for every i ∈ [: k]. There is a closed walk starting in u of any
length of the form

|w0| + x0|c0| + |w′
0| + |w1| + x1|c1| + |w′

1| + . . .

+|wk−1| + xk−1|ck−1| + |w′
k−1|,

where x0, x1, . . . , xk−1 stands for any non-negative integer coefficients. Since
gcd(|c0|, . . . , |ck−1|) = 1, this number can reach every sufficiently large integer.

�

Proposition 2.4. If G is a finite strongly connected digraph with algebraic length
1, then there is an integer K such that there is a k-walk from v0 to v1 for any
v0, v1 ∈ G and k ≥ K.

Proof. Let d(v0, v1) denote the length of the shortest walk from v0 to v1. Let
d be the largest d(v0, v1) among all pairs of vertices v0, v1 ∈ G. Fix an element
u ∈ G. By Proposition 2.3, there is a length C such that there is a closed
c-walk from u to u of any length c ≥ C. Thus the choice K = d + C + d works
for any pair v0, v1 since

k ≥ K = d + C + d ≥ d(v0, u) + C + d(u, v1). �

Proposition 2.5. Let t be an idempotent n-ary operation compatible with a di-
graph G. Let H ⊆ G be a strongly connected component of G that has an
algebraic length 1. Then H is closed under t.

Proof. Fix a vertex u ∈ H. By Proposition 2.3, there is a length C such
that there are closed c-walks from u to u of any length c ≥ C. Consider any
v0, . . . , vn−1 ∈ H. We prove that there is a walk from u to t(v0, . . . , vn−1).

Let wi denote a walk from u to vi. There are also walks from u to vi of
a fixed length

k = C + max(|w0|, |w1|, . . . , |wn|).
Therefore, there is a k-walk from u to t(v0, . . . , vn−1) in G since t is idempotent
and G

◦k if compatible with t. The existence of the walk in the other direction
is analogous. Hence t(v0, . . . , vn−1) ∈ H. Since v0, . . . , vn−1 can be chosen
arbitrarily, H is closed under t. �

Corollary 2.6. Let H be a non-bipartite connected component of an undirected
graph G compatible with an idempotent operation t. Then H is closed under
the operation t.

3. Proof of the local loop lemma

We prove the local loop lemma in the following form.

Theorem 3.1 (local loop lemma). Consider a set A, operation t : An → A, a
digraph G on A, and vertices αi,j of G for i, j ∈ {0, . . . , n − 1} such that
(1) t is idempotent,
(2) G is compatible with t,
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(3) G is a strongly connected digraph containing closed walks of all lengths
greater that one,

(4) for every i ∈ {0, . . . , n − 1}, there is a G-edge

αi,i → t(αi,0, αi,1, . . . , αi,n−1).

Then G contains a loop.

Theorem 3.1 differs from Theorem 1.4 in item (3), where Theorem 1.4
allows also an undirected connected non-bipartite graph. We start by showing
how Theorem 1.4 follows from Theorem 3.1,

Proof of Theorem 1.4. If G has closed walks of all lengths greater than one,
we get a loop directly by Theorem 3.1. Assume that it does not, thus G is
an undirected connected non-bipartite graph. Therefore, there is a cycle of
odd length in G. Let us denote the smallest odd length of such a cycle by l.
To obtain a contradiction, assume that there is no loop in G, hence l ≥ 3.
Observe that G contains closed walks of all lengths l′ ≥ l −1. There are closed
walks of any even length—simply pick any edge [a, b], and construct the walk
[a, b, a, b, . . . , a]. For constructing a closed walk of an odd length greater than
l−1, start with a closed walk of length l around a cycle of length l and append
a walk from the even case.

Consider the graph G
′ = G

◦(l−2). By minimality of l, G′ does not have a
loop. Since l − 2 is an odd number and G is undirected, the edges of G◦(l−2)

form a superset of the edge set of G, hence G
′ satisfies item (4) of Theorem 3.1

about the αi,j . Compatibility of G′ with t, that is item (2), follows from basic
properties of relational powers. Since G contains a closed walk of every length
greater than l − 2, the digraph G

′ contains a closed walk of any length greater
than 1. Therefore, by Theorem 3.1, there is a loop in G

′ corresponding to a
closed walk of length l − 2 in G which contradicts the minimality of l.

The proof of Theorem 3.1 relies on the following technical proposition.

Proposition 3.2. Let n be a positive integer and A denote [: n]. Consider a
strongly connected digraph G that contains closed walks of all lengths, and let
αi,j be any vertices of G. Then there is a positive integer N and a mapping
f : AN → G (substitution to the star power) such that for any x ∈ AN one of
the following cases hold:
(1) there is i ∈ A such that f(x) = αi,i and

∀j ∈ A : f(x[1 :] + [j]) = αi,j ,

(2) for every i ∈ A, there is an G-edge

f(x) → f(x[1 :] + [i]).

Proof of Theorem 3.1. Take the substitution function f : AN → G given by
Proposition 3.2. Based on that, we define two functions f0, f1 : AN+1 → G.
We set f0(x) = f(x[: N ]) and f1(x) = f(x[1 :]). Let

f ′
0(x) = t(f0(x + [0]), . . . , f0(x + [n − 1])),

f ′
1(x) = t(f1(x + [0]), . . . , f1(x + [n − 1])).
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By the idempotency of t, the functions f ′
0 and f are identical. Therefore

t∗(N+1)(f0) = t∗N (f ′
0) = t∗N (f)

= t(t∗N (f), t∗N (f), . . . , t∗N (f)) = t∗(N+1)(f1)

We claim that there is an edge from t∗(N+1)(f0) to t∗(N+1)(f1). We verify the
edge by checking for an edge from f ′

0(x) to f ′
1(x) for any x ∈ AN . We analyze

the two cases of the behavior of f on x.
(1) If there is i ∈ A such that f(x) = αi,i and f(x[1 :] + [j]) = αi,j for all

j ∈ A, then f ′
0(x) = f(x) = αi,i and

f ′
1(x) = t(f(x[1 :] + [0]), . . . , f(x[1 :] + [n − 1])) = t(αi,0, . . . , αi,n−1),

so there is an edge f ′
0(x) → f ′

1(x) by the definition of αi,j .
(2) If there is an edge

f0(x + [i]) = f(x) → f(x[1 :] + [i]) = f1(x + [i])

for every i ∈ A, then by compatibility of t and G, there is an edge
f ′
0(x) → f ′

1(x).
So there is an edge from f ′

0(x) to f ′
1(x) for any x ∈ AN , consequently there is

an edge from t∗(N+1)(f0) to t∗(N+1)(f1) and since t∗(N+1)(f0) = t∗(N+1)(f1),
it forms the desired loop.

Proposition 3.2 will be proved in the following two subsections. In Sec-
tion 3.1 we explicitly define the function f , in Section 3.2 we prove that the
function f satisfes the required properties. Before that, we reduce the problem
to a finite case.

Lemma 3.3. Let G be a strongly connected digraph that contains a closed walk
of every length greater than one. Let A be a finite set of vertices in G. Then
there is a finite subdigraph G

′ ⊆ G that is strongly connected and contains a
closed walk of every length greater than 1 and all elements of A.

Proof. We start with a finite subdigraph G0 ⊆ G with algebraic length one –
it suffices to put any two coprime closed walks of G into G0 and connect them.
Thus there is a length C such that G0 contains a closed c-walk for any c ≥ C.
We construct G

′ by adding the following edges and nodes into G0:
• one closed walk of every length in the interval [2 : C],
• all the vertices in A,
• paths connecting the elements in previous items to a fixed node in G0

and vice versa.
These are finitely many edges and vertices in total. The final G′ is therefore
finite while it meets the required criteria. �

3.1. Construction of the substitution f

In this section, we construct a witness to the Proposition 3.2. In particular,
we consider the digraph G, positive integer n and vertices αi,j and define an
appropriate integer N and a function f : AN → G, where A denotes [: n].
By Lemma 3.3, we can assume that G is finite. Consequently, we can use
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Proposition 2.4 and get K such that K ≥ 2 and there are k-walks from v0 to
v1 for any v0, v1 ∈ G and k ≥ K. For every v0, v1, k, we fix such a walk and
denote it by walk(v0, v1, k). We define the length N as N = L + W + R (left,
window, right), where

• W = 3K − 3,
• M = 2(K − 1) · nW + (K − 1).
• R = M + K − 1,
• L = R + K − 2,

The overall idea is to evaluate f(x) primarily by the “window” x[L :
L + W ], or to investigate the neighborhood of this window, if necessary. We
start with constructing a priority function π : AW → Z and a value function
ν : AW → G of the following properties.

(1) If w = [i, . . . , i] is a constant word, then ν(w) = αi,i and π(w) = 0.
(2) If w is periodic with the shortest period k ∈ [2 : K], then π(w) = R and

there is a closed k-walk [v0, v1, . . . , vk] in G such that

ν(w[i :] + w[: i]) = vi

for every i ∈ [: n].
(3) If w[: W − 1] is constant but w is not, then π(w) = R.
(4) If w is not periodic with a period smaller than K and w[: W − 1] is not

constant, then π(w) is negative.
(5) π is “injective on negative values”, that is, whenever π(w0) = π(w1) < 0,

then w0 = w1.

The construction of such functions is straightforward. To satisfy conditions 1
and 3 we simply set the appropriate values of π and ν. Items 4 and 5 can
be satisfied since there are infinitely many negative numbers and just finitely
many possible words of length W . Finally, to meet the condition 2, for all
k ∈ [2 : K], we partition the words with the smallest period k into groups that
differ by a cyclic shift. Any such group can be arranged as w0,w1, . . . ,wk−1

where wi = w0[i :] + w0[: i]. For every such a group, we find a closed k-walk
[v0, v1 . . . , vk] in G and set ν(wi) = vi, π(wi) = R.

Now consider a word x ∈ AN of length N . Positions p ∈ [: N − W + 1]
represent valid indices of subwords x[p : p+W ] of length W . We define values
νx : [: N − W + 1] → G and priorities πx : [: N − W + 1] → Z of such positions
by

νx(p) = ν(x[p : p + W ]), πx(p) = π(x[p : p + W ])

with the following exceptions if x[p : p + W ] is constant.

• Let q ∈ [p : N − W + 1] be the right-most position such that x[p : q + W ]
is constant. We redefine πx(p) to be min(q − p,R − 1) instead of zero.

• If p ∈ [1 : L+1], x[p− 1 : p− 1+W +R] is a constant word [i, . . . , i] and
x[p − 1 + W + R] = j, we redefine νx(p) to be αi,j instead of αi,i.

Based on the priority function πx : [: N − W + 1] → Z, we define local
maxima. A position p ∈ [: N − W + 1] is called a local maximum in x ∈ AN if
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either πx(p) = R, or p ∈ [K − 1 : N − W − (K − 1) + 1] and πx(p) ≥ πx(q)
whenever |p − q| < K.

We are finally ready to construct the function f : AN → G. If L is a local
maximum in x, we simply set f(x) = νx(L). Otherwise, we find the closest
local maxima to L from both sides. In particular let p < L be the right-most
local maximum before L, and let q > L be the left-most local maximum after
L. We claim that these positions exist and that q − p ≥ K, these claims are
proved in the following subsection. In that case we set

f(x) = walk(νx(p), νx(q), q − p)[L − p].

3.2. Proofs

In this section, we fill in the missing proofs in the construction. In particular,
we prove the following.

• It is possible to find a local maximum on both sides of the position L in
any x ∈ AN (Corollary 3.11).

• If L is not a local maximum and p, q are local maxima such that p < L <
q, then q − p ≥ K (Corollary 3.6).

• The constructed mapping f meets the criteria given by Proposition 3.2
(Proposition 3.15).

Lemma 3.4. Let p < q be local maxima in x such that q − p < K. Then
νx(p) = νx(q) ≥ R − 1 and the subword x[p : q + W ] is periodic with a period
strictly less than K.

Proof. Since both p, q are local maxima, νx(p) = νx(q). First we prove that
νx(p) ≥ 0. To obtain a contradiction, suppose that νx(p) < 0. Then x[p :
p + W ] = x[q : q + W ] by injectivity of the function ν on negative values.
Hence x[p : q + W ] is periodic with a period q − p < K. This contradicts the
hypothesis that νx(p) < 0.

Therefore νx(p) ≥ 0, and both subwords w0 = x[p : p + W − 1] and
w1 = x[q : q + W − 1] are periodic with periods less than K, let us denote
their shortest periods k0, k1 respectively. Their intersection w = x[q : p+W−1]
has length at least

(W − 1) − (K − 1) = (K − 1) + (K − 1) − 1 ≥ k0 + k1 − gcd(k0, k1),

so it is gcd(k0, k1)-periodic by Proposition 2.1. Since |w| ≥ max(k0, k1) and the
subwords w0, w1 are k0-periodic or k1-periodic, they are uniquely determined
by w. Therefore, the whole subword x[p : q + W − 1] is gcd(k0, k1)-periodic
and gcd(k0, k1) = k0 = k1.

If x[p : q + W − 1] is not constant, then k0 ≥ 2, and w1 is not constant.
Since νx(q) ≥ 0, the word x[q : q + W ] is then periodic with a period less that
K. By the same reasoning as above, the shortest period of x[q : q + W ] is k0
and the whole subword x[p : q + W ] is k0-periodic.

Otherwise, if x[p : q + W − 1] is constant, then R > νx(p) = νx(q), so
x[q : q +W ] is constant, and the whole subword x[p : q +W ] is constant. Thus
νx(p) = min(R − 1, νx(q) + q − p), so νx(p) = νx(q) = R − 1. �
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Corollary 3.5. Let p0, p1 be local maxima in a word x such that p0 ≥ p1+2 and
there is no other local maximum in the interval [p0+1 : p1]. Then p1−p0 ≥ K.

Proof. Conversely suppose that p1 − p0 < K. By Lemma 3.4, x[p0 : p1 + W ]
is periodic with a period strictly less than K and πx(p0) = πx(p1) ≥ R − 1. If
x[p0 : p1 +W ] is constant, then πx(p0 +1) = R − 1, otherwise πx(p0 +1) = R.
In both cases, p0 + 1 is a local maximum in the interval [p0 + 1 : p1] contrary
to the hypotheses. �

Corollary 3.6. Let x ∈ AN be a word such that L is not a local maximum in
x, and let p, q be local maxima such that p < L < q. Then q − p ≥ K.

Lemma 3.7. Let p ∈ [K − 1 : N − W − (K − 1) + 1] be such that x[p : p + W ]
is constant. If p is not a local maximum, then one of the following scenarios
happen.

(1) πx(p) < R − 1 and x[p − 1] = x[p],
(2) there is a local maximum q > p such that q − p < K, x[p : q + W − 1] is

constant and different from x[q + W − 1].

Proof. Since p is not a local maximum, there is a position q such that |p−q| <
K and νx(q) > νx(p) ≥ 0, hence x[q : q+W−1] is periodic with a period smaller
than K. The subword x[q : q + W − 1] has an intersection with the constant
subword x[p : p + W ] of length at least (W − 1) − (K − 1) = 2K − 3 ≥ K − 1.
Therefore by periodicity, x[q : q + W − 1] is constant as well.

We analyze two cases by the position of q.

(1) If q < p, then q + W − 1 ∈ [p : p + W ], so x[q : q + W ] is still constant.
Therefore πx(q) ≤ R − 1, and consequently πx(p) < R − 1. Moreover
x[p] = x[p − 1] and we get the scenario (1).

(2) If q > p, we show that x[q + W − 1] differs from the constant on x[q :
q + W − 1], so the scenario (2) happens. If it did not, the whole subword
x[p : q + W ] would be constant, and νx(p) = min(R − 1, νx(q) + q − p)
would contradict vx(q) > νx(p). �

Corollary 3.8. Let p ∈ [K − 1 : N − W − (K − 1) + 1] be a position such that
the subword x[p : p + W + (K − 1)] is constant. Assume that x[p] 	= x[p − 1]
or νx(p) = R − 1. Then p is a local maximum.

Lemma 3.9. Consider positions p0, p1 ∈ [K − 1 : N − W + 1] in a word x such
that p1 − p0 ≥ M . If x[p0 : p1 + W ] is not constant, there is a local maximum
in x in the interval [p0 : p1 + 1].

Proof. If there is no position q ∈ [p0 : p0 + 2(K − 1) · nW + 1] such that
x[q : q + W ] is constant, we find the local maximum by the following process.
We start with the position q0 = p0 + (K − 1)nW . While qi is not a local
maximum, we find qi+1 such that |qi+1 − qi| ≤ K − 1 and πx(qi+1) > πx(qi).
Observe that the positions q1, q2, . . . , qnW cannot escape the interval [p0 : p0 +
2(K − 1) ·nW +1]. On the other hand, the process cannot have more than nW

steps since the values πx(pi) form an increasing sequence which is made of at



Vol. 81 (2020) The local loop lemma Page 13 of 23 14

most nW negative values and one non-negative value R. So we will get to the
local maximum eventually.

If there is a position q ∈ [p : p+2(K − 1) ·nW +1] such that x[q : q +W ]
is constant, we find q0, q1 such that p0 ≤ q0 ≤ q ≤ q1 ≤ p1 and x[q0 : q1 + W ]
is the largest possible constant subword. If q1 < p1, then πx(q1 + 1) = R,
hence q1 + 1 is a local maximum in [p0 : p1 + 1]. Assume otherwise that
q1 = p1. Since x[p0 : p1 + W ] is not constant, we have q0 > p0. Since p1 − q0 ≥
M −2(K −1) ·nW = K −1, q0 is the desired local maximum by Corollary 3.8.

�
Corollary 3.10. Consider a position p ∈ [K − 1 : L + 2] in a word x. Then
there is a local maximum in the interval [p : p + (R − 1) + 1].

Proof. If x[p : p + R − 1 + W ] is not constant, there is a local maximum
by Lemma 3.9 since R − 1 ≥ M . If x[p : p + R − 1 + W ] is constant, then
νx(p) = R − 1 and p is a local maximum by Corollary 3.8. �
Corollary 3.11. Let x ∈ AN be a word such that L is not a local maximum in
x. Then there are a local maxima p, q in x such that p < L < q.

Proof. We find p in the interval [L − R + 1 : L + 1] and q in the interval
[L : L + R] by Corollary 3.10. �

Now, we are going to prove that the constructed mapping f satisfies
the conditions given by Proposition 3.2. For that purpose, we investigate how
functions πx, νx relate to the functions πy, νy, where y = x[1 :] + [i] for some
i.

Lemma 3.12. Let x,y ∈ AN be words such that y[: N − 1] = x[1 :], and
p ∈ [2 : N − W + 1]. Then νx(p) = νy(p − 1) or x[L : N ] is constant and
p = L + 1.

Proof. Clearly, x[p : p + W ] = y[p − 1 : (p − 1) + W ], so

ν
(
x[p : p + W ]

)
= ν

(
y[p − 1 : (p − 1) + W ]

)
.

To prove the lemma, it remains to discuss the exceptional behavior of ν that
assigns αi,j . Fix i, j ∈ A. We claim that with the exception of p = L + 1 and
x[L : N ] being constant, the following items are satisfied

• p ≤ L,
• x[p − 1 : p − 1 + W + R] is a constant word [i, . . . , i],
• x[p − 1 + W + R] = j.

if and only if the following items are satisfied
• p − 1 ≤ L,
• y[p − 2 : p − 2 + W + R] is a constant word [i, . . . , i],
• y[p − 2 + W + R] = j.

The forward implication is clear. The only case in which the backward impli-
cation could fail is when p − 1 ≤ L but p 	≤ L, that is p = L + 1. In that case,
since y[p − 2 : p − 2 + W + R] is constant, we get that

y[p − 2 : p − 2 + W + R] = y[L − 1 : L − 1 + W + R] = x[L : L + W + R]
= x[L : N ]
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is constant as well. �

Lemma 3.13. Let x,y ∈ AN be words such that y[: N − 1] = x[1 :], and
p ∈ [1 : N −W +1]. If p > L+1 and y[p−1 : N ] is constant, then πy(p−1) =
πx(p) + 1 ∈ [: R]. Otherwise πy(p − 1) = πx(p).

Proof. If x[p : p + W ] is not constant, then

πx(p) = π(x[p : p + W ]) = π(y[p − 1 : p − 1 + W ]) = πy(p − 1).

If x[p : p+W ] is constant but y[p−1 : N ] is not, there is q ∈ [p−1+W : N −1]
such that y[p − 1 : q] is constant but y[q + 1] 	= y[q]. Therefore x[p : q + 1] is
constant and

πx(p) = min((q + 1) − (p + W ), R − 1) = min(q − (p − 1 + W ), R − 1)
= πy(p − 1).

If y[p − 1 : N ] is constant and p ≤ L + 1, then πx(p) = R − 1 = πy(p − 1).
Finally, if y[p − 1 : N ] is constant and p > L + 1, then

πy(p − 1) = N − (p − 1) = (N − p) + 1 = πx(p) + 1 ∈ [: R]. �

Lemma 3.14. Let x,y ∈ AN be words such that y[: N − 1] = x[1 :], and
p ∈ [K : N − W + 1]. If p is a local maximum in x, then p − 1 is a local
maximum in y. Conversely, if p − 1 is a local maximum in y and p is not a
local maximum in x, then p ≥ L + 2 and there is a local maximum in x in the
interval [L + 1 : p].

Proof. By Lemma 3.13, πx(p) = R if and only if πy(p − 1) = R, in that case
both p and p − 1 are local maxima. Assume otherwise, that is πx(p) < R, and
πy(p) < R.

We first prove the forward implication by contradiction. Suppose that p
is a local maximum in x but p−1 is not a local maximum in y. We thus find a
position q such that |p− q| < K, πx(p) ≥ πx(q) and πy(p− 1) ≤ πy(q − 1)− 1.
From Lemma 3.13, we obtain πx(p − 1) ≥ πx(p) and πy(q) ≥ πy(q − 1) − 1.
This leads to a cycle in inequalities

πx(p) ≥ πx(q) ≥ πy(q − 1) − 1 ≥ πy(p − 1) ≥ πx(p),

so all the compared values must be equal.
Since πy(q) 	= πy(q−1), y[q−1 : N ] is constant. Since πy(p−1) = πx(q) ∈

[: R], also y[p − 1 : p − 1 + W ] is constant, and consequently, y[p − 1 : N ] is
constant. Since πy(q − 1) > πy(p − 1), we get q < p. On the other hand, since
the priority increased at q but not at p, we get p ≤ L + 1 < q by Lemma 3.13.
Satisfying both is impossible.

Now we prove the second part of the lemma. Let us assume that p−1 is a
local maximum in y but p is not a local maximum in x. There are two possible
reasons for p not being a local maximum in x. Either p > N − W − (K − 1),
or there is a position q such that νx(q) > νx(p) and |p − q| < K.

If p > N − W − (K − 1), then p = N − W − (K − 1) + 1 and y[p − 2 :
(p − 1) + W ] is not constant since p − 1 is a local maximum in y. Therefore
x[L + 1 : p + W ] is not constant, so there is a local maximum in the interval
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x[L + 1 : p + 1] by Lemma 3.9 since p − (L + 1) = R − K + 1 = M . However,
p is not a local maximum, so the maximum belongs to the interval [L + 1 : p].

Now suppose that there is q such that νx(q) > νx(p), and |p − q| < K.
Since p − 1 is a local maximum in y, νy(q − 1) ≤ νy(p − 1). Similar to the
forward implication, we obtain the following identities from Lemma 3.13,

νx(q) = νy(q − 1) = νy(p − 1) = νx(p) + 1.

Moreover νy(p−1) ∈ [: R] and y[p−1 : N ] is constant since νy(p−1) 	= νx(p).
Since νx(q) = νy(q−1) = νy(p−1), x[q : q+W ] is constant and νx(q) = R−1.
We compute

νx(p) = νy(p − 1) − 1 = νx(q) − 1 = (R − 1) − 1 = R − 2,

therefore p = N − (R − 2) = L + 2. On the other hand, q ≤ L + 1 since
νx(q) = νy(q − 1). Therefore x[L + 1 : N ] is constant and L + 1 is a local
maximum in x in the interval [L + 1 : p]. �

Proposition 3.15. The function f : AN → G, as constructed in Section 3.1 is
such that for any x ∈ AN , one of the following cases happen:
(1) there is i ∈ A such that f(x) = αi,i and f(x[1 :] + [j]) = αi,j for all

j ∈ A,
(2) for every i ∈ A, there is an edge in G

f(x) → f(x[1 :] + [i]).

Proof. If x[L : N ] is constant, the first case happens. In particular, i = x[L],
πx(L) = R − 1, L is a local maximum, and νx(L) = αi,i, so f(x) = αi,i. Let
y denote x[1 :] + [j]. Thus πy(L) = R − 1, L is a local maximum in y and we
have νx(L) = αi,j by the exceptional case for value νy.

If x[L : N ] is not constant, we show that the second case happens. Let
y = x[1 :] + [i]. First, we prove the proposition if both L and L + 1 are local
maxima in x. In this case L − 1 and L are local maxima in y by Lemma 3.14.
Also νy(L) = νx(L+1) by Lemma 3.12. By Lemma 3.4, πx(L) = πx(L+1) ≥ 0
and x[L : L + W + 1] is periodic with a period smaller than K. We show that
x[L : L + W + 1] cannot be constant. Assume that the subword is constant
to obtain a contradiction, then πx(L) = min(R − 1, πx(L + 1) + 1). Since
πx(L) = πx(L+1), we get πx(L+1) = R−1, so x[L+1 : (L+1)+W +(R−1)]
is constant. That contradicts the hypothesis that x[L : N ] is not constant.
Therefore x[L : L + W + 1] is periodic with a smallest period k such that
1 < k < K. Thus k is also the smallest period of words x[L : L + W ] and
x[L + 1 : L + 1 + W ] by Corollary 2.2. By the definition of ν, the vertices
ν(x[L : L + W ]) and ν(x[L + 1 : L + W + 1]) are consecutive vertices on a
closed walk of length k, so there is an edge

f(x) = ν(x[L : L + W ]) → ν(x[L + 1 : L + W + 1]) = f(y).

Now, let us assume that L or L+1 is not a local maximum in x. Let p0 be
the right-most local maximum such that p0 ≤ L, and let p1 be the left-most
local maximum such that p1 > L. Both p0 and p1 exist by Corollary 3.10,
and p1 − p0 ≥ K by Corollary 3.5. By the choice of p0, p1, there is no local
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maximum strictly between p0, p1. Therefore by Lemma 3.14 p0 − 1, p0 − 1 are
local maxima in y and there is no local maximum between them. Since x[L : N ]
is not constant, νy(p0 − 1) = νx(p0)

def= u0 and νy(p1 − 1) = νx(p1)
def= u1 by

Lemma 3.12. Finally, we get the desired edge

f(x) = νx(L) = walk(u0, u1, p1 − p0)[L − p0]

→ walk(u0, u1, p1 − p0)[L − p0 + 1] = νy(L) = f(y). �

4. Double loop

The core of the paper describing the weakest nontrivial equations [10] is the
proof that the existence of a Taylor term implies the existence of a double loop
term, that is a term d satisfying the double loop equations:

d(xx, xxxx, yyyy, yy) = d(xx, yyyy, xxxx, yy)

d(xy, xxyy, xxyy, xy) = d(yx, xyxy, xyxy, yx)

(the variables are grouped together for better readability). The double loop
equations can be obtained as follows. Consider a 4×12 matrix whose columns
are all the quadruples [a0, a1, b0, b1] ∈ {x, y}4 with a0 	= a1 or b0 	= b1, and let
r0, r1, r2, r3 denote its rows. The double loop equations are then d(r0) ≈ d(r1)
and d(r2) ≈ d(r3). If the columns are organized lexicographically with x < y,
we get the equations above.

The fact that a Taylor term implies a double loop term is proved in [10]
by intermediate steps in the form of the infinite loop lemma (Theorem 4.3 in
[10]) followed by the double loop lemma (Theorem 5.2 in [10]). We provide a
local version of that procedure by replacing the infinite loop lemma by the
local loop lemma. Not only makes this change the proof of the double loop
lemma more straightforward but we also prove a stronger, “local” version of
the main theorem: If an idempotent algebra satisfies Taylor equations locally
on X, it satisfies the double loop equations locally on X. The notion of a
locally satisfied equational condition is defined below.

Definition 4.1. Let A be an algebra with a subset X ⊆ A. Let S be an equa-
tional condition. We say that A satisfies S locally on X if it is possible to
assign term operations in A to the term symbols in S so that every equation
is satisfied whenever the variables are chosen from the set X.

Note that if X is the universe of A, then A satisfying S locally on X just
means that A satisfies S as an equational condition.

Theorem 4.2 (Local double loop lemma). Let A = (A; tA) and B = (B; tB)
be algebras in the signature consisting of a single n-ary operation symbol t.
Assume that A is generated by {xA, yA}, tA is idempotent, B is generated
by {xB, yB} and tB satisfies the quasi Taylor system of equations locally on
{xB, yB}. Let Q be the subuniverse of A2 ×B2 generated by all the 12 quadru-
ples [a0, a1, b0, b1] with a0, a1 ∈ {xA, yA}, b0, b1 ∈ {xB, yB}, such that a0 	= a1

or b0 	= b1. Then there is a double loop in Q, that is, a quadruple [a, a, b, b] ∈ Q.



Vol. 81 (2020) The local loop lemma Page 17 of 23 14

Proof. We assume that xA 	= yA and xB 	= yB, otherwise, the theorem is
trivial. Let us define a digraph G = (A,E) on A by

E = {[a0, a1] ∈ A2 | ∃b ∈ B : [a0, a1, b, b] ∈ Q}.

Observe that since the generators of Q are symmetric in the first two coordi-
nates, so is the Q itself, and consequently G = (A,E) is an undirected graph.
Clearly [xA, yA] ∈ E. Our goal is to apply Theorem 1.4 to G. �

Claim 4.3. Consider elements a0, . . . , an−1, a
′
0, . . . , a

′
n−1 ∈ {xB, yB} such that

there is exactly one i ∈ [: n] such that ai = a′
i. Then there is a G-edge

tA(a0, . . . , an−1) → tA(a′
0, . . . , a

′
n−1)

To verify the claim, we use the Taylor equation number i, that is

tB(b0, . . . , bn−1) = tB(b′
0, . . . , b

′
n−1)

for some bo, . . . , bn−1, b
′
0, . . . , b

′
n−1 ∈ {xB, yB} where bi = xB and b′

i = yB.
Since bi 	= b′

i and aj 	= a′
j for every j 	= i, we have [aj , a

′
j , bj , b

′
j ] ∈ Q for every

j ∈ [: n]. Therefore
[
t(a0, . . . , an−1), t(a′

0, . . . , a
′
n−1), t(b0, . . . , bn−1), t(b′

0, . . . , b
′
n−1)

] ∈ Q,

which satisfies the claim.
Due to Claim 4.3, there is a closed walk of length 2n − 1 in G containing

xA:

xA = tA(xA, xA, . . . , xA) → tA(xA, yA, yA, . . . , yA) →
tA(yA, xA, . . . , xA) → tA(xA, xA, yA, . . . , yA) →

...

tA(yA, . . . , yA, xA) → tA(xA, xA, xA . . . , xA) = xA.

By Corollary 2.6, the component of G containing xA is closed under tA. How-
ever, since this component contains also yA and {xA, yA} generates A, the
component covers all of G, hence G is connected. Finally, we set αi,i = xA and
αi,j = yA if i 	= j. The edges

xA → t(yA, . . . , yA, xA, yA, . . . , yA)

are direct consequences of Claim 4.3 and the idempotency of t. All the as-
sumptions of Theorem 1.4 are verified, so there is a loop [a, a] ∈ E. By the
definition of E, there is a double loop [a, a, b, b] ∈ Q.

Theorem 4.4. Let A be an idempotent algebra that satisfies Taylor equations
locally on X. Then A satisfies double loop equations locally on X.
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Proof. We construct a “local free algebra” F with the signature of A generated
by two generators. The universe F of F consists of all the binary operations
X2 → A that can be expressed by a term in A. The operations on F are
naturally inherited from the basic operations on A by the left composition.
Thus F is an idempotent algebra generated by the binary projections. Let us
denote the binary projections x, y respectively. Since A satisfies some Taylor
equations locally on X and the images of the functions x, y equals to X, F
satisfies the same Taylor equations locally on {x, y}.

Let Q ⊆ F 4 be a 4-ary relation on F generated by all the quadruples
[a0, a1, b0, b1], where a0, a1, b0, b1 ∈ {x, y} and a0 	= a1 or b0 	= b1. By The-
orem 4.2, there is a double loop [a, a, b, b] ∈ Q. Therefore, there is a term d
in the signature of A that takes the generators of Q and returns [a, a, b, b]. In
particular

d(xx, xxxx, yyyy, yy) = a,

d(xx, yyyy, xxxx, yy) = a,

d(xy, xxyy, xxyy, xy) = b,

d(yx, xyxy, xyxy, yx) = b.

Thus d satisfies the double loop equations if we plug in x, y in the order above.
However, whenever we choose a pair [z0, z1] ∈ X2, then [x(z0, z1), y(z0, z1)] =
[z0, z1], hence d satisfies the double loop equations on A if we plug in z0, z1
in that order. Since z0, z1 can be any pair of elements of X, A satisfies the
double loop equations locally on X. �

5. Strong local loop lemma

In this section, we obtain a strengthening of the local loop lemma by replacing
(4) in Theorem 1.4 with a weaker condition. We then use the strengthened
version to reprove a finite loop lemma for strongly connected digraphs, in
particular, Theorem 7.2 in [2]

For a given n-ary term t : An → A and a coordinate i ∈ [: n], we de-
fine a digraph P(t, i) on A by xi → t(x0, x1, . . . , xn−1) for all possible values
x0, . . . , xn−1 ∈ A. Using the digraphs P(t, i), assumption (4) in Theorem 1.4
can be expressed as: “For every i ∈ [: n], the digraph P(t, i) has a common
edge with G.”

Let P(t, i) denote the transitive closure of P(t, i), that is, an edge u → v in
P(t, i) indicates a walk from u to v in P(t, i). Using this notation, Theorem 1.4
has the following generalization.

Theorem 5.1. Consider a set A, operation t : An → A, a digraph G on A, and
elements ai, bi ∈ G for i ∈ [: n] such that

(1) t is idempotent,
(2) G is compatible with t,
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(3) G is either a strongly connected digraph containing closed walks of all
lengths greater than one, or G is an undirected connected non-bipartite
graph,

(4) for every i ∈ [: n], there is a common edge ai → bi in G and P(t, i).
Then G contains a loop.

Proof. As in Proposition 3.2, we denote [: n] by A. By the idempotency of
t, the edges of P(t, i) form a reflexive relation. Therefore, there is a fixed k
such that there is a P(t, i)-walk of length k from ai to bi for every i ∈ A. For
every i ∈ A, fix a substitution fi : Ak → G such that fi([i, i, . . . , i]) = ai and
t∗k(fi) = bi.

We verify the assumptions of Theorem 1.4 considering the operation
t∗(k−1)n+1. The operation t∗(k−1)n+1 is idempotent, compatible with G, and G

already satisfies the relational requirements. It remains to find the values αx,y,
for x,y ∈ A(k−1)n+1 to make the condition (4) satisfied. We interpret the ma-
trix α as a sequence of functions in the second variable, that is αx,y = αx(y).
We need to find functions αx such that there are a G-edges

αx(x) → t∗(k−1)n+1(αx).

Take x ∈ A(k−1)n+1. By the pigeonhole principle, there is i ∈ A occuring
at least k-times in x. Let p0, . . . , pk−1 ∈ [: (k − 1)n + 1] be an increasing
sequence of positions in x such that x[pj ] = i for every j ∈ [: k]. We define αx

by

αx(y) = fi([y[p0],y[p1], . . . ,y[pk−1]]).

Thus

αx(x) = fi([i, i, . . . , i]) = ai,

t∗(k−1)n+1(αx) = t∗k(fi) = bi,

Therefore the assumption (4) of Theorem 1.4 is satisfied by ai → bi, and G

has a loop. �
From Theorem 5.1 we obtain the following finite version.

Theorem 5.2. Let A be a finite set and t : An → A be an idempotent operation.
Assume that for every i ∈ [: n] and every pair u, v ∈ A, there is w ∈ A such
that there are edges u → w and v → w in P(t, i). Then every digraph G that
is strongly connected, compatible with t and has algebraic length 1, has a loop.

Proof. Fix i ∈ [: n]. We start by proving the following claim by induction
on |X|. �

Claim 5.3. For every X ⊆ A, there is an element b such that for every x ∈ X,
there is an edge x → b in P(t, i).

If X is empty, it suffices to take any b ∈ A. Otherwise let X = X ′ ∪ {x},
where the claim is already proven for X ′, so there is b′ such that there is an
edge x′ → b′ for every x′ ∈ X ′. Using the assumption of the theorem and
putting u = b′, v = x, we get a vertex w = b such that there are edges b′ → b,
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x → b. By transitivity of P(t, i), there are edges x → b for every x ∈ X. This
finishes the proof of the claim.

For every i ∈ [: n], we fix bi ∈ A such that there is an edge x → bi in P(t, i)
for every x ∈ A. Consider a strongly connected digraph G with algebraic length
1 that is compatible with t. To obtain a contradiction, suppose that there is no
closed walk of length 1 (a loop) in G. Since G is a strongly connected digraph
with algebraic length 1, it contains closed walks of all sufficiently large lengths.
Let k denote the largest length such that there is no closed walk of length k

in G. The relational power G
◦k

is compatible with t, strongly connected, and
by the choice of k, G

◦k

contains closed walks of all lengths greater than 1 but
no loop.

Since G
◦k

is strongly connected, we can find nodes ai such that there are
edges ai → bi in G

◦k

. Any such edge is also an edge in P(t, i) by the choice
of bi. Therefore, the assumptions of Theorem 5.1 are satisfied, and we get a
contradiction with the hypothesis that G

◦k

has no loop.
The standard finite loop lemma for strongly connected digraphs, origi-

nally proved in [2], is a direct consequence.

Corollary 5.4. Let G be a strongly connected digraph with algebraic length 1
compatible with a Taylor operation. Then G has a loop.

Proof. Let us denote the Taylor operation as t, and the vertex set of G as A.
Since the digraph G is strongly connected and has algebraic length 1, it remains
to verify the assumptions of Theorem 5.2. We take i ∈ [: n] and u, v ∈ A, and
find w such that u → w and v → w in P(t, i). This is straightforward, it suffices
to set

w = t(x0, . . . , xi = u, . . . , xn−1) = t(y0, . . . , yi = v, . . . , yn−1),

where xj , yj are set to u or v according to the Taylor equation number i. �

6. Conclusion

Since considering positions of variables in a star power as words and applying
simple word combinatorics on them gives surprisingly strong results, this line
of argument call for further exploration. In particular, we would like to see
a proof that is able to separate the technical effort from the overall powerful
machinery. This could lead not only to a nicer proof of the local loop lemma
in this article but also pave a way to various interesting generalizations.

A modest generalization would be replacing item (3) in Theorem 1.4 with
the hypothesis that G is a strongly connected digraph with algebraic length
1. The fact that we were able to obtain cycles of all lengths whenever we
needed suggests that it is rather a technical issue in the proof rather than a
real obstacle.

Likely a harder task would be to replace the assumption of a strongly
connected digraph by something weaker. While the finite loop lemma, The-
orem 1.1, suggests that the assumption of a strongly connected digraph is
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not entirely necessary, the strong connectedness forms a solid barrier for loop
conditions, see Section 6 in [11] for counterexamples.

However, to get a widely applicable and powerful tool, it is necessary to
go beyond a single digraph. What are the necessary assumptions to obtain a
loop shared by two digraphs? What about loops in hypergraphs (see [7])? A
natural question comes from Section 4. While it is possible to prove that a
local Taylor term implies local double-loop term, there is a much simpler form
of the (global) weakest non-trivial idempotent equational condition:

Question 6.1. Let A be an idempotent algebra that satisfies Taylor identities
locally on a set X. Does it necessarily have a term that satisfies

t(x, y, y, y, x, x) = t(y, x, y, x, y, x) = t(y, y, x, x, x, y)

locally on X?

Lastly, is it possible to apply the ideas in this article to oligomorphic
structures, and consequently, infinite constraint satisfaction problem (see [4,
7])? Oligomorphic algebras are, in a sense, the opposite of idempotent algebras—
idempotent algebras have only the trivial unary term operation while oligo-
morphic algebras have a large group of them. On the other hand, notice that
the proof of Theorem 1.4 uses the idempotency at just two places, and in a
predictable manner. This suggests that there might be a way of using a variant
of the local loop lemma in algebras that are not idempotent.
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[7] Gillibert, P., Jonušas, J., Pinsker, M.: Pseudo-loop conditions. Bull. Lond. Math.
Soc. 51, 917–936, (2019). https://doi.org/10.1112/blms.12286
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