
A Verified Ground Confluence Tool for Linear
Variable-Separated Rewrite Systems in Isabelle/HOL

Bertram Felgenhauer
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

bertram.felgenhauer@uibk.ac.at

Aart Middeldorp
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

aart.middeldorp@uibk.ac.at

T. V. H. Prathamesh
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

venkata.turaga@uibk.ac.at

Franziska Rapp
Allgemeines Rechenzentrum Innsbruck

Innsbruck, Austria

Abstract
It is well known that (ground) confluence is a decidable prop-
erty of ground term rewrite systems, and that this extends
to larger classes. Here we present a formally verified ground
confluence checker for linear, variable-separated rewrite sys-
tems. To this end, we formalize procedures for ground tree
transducers and so-called RRn relations. The ground conflu-
ence checker is an important milestone on the way to for-
malizing the decidability of the first-order theory of ground
rewriting for linear, variable-separated rewrite systems. It
forms the basis for a formalized confluence checker for left-
linear, right-ground systems.

CCSConcepts •Theory of computation→Equational
logic and rewriting;Tree languages; Logic and verifica-
tion.

Keywords ground confluence, ground tree transducers, for-
malization

ACM Reference Format:
Bertram Felgenhauer, Aart Middeldorp, T. V. H. Prathamesh, and
Franziska Rapp. 2019. A Verified Ground Confluence Tool for Linear
Variable-Separated Rewrite Systems in Isabelle/HOL. In Proceed-
ings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’19), January 14–15, 2019, Cascais, Portu-
gal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3293880.3294098

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6222-1/19/01.
https://doi.org/10.1145/3293880.3294098

1 Introduction
First-order term rewriting is a non-deterministic model of
computation. The idea is to take a starting term, and repeat-
edly apply rules of a term rewrite system (TRS for short)
until one reaches a normal form where no further reduc-
tions are possible. The starting term is the input, and the
final term is a result of the computation. Here, a rule is an
oriented equation between terms ℓ → r , and applying a rule
to a term s means to identify a subterm of s that is an in-
stance of ℓ (s |p = ℓσ for a position p of s), and replace it by a
corresponding instance of r (resulting in s[rσ]p). TRSs arise
in the study of equational reasoning (completion), and are
also used for program analysis. Confluence is a fundamental
property of TRSs, which states that any two terms reachable
from a common starting term can also reach a common tar-
get term. This property is interesting because it ensures that
despite being non-deterministic, normal forms are unique.
Confluence is undecidable in general, but is decidable for
restricted classes of TRSs. For our work, the difference be-
tween ground confluence, where rewrite steps are restricted
to terms that do not contain variables, and confluence, where
terms may also contain variables drawn from an infinite set,
is important. The two notions coincide if the rules of the
TRSs do not contain any variables, i.e., if we are dealing with
a ground TRS.

Dauchet and Tison [6] were the first to prove decidability
of ground confluence for finite, ground TRSs. To this end,
they introduced ground tree transducers (GTTs for short)
consisting of two finite tree automata that, taken together,
represent certain binary relations on ground terms, and
showed that the parallel rewrite relation→∥ R associated with
a ground rewrite system R is accepted by a GTT. Since the
class of relations accepted by GTTs is effectively closed under
inverse, composition, and transitivite closure, ground con-
fluence of R boils down to an inclusion check between GTT
relations (→∥ ∗ −1

R
· →∥ ∗

R
⊆ →∥ ∗

R
· →∥ ∗ −1

R
). The latter is decided

in [6] by an effective transformation from GTT relations

132

https://doi.org/10.1145/3293880.3294098
https://doi.org/10.1145/3293880.3294098
https://doi.org/10.1145/3293880.3294098

CPP ’19, January 14–15, 2019, Cascais, Portugal B. Felgenhauer, A. Middeldorp, T. V. H. Prathamesh, F. Rapp

into finite tree automata, using the well-known result that
inclusion for regular tree languages is decidable.
The decidability result of [6] was revisited by Dauchet,

Tison, Heuillard, and Lescanne in [8], where a different GTT
construction is used to represent rewriting in R, resulting
in a relation in between→∥ R and→∥ ∗

R
, and whose transitive

closure coincides with→∥ ∗
R
.

Comon, Godoy, and Nieuwenhuis [4] were the first to
prove that ground confluence of ground TRSs is decidable
in polynomial time. Felgenhauer [9] presented a cubic time
algorithm.
In [5] Dauchet et al. extended the decision procedure of

[6] to left-linear, right-ground TRSs. (The same result was
obtained earlier by Oyamaguchi [18] using completely dif-
ferent automata-based techniques.) Compared to [6], in [5] a
more direct construction for the transitive closure of GTT re-
lations is given. The latest account is presented in the online
textbook on tree automata [3, Chapter 3].

Whereas for ground TRSs, confluence and ground conflu-
ence coincide, this is no longer true for non-ground TRSs [21].
Ground confluence is known to be decidable for right-ground [14,
16] and shallow, right-linear [13] TRSs but, due to non-
linearity of the left-hand sides of the rewrite rules, the de-
cision procedures use advanced tree automata techniques
which go beyond the scope of this paper.

Our interest is the first-order theory of rewriting. In this
theory properties definable by a first-order formula over
ground rewrite predicates like→ and→∗ are expressible.
This includes ground confluence. In another paper [7], Dauchet
and Tison showed that the first-order theory of rewriting is
decidable for ground TRSs. The decision procedure (extended
to left-linear, right-ground rewrite systems) is implemented
in FORT [19, 21]. Besides GTTs and their closure properties,
RRn relations, which are n-ary relations on ground terms
that allow an encoding as regular tree languages, play a key
role in the decision procedure. Every GTT relation can be
represented as an RR2 relation.

Our long-term aim is to formalize the decision procedure
in the proof assistant Isabelle/HOL such that the output of
FORT can be certified. (To this end, FORT would emit a
sequence of operations on automata that correspond to a
formula; the certifier would then compute the corresponding
automata using a verified implementation.) In this paper we
present a formalization of ground tree transducers and their
closure properties. Furthermore, a number of results on the
interplay between rewriting and ground tree transducers are
formalized, bringing us close to the first formalized proof of
the decidability of confluence of ground TRSs.
Our formalization is based on IsaFoR [22].1 Our own de-

velopment can be found at [CL]/fortissimo/cpp2019/, where
[CL] abbreviates http://cl-informatik.uibk.ac.at. Furthermore
most definitions, theorems, and lemmas directly correspond

1http://cl-informatik.uibk.ac.at/isafor/

to the formalization. These are indicated by the ✔ symbol,
which links to a HTML presentation in the PDF version of
the paper.
A TRS R is ground confluent if the inclusion ↑R⊆ ↓R

holds for all ground terms. Here ↑R = ∗R← · →
∗
R
and ↓R =

→∗
R
· ∗
R
←. The decision procedures for left-linear, right-

ground TRSs mentioned above ([3, 5, 6, 8]) consist of the
following ingredients:

1. A GTT G is constructed from R which accepts a rela-
tion on ground terms in between→∥ R and→∗

R
.

2. GTT relations are effectively closed under inverse,
composition, and transitive closure, allowing ↑R and
↓R to be represented by GTTs G1 and G2.

3. The language inclusion L(G1) ⊆ L(G2) is decidable.
The various decision procedures differ in the details.

In the next section we recall basic concepts of term rewrit-
ing and tree automata. The three items above are discussed
in the subsequent three sections. The discrepancy between
confluence and ground confluence is the topic of Section 6. In
Section 7 we enhance the formalization to obtain an efficient
ground confluence checker for linear, variable-separated
TRSs and a confluence checker for left-linear, right-ground
TRSs. Experimental results are presented in Section 8 and
conclude with mentioning future investigations in Section 9.

2 Preliminaries
We assume familiarity with term rewriting [1] and tree au-
tomata [3].

Let F be a set of function symbols with arities. We assume
that V is an infinite set of variables disjoint from F . The
set of terms T(F ,V) is defined inductively: A term is either
a variable x ∈ V , or f (t1, . . . , tn) where f ∈ F has arity n
and ti ∈ T (F ,V) for 1 ⩽ i ⩽ n. We write Var(t) to denote
the set of variables in t . A term is ground if it contains no
variables; it is linear if each variable occurs at most once in
it. The set of ground terms is denoted by T(F). We write
s ⊴ t if s is a subterm of t . A position is a sequence of natural
numbers (we use ϵ to denote the empty position) that can be
used to address subterms: s |ϵ = s and f (t1, . . . , tn)|i .p = ti |p
if 1 ⩽ i ⩽ n. We write t[s]p for the result of replacing the
subterm at position p of t by s . A variable position of t is
a position p with t |p ∈ V; we write PosV(t) for the set of
variable positions of t . A context C is a term that contains
exactly one hole, denoted by the special constant□ < F . We
writeC[s] for the result of replacing the hole by the term s in
C . A multi-hole context C may have several occurrences of
□, and we writeC[s1, . . . , sn] for the result of replacing the n
holes ofC by s1, . . . , sn from left to right. A substitution σ is a
map from variables to terms. Given a term t and substitution
σ , tσ is defined inductively by xσ = σ (x) if x ∈ V and
f (t1, . . . , tn)σ = f (t1σ , . . . , tnσ).
A term rewrite system (TRS) R is a set of rules ℓ → r

between terms ℓ, r ∈ T (F ,V); ℓ is the left-hand side and

133

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/
http://cl-informatik.uibk.ac.at/isafor/
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/

A Verified Ground Confluence Tool CPP ’19, January 14–15, 2019, Cascais, Portugal

r is the right-hand side of ℓ → r . We do not demand that
variables in the right-hand side do also occur in the left-hand
side, and allow left-hand sides to be variables. A TRS is left-
linear (left-ground) if its left-hand sides are linear (ground); it
is right-linear (right-ground) if the right-hand sides are linear
(ground); it is linear (ground) if it is both left- and right-linear
(-ground). A variable-separate TRS R is one such that the
variables of ℓ and r are disjoint for all ℓ → r ∈ R. A TRS R
gives rise to a rewrite relation→R , where C[ℓσ] →R C[rσ]
for any context C , rule ℓ → r and substitution σ . Given a
(rewrite) relation→, we write←,↔,→=,→+,→∗,→∥ for
the inverse, the symmetric closure, the reflexive closure, the
transitive closure, the reflexive transitive closure, and the
parallel closure of→. The latter is defined inductively by

x ∈ V
x →∥ x

s → t
s →∥ t

(si →∥ ti)
n
i=1

f (s1, . . . , sn) →∥ f (t1, . . . , tn)

Alternatively, we write R− for the inverse of a relation (or
TRS) R. The composition operator for (rewrite) relations is
·. We define convertibility↔∗, joinability ↓ =→∗ · ∗←, and
meetability ↑ = ∗← ·→∗. A relation→ is confluent if ↑ ⊆ ↓
(or, equivalently,↔∗ ⊆ ↓).
Remark 2.1. There are recurring complications in the formal-
ization of the notion of rewriting. IsaFoR provides notions
of rewrite steps →R , parallel steps →∥ R and a few others.
However, these do not restrict the signature (except via the
type of variables and function symbols), so rewriting works
on terms with variables and, typically, many extra function
symbols. Consequently, we have to explicitly restrict rewrit-
ing steps to ground terms and to a particular signature inside
the formalization. In this paper, we follow the style from the
literature which leaves these details largely implicit.
A tree automaton is a triple A = (Q,Qf ,∆), where Q is

a set of states disjoint from F , Qf is a set of final states
(Qf ⊆ Q), and ∆ is a set of transitions, which come in two
shapes: ordinary transitions f (q1, . . . ,qn) → q where f ∈ F
is of arity n and q,q1, . . . ,qn ∈ Q , and ϵ-transitions p → q
with p,q ∈ Q . The transitions form a ground TRS, and we
write→A for→∆. The language accepted by A in state q
is L(A,q) = {t | t ∈ T (F) and t →∗

A
q}, and the language

accepted by A is L(A) =
⋃

q∈Qf
L(A,q). A ground tree

transducer G is a pair of tree automata G = (A,B) over the
same set of states Q . It defines a relation on ground terms,

L(G) = {(s, t) | s, t ∈ T (F) and s
∗
−−→
A
·
∗
←−
B

t}

For tree automata A and A ′ we write A ⊆ A ′ if each
transition ofA is also a transition ofA ′, and each final state
of A is a final state of A ′. For GTTs we define (A,B) ⊆
(A ′,B ′) as A ⊆ A ′ and B ⊆ B ′, but ignoring the final
states of the tree automata.
Proposition 2.1. LetA andA ′ be tree automata and G and
G′ be GTTs. IfA ⊆ A ′ then L(A) ⊆ L(A ′) (part of IsaFoR)
and if G ⊆ G′ then L(G) ⊆ L(G′). ✔

3 Modeling Rewriting by GTTs
Throughout this paperwe deal with linear, variable-separated
TRSs. We use the acronym LV-TRS to denote such TRSs. As
mentioned in the introduction, there are several ways to
associate a GTT G = (A,B) with an LV-TRS R. The one in
[6] uses for each rewrite rule ℓ → r of R a unique interface
state i , common to A and B, and transition rules and states
specific to A (B) that accept all ground instances of ℓ (r) in
state i . No states are shared between different rewrite rules.
The resulting GTT accepts→∥ R . The second way to associate
a GTT with an LV-TRS R originates from Dauchet et al. [5].
The resulting GTT accepts a relation in between→∥ R and
→∗
R
. In [11, Theorem 1] we formalized this result for ground

TRSs. Here we present a variant that accepts→∥ R precisely,
which is achieved by keeping the number of shared states to
a minimum.

Definition 3.1. Let R be an LV-TRS. We denote the set
of left-hand (right-hand) sides of the rewrite rules in R by
lhs(R) (rhs(R)). Given a set of terms T , we write s ⊴ T if s
is a subterm of some term in T . Given s we write ŝ for the
ground term obtained from s by replacing each variable by a
designated (fresh) constant ∗.2 The GTT will have states ⟨ŝ ⟩
for each s ⊴ lhs(R) and [ŝ] for each s ⊴ rhs(R). The set ∆lhs
consists of the transitions

f (⟨t̂1⟩, . . . , ⟨t̂n ⟩) → ⟨ �f (t1, . . . , tn)⟩

for every f (t1, . . . , tn) ⊴ lhs(R) and

f (⟨∗⟩, . . . , ⟨∗⟩) → ⟨∗⟩

for every function symbol f in the signature of R. The set
∆rhs is defined similarly, using rhs(R) instead of lhs(R) for
generating the rules and square brackets [·] rather than an-
gular brackets ⟨·⟩ in states to ensure that ∆lhs and ∆rhs do
not share states. We define the GTT G(R) = (A,B)with ✔

A = ∆lhs ∪ {⟨ℓ̂⟩ → [r̂] | ℓ → r ∈ R} ✔

B = ∆rhs ✔

Theorem 3.2. L(G(R)) =→∥ R ✔

Example 3.3. We illustrate the construction on the LV-TRS
R consisting of the rules a→ f(a), a→ b, and f(x) → g(a, b).
We construct the GTT G(R) = (A,B) with A consisting of
the rules

a→ ⟨∗⟩ f(⟨∗⟩) → ⟨∗⟩ g(⟨∗⟩, ⟨∗⟩) → ⟨∗⟩

b→ ⟨∗⟩ a→ ⟨a⟩ f(⟨∗⟩) → ⟨f(∗)⟩

⟨a⟩ → [f(a)] ⟨a⟩ → [b] ⟨f(∗)⟩ → [g(a, b)]

and B consisting of the rules

a→ [a] f([a]) → [f(a)]

b→ [b] g([a], [b]) → [g(a, b)]

2In the formalization, we use an option type for adding ∗ to the existing
signature, avoiding the problem of creating fresh names.

134

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT.html#lem:gtt_accept_mono
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LV_to_GTT.html#def:trs_to_gtt
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LV_to_GTT.html#def:trs_to_ta_L
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LV_to_GTT.html#def:trs_to_ta_R
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LV_to_GTT.html#lem:gtt_lang_trs_to_gtt

CPP ’19, January 14–15, 2019, Cascais, Portugal B. Felgenhauer, A. Middeldorp, T. V. H. Prathamesh, F. Rapp

p →A q p { r

q { r

p { q q →B r

p { r

f (p1, . . . ,pn) →A p f (q1, . . . ,qn) →B q (p1 { qi)
n
i=1

p { q

Figure 1. ϵ-transitions for GTT composition

Note that we have omitted the following transitions from B,
because they do not contribute to the GTT relation:

a→ [∗] b→ [∗] f([∗]) → [∗] g([∗], [∗]) → [∗]

(This is an instance of trimming, cf. Remark 4.1.) The GTT
G(R) accepts→∥ R ; for example, the parallel step g(f(b), a) →∥ R
g(g(a, b), b) is accepted by g(f(b), a) →∗

A
g(⟨f(∗)⟩, ⟨a⟩) →∗

A

g([g(a, b)], [b]) ∗
B
← g(g(a, b), b).

4 Formalizing GTT Closure Properties
The primary reason why GTT relations are of interest is
because they are closed under inverse, composition and tran-
sitive closure. It is noteworthy that despite the fact that GTT
languages depend on the signature F , the constructions un-
derlying these closure properties only depend on the GTTs
themselves. So for this section, we assume a fixed signature
F such that every function symbol that occurs in the consid-
ered GTTs is an element F . We have formalized these three
closure properties. The inverse is obtained by swapping the
two automata that constitute the GTT. ✔

For composing GTT relations, the following construction
is used.

Definition 4.1. Let G1 = (A1,B1) and G2 = (A2,B2). We
let ◦̂(G1,G2) =

(A1 ∪ A2 ∪ ∆ϵ (B1,A2),B1 ∪ B2 ∪ ∆ϵ (A2,B1)) ✔

where ∆ϵ (A,B) is the set of ϵ-transitions{ defined induc-
tively by the rules in Figure 1. ✔

This is closely related to the construction as used by
Dauchet et al. [7], which defines ∆ϵ in a different, but equiv-
alent way, as shown by the next lemma.

Lemma 4.2. ∆ϵ (A,B) = {(p,q) | p
∗
A
← t →∗

B
q for some

term t ∈ T (F)} ✔

Intuitively, the first two rules of Figure 1 deal with ϵ-
transitions from A and B, whereas the last rule correspond
to a decomposition of t in p ∗

A
← t →∗

B
q into root symbol

and arguments.

Theorem4.3. IfG1 andG2 are GTTs with disjoint states then
L(◦̂(G1,G2)) = L(G1) ◦ L(G2). ✔

Proof. In the formalization, we follow the lines of the proof
in [3, Proposition 3.2.16]. We show that

1. L(G1) ◦ L(G2) ⊆ L(◦̂(G1,G2)) ✔

p →A q p { r

q { r

p { q q →B r

p { r

p { q q { r

p { r

f (p1, . . . ,pn) →A p f (q1, . . . ,qn) →B q (p1 { qi)
n
i=1

p { q

Figure 2. ϵ-transitions for GTT transitive closure

2. L(◦̂(G1,G2)) ⊆ L(G1) ◦ L(G2) ✔

The assumption that G1 and G2 do not share states is only
used in the second statement. □

Definition 4.4. Let G = (A,B). We let

+̂(G) = (A ∪ ∆+(B,A),B ∪ ∆+(A,B)) ✔

where ∆+(A,B) = { is defined inductively by the rules in
Figure 2. ✔

This definition differs from the literature, which is based
on—in essence—iterating the GTT composition construction
until a fixed point is reached. The inductive definition here
benefits both the correctness proofs and the implementation
(see Section 7).

To see the benefit for the correctness proof, note that
the inference rules for the ϵ-transitions for the transitive
closure (Figure 2) differ from those for the GTT composition
(Figure 1) only in the addition of a transitivity rule for {.
This observation allows us to reuse results from the GTT
composition formalization for the transitive closure in the
following lemma.

Lemma 4.5. L(G)+ ⊆ L(+̂(G)) ✔

Proof. It suffices to prove that L(+̂(G)) extends L(G), and
that L(+̂(G)) is transitive.
• For the extension part, note that G ⊆ +̂(G), and hence
L(G) ⊆ L(+̂(G)) as claimed. ✔

• For transitivity, note that ◦̂(+̂(G), +̂(G)) ⊆ +̂(G) (which
Isabelle proves automatically) so that

L(+̂(G)) ◦ L(+̂(G)) = L(◦̂(+̂(G), +̂(G))) ⊆ L(+̂(G)) ✔

using Theorem 4.3 in the first step. □

For the converse inclusion, L(+̂(G)) ⊆ L(G)+, there is no
such shortcut. The following lemma is crucial in establishing
this result.

Lemma 4.6. If (p,q) ∈ ∆+(A,B) then there are terms s ∈
L(A,p), t ∈ L(A,q) with (s, t) ∈ L((B,A))+. ✔

Proof. We write s [L((B,A))]+ t for (s, t) ∈ L((B,A))+.
The proof is by induction on{ in Figure 2. The most inter-
esting case is the transitivity rule. If p { r is derived from
p { q and q { r then by the induction hypothesis,

p
∗
←−−
A

s [L((B,A))]+ t
∗
−→
B

q
∗
←−−
A

u [L((B,A))]+ v
∗
−→
B

r

135

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT.html#gtt_lang_swap
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose.html#def:GTT_comp
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose.html#ind:%CE%94_%CE%B5
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose.html#lem:%CE%94_%CE%B5_def'
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose.html#lem:gtt_comp_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose.html#lem:gtt_comp_only_if
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose.html#lem:gtt_comp_if
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#def:GTT_trancl
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#ind:%CE%94_trancl
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#GTT_trancl_complete
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#GTT_trancl_base
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#GTT_trancl_trans
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#lem:%CE%94_trancl_sound

A Verified Ground Confluence Tool CPP ’19, January 14–15, 2019, Cascais, Portugal

which implies t [L((B,A))] u, and consequently

p
∗
←−−
A

s [L((B,A))]+ t
∗
−→
B

r

as desired. □

Lemma 4.7. If +̂(A,B) = (A+,B+) and s ∈ L(A+,p) then
(s, t) ∈ L((A,B))+ for some term t ∈ L(A,p). ✔

Proof. We proceed by induction on the length of the reduc-
tion s →∗

A+
p. If the last step is an ϵ-transition q → p then

the induction hypothesis yields a ground termu with (s,u) ∈
L((A,B))+ and u ∈ L(A,q). If q → p is a transition from
A thenu ∈ L(A,p), and we conclude by letting t = u; other-
wise,q → pmust come from∆+(B,A), and using Lemma 4.6
we obtain ground terms v and w with v ∈ L(B,q), w ∈
L(A,p), and (v,w) ∈ L((A,B))+. This implies (u,v) ∈
L((A,B)) and thus (s,w) ∈ L((A,B))+ by transitivity. Let-
ting t = w gives the desired result. If the last step is not an
ϵ-transition, then it must be a transition f (p1, . . . ,pn) → p
fromA, and we have s = f (s1, . . . , sn) for suitable s1, . . . , sn .
We apply the induction hypothesis to each argument posi-
tion, resulting in t1, . . . , tn with (si , ti) ∈ L((A,B))+ and
ti ∈ L(A,pi) for 1 ⩽ i ⩽ n. Let t = f (t1, . . . , tn). We have
t ∈ L(A,p). Since L((A,B))+ is transitive and closed un-
der contexts, we obtain (s, t) ∈ L((A,B))∗. Since L((A,B))
is reflexive, we actually have (s, t) ∈ L((A,B))+ as de-
sired. □

Lemma 4.8. L(+̂(G)) ⊆ L(G)+ ✔

Proof. Let G = (A,B) and +̂(G) = (A+,B+). Assume that
(s, t) ∈ L(+̂(G)). Hence there are a multihole context C ,
terms s1, . . . , sn , t1, . . . , tn , and states q1, . . . ,qn such that s =
C[s1, . . . , sn], t = C[t1, . . . , tn], and si ∈ L(A+,qi) and ti ∈
L(B+,qi) for 1 ⩽ i ⩽ n. Applying Lemma 4.7 to +̂(A,B)
and +̂(B,A) yields terms u1, . . . ,un and v1, . . . ,vn with
(si ,ui) ∈ L((A,B))

+, ui ∈ L(A,qi), (ti ,vi) ∈ L((B,A))+,
vi ∈ L(B,qi) for 1 ⩽ i ⩽ n. This implies (ui ,vi) ∈ L((A,B))
and (vi , ti) ∈ L((A,B))+, so that (si , ti) ∈ L((A,B))+ =
L(G)+. Transitivity, reflexivity, and closure under context
of L(G)+ yield (s, t) ∈ L(G)+, as claimed. □

As a corollary of Lemmata 4.5 and 4.8, we obtain correct-
ness of the transitive closure construction.

Theorem 4.9. L(+̂(G)) = L(G)+ ✔

Remark 4.1. We can also simplify GTTs (A,B), restricting
each of the two constituent automata to states that are reach-
able (p is reachable in A if L(A,p) is non-empty) and pro-
ductive (p is productive in A if there are a ground context
C and a common state q of A and B with C[p] →∗

A
q). We

have proved that this procedure does not affect the GTT
relation. ✔

Example 4.10. Continuing Example 3.3, we demonstrate
the transitive closure computation. To this end, we compute

∆+(A,B) using the rules from Figure 2.We list the inferences
to the left, with justifications to the right:

⟨∗⟩ { [a] ⟨∗⟩ ←− a→ [a]

⟨∗⟩ { [b] ⟨∗⟩ ←− b→ [b]

⟨∗⟩ { [f(a)] ⟨∗⟩ ←− f(⟨∗⟩) { f([a]) → [f(a)]

⟨∗⟩ { [g(a, b)] ⟨∗⟩ ←− g(⟨∗⟩, ⟨∗⟩) {∗ g([a], [b])

→ [g(a, b)]

⟨a⟩ { [a] ⟨a⟩ ←− a→ [a]

⟨f(∗)⟩ { [f(a)] ⟨∗⟩ ←− f(⟨∗⟩) { f([a]) → [f(a)]

[b] { [a] [b] ←− ⟨a⟩ { [a]

[f(a)] { [a] [f(a)] ←− ⟨a⟩ { [a]

⟨f(∗)⟩ { [a] ⟨f(∗)⟩ { [f(a)] { [a]

[g(a, b)] { [a] [g(a, b)] ←− ⟨f(∗)⟩ { [a]

[g(a, b)] { [f(a)] [g(a, b)] ←− ⟨f(∗)⟩ { [f(a)]

Further inferences like ⟨∗⟩ { [b] { [a] do not produce new
elements of ∆+(A,B). We do not have to compute ∆+(B,A)
because ∆+(B,A) = ∆+(A,B)

−.
After pruning superfluous transitions, we obtain the GTT
G+(R) = (A+,B+) accepting→∗R , where A+ consists of A
and the additional ϵ-transitions

[b] → ⟨∗⟩ [f(a)] → [g(a, b)] [g(a, b)] → [∗]

[f(a)] → [∗] [f(a)] → [f(∗)]

and B+ consists of B and the ϵ-transitions

[b] → [a] [g(a, b)] → [a] [g(a, b)] → [f(a)]

[f(a)] → [a]

We have a →∗
R
g(f(b), b) which is witnessed by G+(R) as

a→∗
A+
[f(a)] →A+ [g(a, b)]

∗
B+
← g(f(b), b).

Example 4.11. We demonstrate the composition construc-
tion, continuing Example 4.10. In order to compute ↓R as
a GTT relation, we compose the two GTTs (A+,B+) and
(B ′+,A

′
+), where (B ′+,A ′+) is a renamed version of (B+,A+)

obtained by underlining every state, accepting→∗
R
and ∗

R
←.

We compute ∆ϵ (B+,B
′
+) using the inference rules from Fig-

ure 1. We list inferences to the left with their justifications
to the right:

[a] { [a] [a] ←− a −→ [a]

[b] { [b] [b] ←− b −→ [b]

[a] { [b] [a] ←− [b] { [b]

[b] { [a] [b] { [b] −→ [a]

[f(a)] { [f(a)] [f(a)] ←− f([a]) { f([a]) −→ [f(a)]

[a] { [f(a)] [a] ←− [f(a)] { [f(a)]

[f(a)] { [a] [f(a)] { [f(a)] −→ [a]

[g(a, b)] { [g(a, b)] [g(a, b)] ←− g([a], [b]) {∗ g([a], [b])

−→ [g(a, b)]

136

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#GTT_trancl_sound_aux
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#lem:GTT_trancl_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Transitive_Closure.html#lem:GTT_trancl_lang
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT.html#lem:trim_gtt_lang

CPP ’19, January 14–15, 2019, Cascais, Portugal B. Felgenhauer, A. Middeldorp, T. V. H. Prathamesh, F. Rapp

[a] { [g(a, b)] [a] ←− [g(a, b)] { [g(a, b)]

[f(a)] { [g(a, b)] [f(a)] ←− [g(a, b)] { [g(a, b)]

[g(a, b)] { [a] [g(a, b)] { [g(a, b)] −→ [a]

[g(a, b)] { [f(a)] [g(a, b)] { [g(a, b)] −→ [f(a)]

After trimming, we obtain as the result G↓(R) = (A↓,B↓),
where A↓ consists of A+, B+ and the ϵ-transitions

[b] → [a] [g(a, b)] → [f(a)] [f(a)] → [f(a)]

[b] → [b] [f(a)] → [g(a, b)] [g(a, b)] → [a]

[f(a)] → [a] [g(a, b)] → [g(a, b)]

The automatonB↓ is similar toA↓ but with every underlined
state replaced by the corresponding non-underlined state and
vice-versa. This is not surprising because the relation ↓R is
symmetric. We have (g(b, b), b) < L(G↓(R)) as g(b, b) →∗A↓
{g(p,q) | p,q ∈ {⟨∗⟩, [a], [b]}} ∪ {⟨∗⟩, [g(a, b)], [a], [f(a)] }
and b→∗

B↓
{⟨∗⟩, [a], [b]} do not have a common reduct.

The computation of a GTT that accepts ↑R is more tedious.
The set ∆ϵ (A

′
+,A+) has 36 elements. After trimming, we

obtain as the result the GTT (A↓,B↓), whereA↓ consists of
A+, B ′+ and the additional ϵ-transitions

[b] → ⟨∗⟩ [b] → ⟨f(∗)⟩ [g(a, b)] → [b]

[b] → ⟨a⟩ [b] → [f(a)] [g(a, b)] → ⟨f(∗)⟩

[b] → [b] [b] → [g(a, b)] [g(a, b)] → [f(a)]

[f(a)] → ⟨∗⟩ [f(a)] → [f(a)] [g(a, b)] → ⟨∗⟩

[f(a)] → [b] [f(a)] → ⟨f(∗)⟩ [g(a, b)] → ⟨a⟩

[f(a)] → ⟨a⟩ [f(a)] → [g(a, b)] [g(a, b)] → [g(a, b)]

Again, the automaton B↑ is similar toA↑ but with every un-
derlined state replaced by the corresponding non-underlined
state and vice-versa. We have (g(b, b), b) ∈ L(G↑(R)) as
g(b, b) →∗

A↑
g([a], [b]) →∗

A↑
[b] ∗

B↑
← b.

5 GTT Language Inclusion
The traditional method [5, 6] to decide L(G1) ⊆ L(G2) for
GTTs G1 and G2 involves an injective transformation ⊗ from
binary relations on ground terms into sets of ground terms
over an extended signature such that ⊗(R) is regular when-
ever R is a GTT relation.
Let R be an arbitrary binary relation on ground terms in
T(F). Let ⊗ be a fresh binary function symbol. The set ⊗(R)
consists of the (unique) normal forms of the terms ⊗(s, t) for
every pair (s, t) ∈ R with respect to the TRS consisting of all
rewrite rules

⊗(f (®x), f (®y)) → f (⊗(x1,y1), . . . , ⊗(xn,yn))

with f an n-ary function symbol different from ⊗ and pair-
wise distinct variables x1, . . . , xn,y1, . . . ,yn . These rules ex-
tract the common context of two terms.

It is easy to see that ⊗ is effective and injective. For the
proof that ⊗ transforms GTT relations into regular sets
we refer to [5]. We have L(G1) ⊆ L(G2) if and only if
⊗(L(G1)) ⊆ ⊗(L(G2)). Since the latter is decidable, GTT
language inclusion is decidable.
We formalized a different method that orginates in the

decision procedure for the first-order theory of rewriting
for ground TRSs [7], and is implemented in FORT [19]. The
central concept in this procedure, besides GTT, is that of an
RRn relation, which are regular tree languages that encodes
n-tuples of ground terms.

Definition 5.1. Let t1, . . . , tn be a sequence of ground terms.
We define a new ground term ⟨t1, . . . , tn⟩ ✔ by taking as
the set of positions the union of the sets of positions of
t1, . . . , tn , and defining the function symbol at position p by
t1(p) . . . tn(n), where t(p) is the function symbol at position
p of t , or ⊥ if p is not a position of t .

An RRn relation is an n-ary relation R on ground terms
such that the set

{⟨t1, . . . , tn⟩ | (t1, . . . , tn) ∈ R}

is a regular tree language.

Example 5.2. Considering the signature in Example 3.3, we
have ⟨g(f(b), a), g(g(a, b), b)⟩ = gg(fg(ba,⊥b), ab).

Remark 5.1. In order for the encoding to yield terms, we
cannot allow arbitrary sets of positions. Rather, we are work-
ing with so-called tree domains; sets of positions that are
closed under taking prefixes and under replacing a position
p.(i + 1) by p.i . These conditions would be awkward to for-
malize, so instead we model tree domains as ground terms
with only one function symbol, from which the positions
can be computed on demand. ✔

Theorem 5.3. GTT relations are RR2 relations. ✔

Proof. We split the construction into two steps. First we
show that given a GTT (A,B), the relation Gϵ = {(s, t) |
s ∈ L(A,q) and t ∈ L(B,q) for some state q} is an RR2 re-
lation. In a second step, we show that the parallel closure of
an RR2 relation is again an RR2 relation.

For the first step, we use a product construction with states
pq where p is a state of A or ⊥, and q is a state of B or ⊥;
the state ⊥⊥ is not used. The transitions are

f д(p1q1, . . . ,pkqk) → pq

f ⊥(p1⊥, . . . ,pn⊥) → p⊥

⊥д(⊥q1, . . . ,⊥qm) → ⊥q

for all f (p1, . . . ,pn) → p ∈ A and д(q1, . . . ,qm) → q ∈ B,
where k = max(n,m) and pi = ⊥ if n < i ⩽ k and qj = ⊥ if
m < j ⩽ k , and

pq → p ′q for all p → p ′ ∈ A and q ∈ QB ∪ {⊥}
pq → pq′ for all q → q′ ∈ B and p ∈ QA ∪ {⊥} ✔

137

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/RRn_Automata.html#def:gencode
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Ground_Terms.html#typ:gdomain
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_RRn.html#lem:GTT_to_RR2
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/RRn_Automata.html#def:pair_automaton

A Verified Ground Confluence Tool CPP ’19, January 14–15, 2019, Cascais, Portugal

These transitions accept ⟨s, t⟩ in state pq if and only if s ∈
L(A,p) and t ∈ L(B,q). As final states we pick pp with
p ∈ QA ∪ QB . The resulting automaton accepts Gϵ as an
RR2 relation. ✔ ✔ ✔

The second step depends on the signature F . We take the
automaton C from the previous step, and add an extra state
∗ with transitions

{ f f (∗, . . . , ∗) → ∗ | f ∈ F } ∪ {q → ∗ | q ∈ FC} ✔

The resulting automaton accepts the parallel closure of C.
Composing the two steps concludes the proof. ✔

Based on this construction we can check L(G1) ⊆ L(G2)
using a language inclusion check for tree automata, which
already exists as part of IsaFoR.

Corollary 5.4. Ground confluence of LV-TRSs is decidable.

Proof. Let R be an LV-TRS. By Theorems 3.2, 4.3 and 4.9, and
closure of GTT relations under inverse, both

↑R =→∥
∗ −
R · →∥

∗
R

and
↓R =→∥

∗
R · →∥

∗ −
R

are GTT languages. Using Theorem 5.3, we obtain corre-
sponding RR2 relations. The proofs are based on effective
constructions (see also Section 7). We conclude because lan-
guage inclusion for regular tree languages is decidable. □

6 Confluence vs Ground Confluence
Since tree automata and GTTs operate on ground terms,
the formalized results of Sections 3–5 show the decidabil-
ity of ground confuence for LV-TRSs. In general, ground
confluence is not equivalent to confluence. In [20, 21] two
sufficient conditions are presented for the equivalence of
ground confluence and confluence.

Lemma 6.1. A ground-confluent TRS R over a signature F
is confluent if R is ground or F is monadic.

Here monadic means that there are no function symbols
of arity two or higher. We formalized the proofs presented
in [20]. ✔ ✔
Confluence is equivalent to ground-confluence for left-

linear, right-ground TRSs after a fresh constant is added to
the signature [20, 21]. We slightly extended and formalized
this result, opening the way for a verified confluence tool
for right-ground LV-TRSs.

Theorem 6.2. Let R be a right-ground LV-TRS over a signa-
ture F and let c < F be a constant. Then R is confluent on
T(F ,V) if and only if R is ground confluent on T(F ∪ {c}).
✔

Below we present a sketch of the formalized proof.

Proof sketch. Wewrite Fc for F∪{c}. For the if direction, we
show that confluence is preserved under signature extension.
Consider the substitution σc that maps every variable to c .
To show confluence, it suffices to show existence of a map φ
from T(Fc) to T(F ,V) such that t = φ(t)σc andφ preserves
reachability. ✔ ✔ ✔ Such a map φ can be constructed
by replacing every occurrence of c in a ground term with a
fixed variable x . ✔
For the only if direction we closely follow the proof in

[20]:
• if tσ →∗

R
u then t →∗

R
u ′ and u ′σc = u for some term

u ′ ∈ T (F ,V),
• if t →∗

R
u then u(p) = t(p) for all p ∈ PosV(u).

for all terms t ∈ T (F ,V). The second property relies on R
being right-ground. ✔

Remark 6.1. The proof of the if direction in [20] relies on
the fact that confluence is preserved under signature ex-
tension. Signature extension is a special case of modular-
ity (Toyama [23]), a celebrated result in term rewriting which
has recently been formalized in the context of the more gen-
eral layer framework [12]. Because we deal with LV-TRSs
whose left-hand sides may be variables we cannot reuse the
formalization and hence we opted for a simple direct proof.

The following example shows that adding one extra con-
stant is not enough to prove confluence of an LV-TRS by
ground confluence.

Example 6.3. Consider the LV-TRS R = {a → x} over
the signature F = {a}. It is not confluent, because x R←
a→R y with distinct variables x andy is a non-joinable peak.
However, it is ground-confluent (a→R a is the only possible
rewrite step), even after adding a single fresh constant b
(a →R a and a →R b are the only rewrite steps). Ground
confluence is destroyed after adding a second fresh constant
c, which results in the non-joinable peak b R← a→R c.

The following new result shows that two fresh constants
suffice to reduce confluence to ground-confluence for LV-
TRSs.

Theorem 6.4. Let R be an LV-TRS over a signature F and
let c,d < F be constants. Then R is confluent on T(F ,V) if
and only if R is ground confluent on T(F ∪ {c,d}).

Proof. We write Fcd for F ∪ {c,d}. We first prove the only if
direction, so assume that R is confluent on T(F ,V). Con-
sider s ↔∗

R
t over T(Fcd). We need to show s ↓R t over

T(Fcd). Let x,y ∈ V be distinct variables. We uniformly
replace c by x and d by y to obtain a conversion s ′ ↔∗

R
t ′

over T(F ,V), noting that these constants can only appear
in the substitution or context of a rewrite step, never in the
left-hand or right-hand side of the applied rewrite rules.
By assumption, s ′ and t ′ are joinable over T(F ,V). Be-
cause rewriting is closed under substitutions, this implies

138

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/RRn_Automata.html#lem:to_ta_res_pair_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_RRn.html#def:GTT_to_RR2_root
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_RRn.html#lem:GTT_to_RR2_root
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_RRn.html#def:parallel_closure_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_RRn.html#lem:parallel_closure_automaton
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Ground_Confluence.html#lem:CR_by_GCR
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Monadic_Confluence.html#lem:CR_GCR_eq
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence.html#lem:CR_GCR_equiv
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence.html#def:inv_const
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence.html#lem:inv_cons_sigma
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence.html#lem:inv_const_rstep
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence.html#lem:GCR_implies_CR
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence.html#lem:CR_implies_GCR

CPP ’19, January 14–15, 2019, Cascais, Portugal B. Felgenhauer, A. Middeldorp, T. V. H. Prathamesh, F. Rapp

s = s ′σ ↓R t ′σ = t over T(Fcd), where σ maps x to c and
every other variable to d .

For the if direction, assume that R is confluent on T(Fcd)
and consider s ↔∗

R
t overT(F ,V). Wemay assumewithout

loss of generality that this conversion has a root step from
left to right. In that case, there is a rule ℓ → r ∈ R and a
substitution σ with s ↔∗

R
ℓσ →R rσ ↔∗

R
t . Let σc (x) = c

and σd (x) = d be substitutions mapping all variables to c and
d respectively. Because the variables of ℓ and r are disjoint,
there is a rewrite step ℓσσc → rσσd , and hence there exists a
conversion sσc ↔∗R tσd over T(Fcd). By assumption, sσc ↓R
tσd over T(Fcd). We claim that this implies s →∗

R
· ∗
R
← t . If

there is no root step in sσc →∗R ·
∗
R
← tσd , then neither s nor

t can be a variable (since c,d < F) so the root symbols of s
and t must be the same function symbol, and we can recurse
to the arguments. If there is a root step ℓ′σ ′ →R r ′σ ′, we
may assume without loss of generality that it is in the left
part of the valley, i.e.,

sσc
∗
−→
R
ℓ′σ ′ −→

R
r ′σ ′

∗
−→
R
·
∗
←−
R

tσd (1)

We claim that we can transform (1) into a valley

s
∗
−→
R
ℓ′τ −→

R
r ′τ

∗
−→
R
·
∗
←−
R

t (2)

over T(F ,V), using the same rules at the same positions.
To convert sσc = s0 →R s1 →

∗
R
sn = ℓ

′σ ′, we start from the
left, letting s ′0 = s . For each rewrite step si = C[ℓ′′σ ′′]p →
C[r ′′σ ′′]p = si+1 define τ ′(x) for x ∈ Var(ℓ′′) by matching
s ′i |p against ℓ′′ and τ ′(x) for x ∈ Var(r ′′) by the result of
replacing the constants c and d in σ ′′(x) by a fixed variable
z. Because Var(ℓ′′) ∩ Var(r ′′) = ∅, τ ′ is well-defined. We
obtain a rewrite step s ′i = s

′
i [ℓ
′′τ ′]p →R s ′i [r

′′τ ′]p and define
s ′i+1 = si [r

′′τ ′]p . This takes care of the initial part sσc →∗R
ℓ′σ ′ of the valley (1). The part r ′σ ′ →∗

R
· ∗
R
← tσd can be

written as r ′σ ′ = tm
∗
R−
← · ∗

R
← t0 = tσd , noting that R−

is an LV-TRS. This sequence is treated like sσc →∗R ℓ
′σ ′

before, starting from the right, obtaining terms t ′0, . . . , t
′
m .

Finally the substitution τ is obtained by matching s ′n against
ℓ′ and t ′m against r ′, which succeeds because of linearity and
variable-separation. This yields the desired valley (2):

s = s ′0
∗
−→
R

s ′n = ℓ
′τ −→ r ′τ = t ′m

∗
←−−
R−
·
∗
←−
R

t ′0 = t □

7 Verified Ground Confluence Checker
We rely on Isabelle/HOL’s code generation mechanism [15]
to obtain executable code from our formalization. However,
most of our definitions cannot be used directly for code
export. We rely on the Automatic Data Refinement frame-
work [17] to semi-automatically convert our definitions in
terms of sets to definitions that use concrete data types
(mostly red-black trees and lists) to represent them.

As a simple example, we have implemented a function
that maps the states of an automaton to consecutive natural
numbers. The definition is given in Listing 1. This method

ta_nat A : ✔
qs ← op_set_to_list (ta_states A)
let qm = (map_of (zip qs [0..<length qs]))
return (fmap_states_ta (the ◦ qm) A)

Listing 1. Abstract implementation of ta_nat

obtains the states as a distinct list of states in an unspeci-
fied order using the op_set_to_list operation, and then
renames those states to 0, 1, etc. in the order that they appear
in that list.
The concrete definition is obtained by automatic refine-

ment. We specify that we want to refine the tree automata to
their default implementation type provided by IsaFoR, andwe
leave the actual function definition open using a schematic
variable (indicated by a question mark, thus: ?f). ✔

The concrete implementation is inferred from the abstract
implementation by taking the concrete implementation types
into account. For example, the concrete datatype for the set of
states of the input automaton will be a red-black tree, and the
automatic refinement framework has a lemma stating that
for red-black trees, so op_set_to_list can be implemented
by a function returning the list of keys of the tree.

This is just a glimpse of how automatic refinement works,
and is a fairly straightforward case. Even in this simple case
we had to provide some auxiliary lemmas in order to get an
implementation of map_of. (This is the reason why we talk
of semi-automatic refinement above.)
We now change focus to our treatment of inductively

defined sets as in Figure 1. We currently have two inductively
defined sets in our formalization, andwe anticipate that there
will bemore, for example in the formalization of the finiteness
predicate Fin provided by FORT [19].
Such inductive sets, if they are finite, can be computed

by a saturation procedure. We provide an abstraction for
that, which essentially does Horn inference without negative
atoms. The point of the abstraction is that it separates a
common iterative or recursive part of saturation procedures
(which gives rise to non-trivial correctness proofs) from the
enumeration of inferences without premises (H0, see below),
and inferences induced by a single new conclusion (H1, also
below), which usually are set comprehensions that can be
computed in a very straightforward way.

Definition 7.1. A positive Horn inference system is given
by a set of atoms A (with elements α , β , . . .) and set H of
inference rules of the shape α1 ∧ · · · ∧ αn → β . We write
⊤ → β if the list of premises is empty. ✔

Each positive Horn inference system defines a predicateH
on atoms inductively by the rule

α1 ∧ · · · ∧ αn → β ∈ H H(αi) for 1 ⩽ i ⩽ n

H(β)

139

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/TA_Simplify_Impl.html#def:ta_nat
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/TA_Simplify_Impl.html#lem:ta_nat_impl
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Inference.html#loc:horn

A Verified Ground Confluence Tool CPP ’19, January 14–15, 2019, Cascais, Portugal

saturate_rec(α, I): ✔
if α ∈ I then

return I
else

J ← {α } ∪ I
for all β ∈ H1(α, I) do

J ← saturate_rec(β, J)
return J

saturate: ✔
I ← ∅
for all α ∈ H0 do

I ← saturate_rec(α, I)
return I

Listing 2. Implementing positive Horn inference

Example 7.2. Consider the inference rules from Figure 1. To
obtain a positive Horn inference system for given automata
A and B, letA = Q×Q whereQ is the set of states occurring
in A or B. The set H consists of the following inference
rules: ✔

• (p, r) → (q, r) if p →A q and r ∈ Q ,
• (p,q) → (p, r) if q →B r and p ∈ Q , and
• (p1,q1) ∧ · · · ∧ (pn,qn) → (p,q) if f (p1, . . . ,pn) →A p
and f (q1, . . . ,qn) →B q.

These Horn clauses correspond directly to Figure 1 with
p { q replaced by (p,q). It is easy to see that the resulting
H satisfies (p,q) ∈ H if and only if p { q. ✔

We have formalized an abstract marking algorithm for pos-
itive Horn inference systems. In order to use this algorithm,
the user has to provide implementations for two building
blocks,H0 andH1, which are given by

H0 = {β | ⊤ → β ∈ H} ✔

H1(α,B) = {β | α1 ∧ · · · ∧ αn → β ∈ H and
α ∈ {α1, . . . ,αn} ⊆ B ∪ {α }} ✔

In essence,H0 computes inferenceswithout premises, whereas
H1(α,B) provides all possible conclusions involving a par-
ticular premise α together with other premises fulfilled by B.
These two ingredients are sufficient to implement a simple
marking algorithm as in Listing 2. Most of the work is per-
formed by saturate_rec, whose purpose is to add a newly
inferred atom α to an accumulator I of previously inferred
atoms, taking into account all further inferences that can
be made using α and elements of I . It relies onH1 for com-
puting the set of atoms that can be inferred using β at least
once and elements of I for other premises. The main method
saturate iterates over the elements ofH0 and adds them to
the accumulator I using the saturate_rec helper, starting
with I = ∅. We formalized soundness of saturate, and of
refinements to lists and red-black trees. ✔ ✔ ✔

Example 7.3. Continuing from Example 7.2, we note that
the computation ofH0 andH1 can often be done efficiently
without ever computing the full set H . For the inference
rules from Figure 1, we obtain the following descriptions:

H0 = {(p,q) | f () →A p ∧ f () →B q}

H1((p,q),B) = {(r ,q) | p →A r } ∪ {(p, r) | q →B r } ∪ H ′1

whereH ′1 consists of all pairs (p
′,q′) such that

f (p1, . . . ,pn) →A p ′ f (q1, . . . ,qn) →B q′

with (pi ,qi) ∈ B ∪ {(p,q)} for all 1 ⩽ i ⩽ n, and (p,q) =
(pi ,qi) for some 1 ⩽ i ⩽ n. ✔ ✔

This last component is slightly complicated (but not much
more complicated than the definition of H itself). On the
other hand, the first two components ofH1 make no refer-
ence to Q , which is a welcome simplification.

Remark 7.1. Isabelle/HOL has a predicate compiler [2] that
produces executable code for certain inductive sets, but it is
quite restricted; basically, it works by searching all possible
derivation trees to arrive at a conclusion. This easily leads
to non-termination when there are infinitely many such
trees, which often happens. For example, using the rules in
Figure 1, if we want to check whether 1 { 2 and there is
an ϵ-transition 1 →A 1, then the first inference rule is a
possible candidate for the last inference step, leading us to
check 1 { 2 recursively, ad infinitum.

In our formalization, GTT compositions and GTT transi-
tive closure are implemented on top of positive Horn infer-
ence. The other building blocks are derived directly from the
definitions, using automatic and some manual refinement to
obtain concrete implementations.

Using these building blocks, we provide an abstract imple-
mentation of the ground confluence check for LV-TRSs ✔ ,
and prove that it is correct ✔ . From this we obtain a re-
finement working on concrete data types ✔ . Based on this
implementation, we provide a method for checking ground
confluence of LV-TRSs called

lv_gcr_procedure_wrap ✔

which does input validation, i.e., it checks whether the input
is an LV-TRS. The function returns MAYBE if input validation
fails, and YES or NO otherwise. We also define a confluence
check for left-linear, right-ground TRSs,

llrg_cr_procedure_wrap ✔

incorporating Theorem 6.2 from the previous section.

Theorem7.4. The procedures lv_gcr_procedure_wrap and
llrg_cr_proecedure_wrap are sound, that is:
• if lv_gcr_procedure_wrapF R returns YES (NO), then
R is (non-)ground-confluent over F , ✔

• if llrg_cr_procedure_wrap F R returns YES (NO),
then R is (non-)confluent over F . ✔

140

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Autoref.html#def:saturate_rec
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Autoref.html#def:saturate_impl
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose_Impl.html#def:%CE%94_%CE%B5_rules
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose_Impl.html#lem:%CE%94_%CE%B5_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Inference.html#def:infer0
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Inference.html#def:infer1
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Autoref.html#lem:saturate_impl_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Autoref.html#lem:saturate_list_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Horn_Autoref.html#lem:saturate_rbt_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose_Impl.html#lem:%CE%94_%CE%B5_infer0
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/GTT_Compose_Impl.html#lem:%CE%94_%CE%B5_infer1
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Ground_Confluence_Impl.html#def:lv_gcr_procedure
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Ground_Confluence_Impl.html#lem:lv_gcr_procedure_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Ground_Confluence_Impl.html#lem:lv_gcr_procedure_rbt
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Ground_Confluence_Impl.html#def:lv_gcr_procedure_wrap
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence_Impl.html#def:llrg_cr_procedure_wrap
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/Ground_Confluence_Impl.html#lem:lv_gcr_procedure_wrap_sound
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/GCR/LLRG_Confluence_Impl.html#lem:llrg_cr_procedure_wrap_sound

CPP ’19, January 14–15, 2019, Cascais, Portugal B. Felgenhauer, A. Middeldorp, T. V. H. Prathamesh, F. Rapp

0

20

40

60

80

0 10 20 30 40 50 60
time (s)

pr
ob
le
m
ss

ol
ve
d

✔ no yes
FORT no yes

tool yes no timeout total

✔ 35 79 7 (60s) 121
36 79 6 (600s) 121

FORT 37 81 3 (60s) 121
38 83 0 (600s) 121

Figure 3. Results for left-linear, right-ground COPS

We have not yet formalized completeness, though on pa-
per we know that the functions terminate and return YES
or NO for all valid inputs, i.e., for all LV-TRSs in the case of
lv_gcr_procedure_wrap, and for left-linear, right-ground
TRSs in the case of llrg_cr_procedure_wrap. It is worth
noting that the Isabelle/HOL code export does not guarantee
termination, so having a formalized completeness proof is
less valuable than it may seem.

Remark 7.2. Theorem 7.4 marks the boundary between veri-
fied and trusted code in our formalization. In order to obtain
an actual tool, we export the two functions as Haskell code.
The untrusted code is a simple wrapper that uses the WST
format parser from the haskell-rewriting library [10] for
parsing TRSs, and does a straightforward conversion from
strings to lists of natural numbers before passing the TRS to
the verified code.3

8 Assessment
Our ultimate goal is to verify outputs of FORT for the full
first-order theory of rewriting by replaying the underlying
automata constructions using verified code, so the perfor-
mance of these constructions is important. We have tested4
the ground confluence decision procedure on the 121 left-
linear, right-ground COPS.5 In Figure 3 we compare the run-
times of the formalized version (indicated by ✔) to those of
FORT. The formalized version is slower. There are a number
of reasons why the speed differs, for example:

3For example, the ground confluence tool wrapper can be found at
[CL]/fortissimo/cpp2019/code/GCR_LV.html.
4We used an i7-5930K (12 hyperthreads, 3.5GHz) CPU and 32GB of RAM.
5COnfluence ProblemS, http://project-coco.uibk.ac.at/problems/

0
10
20
30
40
50
60
70

0 10 20 30 40 50 60
time (s)

pr
ob
le
m
ss

ol
ve
d

IWC no yes

tool yes no timeout total

✔ 25 67 6 (60s) 98
26 67 5 (600s) 98

IWC 17 45 36 (60s) 98
22 54 22 (600s) 98

FORT 28 68 2 (60s) 98
29 69 0 (600s) 98

CSI 29 69 0 (1s) 98

Figure 4. Experimental results for ground COPS

• The tree automata language inclusion check as formal-
ized in IsaFoR needlessly does a subset construction
for both automata. Since L(A) ⊆ L(B) can be refor-
mulated as L(A)∩L(B) = ∅, no subset construction
for the first automaton is required.

• FORT uses semi-confluence (←·→∗ ⊆ ↓) for checking
confluence, resulting in smaller GTTs for the peak.

• FORT does not implement GTT composition, but in-
stead relies on the RRn machinery to express joinabil-
ity.

• The implementation language is different, Java for
FORT, and Haskell for the formalized code.

In Figure 4 we compare our current implementation to
the preliminary version presented at IWC 2018 [11]. That
version was restricted to ground TRSs, so in order to make
the comparison fair, we restrict the data set to the 98 ground
COPS. We also include FORT and CSI in the comparison.
Note thatCSI implements a cubic time decision procedure [9]
for (ground) confluence of ground TRSs, with negligible run-
time on all ground Cops; we omit it from the graph for that
reason. The new formalized version is much faster than the
one presented at IWC. The main reason for this is the in-
corporation of trimmming before the conversion of GTTs to
RR2 automata.

141

http://hackage.haskell.org/package/haskell-rewriting
http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/code/GCR_LV.html
http://project-coco.uibk.ac.at/problems/

A Verified Ground Confluence Tool CPP ’19, January 14–15, 2019, Cascais, Portugal

topic LoI

Fundamentals 933
GCR/CR 1483
GTT/RR2 4093
Execution 2257

total 8766

Figure 5. Size of formalization

On the accompanying website we also provide results for
confluence.6 These are not very different from the results
for ground confluence; the extra constant required by Theo-
rem 6.2 has almost no effect on the runtime except when a
system is non-confluent, which allows the language inclu-
sion check to terminate early.

An overview of the size of the formalization (measured in
Lines of Isar) is given in Figure 5. We categorized the theories
roughly by purpose.

• Fundamentals: This covers some preliminaries not
covered in IsaFoR, including definitions of ground terms,
GTTs and GTT relations, and some miscellaneous aux-
iliary facts.

• GCR/CR: This material concerns the relation between
ground confluence and confluence. See also Section 6.

• GTT/RR2: Here we prove the TRS to GTT conversion
and GTT closure properties from Sections 3 and 4. In
addition we also have constructions for cylindrifica-
tion and projection, which will be important for deal-
ing with the full first-order theory of ground rewriting.

• Execution: This coversHorn inference and executable
code for all building blocks for the ground confluence
decision procedure presented in this paper.

Our formalization is based on IsaFoR (and consequently,
on Isabelle/HOL). This is a classical logic, so in contrast
to, for example, Coq, we cannot rely on code extraction to
obtain executable code; instead we use code export, which
uses definitions of functions and datatypes as the basis for
producing code in a functional language. This code generator
is part of the trusted code base. We believe that aside from
reducing the trusted code base, code extraction from proofs is
inferior to code generation from explicit definitions, because
proofs tend to favor simple arguments that correspond to
very naive and slow algorithms. So even in Coq, we would
probably end up writing our desired code as a definitions
and then do a separate correctness proof.

6[CL]/fortissimo/cpp2019/experiments-cr/tools.php

9 Future Work
There are a number of tasks ahead of us. First of all, we plan
to create an AFP7 entry covering GTTs and the construc-
tions described in this paper, including the direct language
inclusion construction from [5]. We will also work on im-
proving the performance of the existing constructions, where
language inclusion is the obvious starting point.
Another big task will be covering the full first-order the-

ory of rewriting [7], for which we will need basic first-order
logic (which we hope to borrow from an existing formaliza-
tion) and its connection to projection and cylindrification;
furthermore, we need executable code for these construc-
tions.
Last but not least, we plan to formalize Theorem 6.4 in

order to obtain a confluence tool that covers LV-TRSs in full
generality.

Acknowledgments
This work is supported by the Austrian Science Fund (FWF)
project P30301.

References
[1] F. Baader and T. Nipkow. 1998. Term Rewriting and All That. Cambridge

University Press. https://doi.org/10.1017/CBO9781139172752
[2] S. Berghofer, L. Bulwahn, and F. Haftmann. 2009. Turning Inductive

into Equational Specifications. In Proc. 22nd TPHOLs (LNCS), Vol. 5674.
131–146. https://doi.org/10.1007/978-3-642-03359-9_11

[3] H. Comon,M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. 2008. Tree Automata Techniques and
Applications. http://www.grappa.univ-lille3.fr/tata

[4] H. Comon, G. Godoy, and R. Nieuwenhuis. 2001. The Confluence of
Ground Term Rewrite Systems is Decidable in Polynomial Time. In
Proc. 42nd FOCS. 298–307. https://doi.org/10.1109/SFCS.2001.959904

[5] M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. 1990. Decidability
of the Confluence of Finite Ground Term Rewriting Systems and of
Other Related Term Rewriting Systems. I&C 88, 2 (1990), 187–201.
https://doi.org/10.1016/0890-5401(90)90015-A

[6] M. Dauchet and S. Tison. 1985. Decidability of Confluence for Ground
Term Rewriting Systems. In Proc. 5th FCT (LNCS), Vol. 199. 80–84.
https://doi.org/10.1007/BFb0028794

[7] M. Dauchet and S. Tison. 1990. The Theory of Ground Rewrite Systems
is Decidable. In Proc. 5th LICS. 242–248. https://doi.org/10.1109/LICS.
1990.113750

[8] M. Dauchet, S. Tison, T. Heuillard, and P. Lescanne. 1987. Decidability
of the Confluence of Ground Term Rewriting Systems. In Proc. 2nd
LICS. 353–359.

[9] B. Felgenhauer. 2012. Deciding Confluence of Ground Term Rewrite
Systems in Cubic Time. In Proc. 23rd RTA (LIPIcs), Vol. 15. 165–175.
https://doi.org/10.4230/LIPIcs.RTA.2012.165

[10] B. Felgenhauer, M. Avanzini, and C. Sternagel. 2013. A Haskell Library
for Term Rewriting. CoRR abs/1307.2328 (2013). http://arxiv.org/abs/
1307.2328

[11] B. Felgenhauer, A. Middeldorp, T. V. H. Prathamesh, and F. Rapp. 2018.
Towards a Verified Decision Procedure for Confluence of Ground Term
Rewrite Systems in Isabelle/HOL. In Proc. 7th IWC. 46–50. Available
at http://cl-informatik.uibk.ac.at/iwc/iwc2018.pdf.

7Archive of Formal Proofs, https://www.isa-afp.org/

142

http://cl-informatik.uibk.ac.at/software/fortissimo/cpp2019/experiments-cr/tools.php
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-642-03359-9_11
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1109/SFCS.2001.959904
https://doi.org/10.1016/0890-5401(90)90015-A
https://doi.org/10.1007/BFb0028794
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.4230/LIPIcs.RTA.2012.165
http://arxiv.org/abs/1307.2328
http://arxiv.org/abs/1307.2328
http://cl-informatik.uibk.ac.at/iwc/iwc2018.pdf
https://www.isa-afp.org/

CPP ’19, January 14–15, 2019, Cascais, Portugal B. Felgenhauer, A. Middeldorp, T. V. H. Prathamesh, F. Rapp

[12] B. Felgenhauer and F. Rapp. 2018. Layer Systems for Confluence
– Formalized. In Proc. 15th ICTAC (LNCS), Vol. 11187. 1–19. https:
//doi.org/10.1007/978-3-030-02508-3_10

[13] G. Godoy and A. Tiwari. 2005. Confluence of Shallow Right-Linear
Rewrite Systems. In Proc. 14th CSL (LNCS), Vol. 3634. 541–556. https:
//doi.org/10.1007/11538363_37

[14] G. Godoy, A. Tiwari, and R. Verma. 2004. Characterizing Confluence
by Rewrite Closure and Right Ground Term Rewrite Systems. AAECC
15 (2004), 13–36. https://doi.org/10.1007/s00200-004-0148-6

[15] F. Haftmann and T. Nipkow. 2010. Code Generation via Higher-Order
Rewrite Systems. In Proc. 10th FLOPS (LNCS), Vol. 6009. 103–117. https:
//doi.org/10.1007/978-3-642-12251-4_9

[16] L. Kaiser. 2005. Confluence of Right Ground Term Rewriting Systems
is Decidable. In Proc. 8th FoSSaCS (LNCS), Vol. 3441. 470–489. https:
//doi.org/10.1007/978-3-540-31982-5_30

[17] P. Lammich. 2013. Automatic Data Refinement. In Proc. 4th ITP (LNCS),
Vol. 7998. 84–99. https://doi.org/10.1007/978-3-642-39634-2_9

[18] M. Oyamaguchi. 1987. The Church-Rosser Property for Quasi-Ground
Term Rewriting Systems. Technical Report. Faculty of Engineering,
Mie University, Japan.

[19] F. Rapp and A. Middeldorp. 2016. Automating the First-Order Theory
of Left-Linear Right-Ground Term Rewrite Systems. In Proc. 1st FSCD
(LIPIcs), Vol. 52. 36:1–36:12. https://doi.org/10.4230/LIPIcs.FSCD.2016.
36

[20] F. Rapp and A. Middeldorp. 2016. Confluence Properties on Open
Terms in the First-Order Theory of Rewriting. In Proc. 5th IWC. 26–30.
Available at http://cl-informatik.uibk.ac.at/iwc/iwc2016.pdf.

[21] F. Rapp and A. Middeldorp. 2018. FORT 2.0. In Proc. 9th IJCAR (LNAI),
Vol. 10900. 81–88. https://doi.org/10.1007/978-3-319-94205-6_6

[22] R. Thiemann and C. Sternagel. 2009. Certification of Termination
Proofs using CeTA. In Proc. 22nd TPHOLs (LNCS), Vol. 5674. 452–468.
https://doi.org/10.1007/978-3-642-03359-9_31

[23] Y. Toyama. 1987. On the Church-Rosser Property for the Direct Sum
of Term Rewriting Systems. J. ACM 34, 1 (1987), 128–143. https:
//doi.org/10.1145/7531.7534

143

https://doi.org/10.1007/978-3-030-02508-3_10
https://doi.org/10.1007/978-3-030-02508-3_10
https://doi.org/10.1007/11538363_37
https://doi.org/10.1007/11538363_37
https://doi.org/10.1007/s00200-004-0148-6
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-540-31982-5_30
https://doi.org/10.1007/978-3-540-31982-5_30
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
http://cl-informatik.uibk.ac.at/iwc/iwc2016.pdf
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1145/7531.7534
https://doi.org/10.1145/7531.7534

	Abstract
	1 Introduction
	2 Preliminaries
	3 Modeling Rewriting by GTTs
	4 Formalizing GTT Closure Properties
	5 GTT Language Inclusion
	6 Confluence vs Ground Confluence
	7 Verified Ground Confluence Checker
	8 Assessment
	9 Future Work
	Acknowledgments
	References

