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Abstract

This short paper summarizes an ongoing work on the formalization of
Mac Lane’s comparison theorem for the (co)Kleisli construction in the
Coq proof assistant.

1 Adjoint Functors and Monads

Definition 1.1. Let ¥ and Z be two categories. A hom-adjunction F 4 G: 9 — € is a triple (F, G, ) such
that F': € — 2, G: 9 — € are functors and ¢ = (px, 4)x, 4 is a family of bijections, natural in X and A,
where X is an object of ¥ and A is an object of 2:

vx, a: Homg(FX, A) N Homy (X, GA) (1)

Let F 4 G: 92 — % be a hom-adjunction. By instantiating A = FX in (1) we obtain nx: X - GFX in ¢
which is the image of idrpx by px, rx. Symmetrically, by setting X = GA, we obtain e4: FGA - Ain 9
which is the image of idga by ¢5}47A. As shown in [ML71, Ch. 1V, §1], n: Idy = GF and ¢: FG = Idy are
natural transformations. This gives us the following proposition by [ML71, Ch. VI, §1] and [ML71, Ch. IV, §1,
Theorem 1].

Proposition 1.2. A hom-adjunction F 4 G: 2 — €, with associated family of bijections ¢ as in Definition 1.1,
determines a monad on € and a comonad on 2 as follows:

o The monad (T,n, 1) on € has endofunctor T = GF: € — €, unit n: Ide = T where nx = px, px (idpx)
and multiplication p: T? = T such that ux = G(epx).

e The comonad (D,e,8) on 2 has endofunctor D = FG: 9 — 2, counit ¢: D = Idy where ¢4 =
@5,147A(Z‘dGA) and comultiplication §: D = D? such that 64 = F(nga)-

In addition, we have:
ox, af =Gfonx: X - GA foreach f: FX - A (2)
w;{}Ag:sAOFg:FX—)Aforeachg:X—>GA. (3)

Proposition 1.3. Fach monad (T,n, ) on a category € determines a Kleisli category ér and an associated
hom-adjunction Fpr 4 Gp: ¢r — € as follows:
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We give an overview below, please find the related details in [ML71, Ch. VI, §5].

e The categories € and €p have the same objects and there is a morphism f°: X — Y in €p for each
morphism f: X — TY in €. So that there is a bijection defined as:

o

(pr)x,v: Homeg, (X,Y) — Home (X, TY)
fref

For each object X in €r, the identity arrow is idx = h*: X — X in G where h = nx: X =>TX in €.

The composition of a pair of morphisms f>: X — Y and ¢*: Y — Z inGr is given by the Kleisli composition:
FofP=h:X—Z whereh=pzoTgof: X -TZ iné.

The functor Fp: € — €r is the identity on objects. On morphisms,

FTf:(T]yOf)b, foreach f: X =Y in¥. (4)
The functor Gp: €1 — € maps each object X in € to TX in €. On morphisms,

GT(gl’) = py oTg, for each ¢": X =Y in 6. (5)

Theorem 1.4. (The comparison theorem for the Kleisli construction) Let F 4 G: Z — € be a hom-adjunction
and let (T, n, n) be the associated monad on €. Then, there is a unique comparison functor L: € — 2 such
that GL = Gp and LFp = F, where 61 is the Kleisli category of (T, n, u), with the associated hom-adjunction
Fr4Gr: 61 — €.

Proof. Let us first assume that L: 47 — 2 is a functor satisfying GL = Gp and LFpr = F. And, let
Ox y: Homg, (FrX,Y) — Home(X,GrY) be a bijection associated to the hom-adjunction Fr 4 Gr. Simi-
larly, let ¢x vy : Homg(FX,Y) =N Hom (X, GY) be a bijection associated to the hom-adjunction F' 4 G. Since

both units of Fr 4 Gy and F - G are the unit n of the monad (T, 7, u) by [ML71, Ch. IV, §7, Proposition 1],
we obtain the commutative diagram below:

0
Homcf'r (FTXa Y) L HOT)’kg(X, GTY)
Lrpx,y = 1dx,Gpy
Homg(LFrX,LY) Homy(X,GrY)

Il I
Homo(FX,LY) —"" . Home(X,GLY)
Therefore, Lp,xy = ¢)_(,1LY of0xy. This formula ensures that the functor L is unique. Using the Equa-

tion (2) in Proposition 1.2, we have: QX,yfb =Grflonx: X — GrY, for each f*: Fp X = X — Y in %p. Since
Grf® = py oTf in €, for each f>: X — Y in €7, by Equation (5), we have Oxy f> = py o Tfonx: X —



GrFrY = GrY. Thanks to the naturality of n, we get 9X7yfb = py onry o f. The monadic axiom
wy o nry = idry yields 6’X7yfb = f: X — GrY. Presumed that Gy = GL and since Fr is the identity
on objects, we have 9)(,yfb = f: X —» GLY and LFrY = LY = FY. Now, by Equation (3) in Propo-
sition 1.2, we obtain '(/))_(,1LYf = ey o Ff = epy o Ff = zp}}FYf for each f: X — GFY in ¥. Hence

Yxiny Oxy f*) = ¥x'py f =epy o Ff.

In other words: given a functor L satisfying GL = G and LFr = F, then it must be such that LX = FX for
each object X in € and Lf’ = epy o Ff in 2 for each f°: X — Y in €p. We additionally need to prove that
L: Cr — 9, characterized by LX = X and Lf’ = ey o Ff, is a functor satisfying GL = Gr and LFp = F:

1. For each X in %r, due to the fact that idy = (nx)” in %7, we have L(idx) = L((nx)’) = erx o Fnx.
By [ML71, Ch. IV, §1, Theorem 1], we get epx o Fx = idpx = idpx. For each pair of morphisms
f’: X - Yandg’: Y — Zin %r, by Kleisli composition, we obtain L(g’o f°) = epz 0 FGepz 0o FGFgoFf.
Since ¢ is natural, we have epz o Fgoepy o F'f which is L(g") OL(fb) in . Hence L: 61 — 2 is a functor.

2. For each object X in €, LX = FX in 2 and GLX = GFX =TX = GprX in ¥. For each morphism
' X =Y in%p, Lf* = epy oFf in D by definition. Hence, GLf’ = Gepy o GFf. Similarly, Equation (5)
gives Grf* = Gepy o GFf. We get GLf° = Gpf° for each mapping f°. Thus GL = Gr.

3. Fr is the identity on objects, thus LFrX = LX = FX. For each morphism f: X — Y in %, we have
Frf = (ny o f)’ in €r, by definition. So that LFrf = L(ny o f)* = epy o Fnjy o Ff. Due to € and 7 being
natural, we have epy o Fny = idpy yielding LFr f = F f for each mapping f. Therefore LFpr = F. O

A specialized version of the theorem is used by the author to model some formal logics in order to handle
computational side effects in his thesis [Ekil5]. An alternative definition of adjunctions is given in the following.

Definition 1.5. Let ¥ and Z be two categories. The functors F': € — 2 and G: ¥ — € form an adjunction
FHG: 2 — € iff there exists natural transformations n: Idy = GF and €: FG = Idg such that:

erpx o Fnx =idpx for each X in ¥ (6)
G€X oNgx = idGX for each X in 9 (7)

Lemma 1.6. Definition 1.5 <= Definition 1.1.
See the proof in [Hen08, §3, Theorem 3.5].

2 Coq formalization

In a Coq implementation', we represent category theoretical objects such as functors, natural transformations,
monads and adjunctions with data structures having single constructors and several fields, namely classes. This
is no different than the approaches by Gross et al. [GCS14], Timany et al. [TJ16]° and John Wiegley”®. To our
knowledge, none of them include the formalization of Mac Lane’s comparison theorem. Also, our formalization
makes use of proof irrelevance and functional extensionality axioms. These being said, let us start with the
formalization of Definition 1.1:

Class HomAdjunction {C D: Category} (F: Functor D C) (G: Functor C D): Type £ mk_Homad j
{ ob: @Isomorphism (FunctorCategory (D~op X C) CoqCatT) (BiHomFunctorC F G) (BiHomFunctorD F G) .

An instance of the HomAd junction class is defined as an isomorphism of bifunctors in the category of functors. In
the above snippet, the notation D~ op denotes the dual of the category D, and CoqCatT represents the category of
Sets. BiHomFunctorC implements the hom-functor Home (X, GA) while BiHomFunctorD stands for the functor
Homg(FX, A) in (1). On the other hand, Definition 1.5 looks like:

Class Adjunction {C D: Category} (F: Functor C D) (G: Functor D C): Type = mk_Adj

{ wunit : NaturalTransformation (@Id catC) (Compose_Functors F G);
counit: NaturalTransformation (Compose_Functors G F) (@Id D);
obl : V a, (trans counit (fobj F a)) o fmap F (trans unit a) = Qidentity D (fobj F a);

ob2 : V a, (fmap G (trans counit a)) o trans unit (fobj G a) = @identity C (fobj G a) }.



https://github.com/ekiciburak/ComparisonTheorem-MacLane
https://github.com/amintimany/Categories
https://github.com/jwiegley/category-theory

where unit and counit correspond to n and ¢ as well as proof obligations ob1 and ob2 implement Equations (6)
and (7) respectively. This means that to build an adjunction out of given categories and functors, one needs
to provide two natural transformations satisfying the obligations. In the script, fmap is a field of the Functor
type class that maps arrows while fobj is another field of the same class mapping objects of a domain category;
trans is a filed of the NaturalTransformation class representing the component of the natural transformation
at a given object. Id is the identity functor.

Formalizing in Coq Propositions 1.2, 1.3 and Theorem 1.4, we use Adjunction class instances instead of the
ones of HomAdjunction. This is indeed not a problem thanks to Lemma 1.6. We have it certified in Coq:

Lemma adjEql: V (C D: Category) (F: Functor C D) (U: Functor D C), Adjunction F U — HomAdjunction F U.

Lemma adjEq2: V (C D: Category) (F: Functor C D) (U: Functor D C), HomAdjunction F U — Adjunction F U.

We move on with the formalization of Proposition 1.2:

Theorem adj _mon : V {C D: Category} (F: Functor C D) (U: Functor D C), Adjunction F U — Monad C (Compose_Functors F U).

Theorem adj_comon: V {C D: Category} (F: Functor C D) (U: Functor D C), Adjunction F U — coMonad D (Compose_Functors U F).

See Adjunctions.v file for the proofs of so far stated theorems/lemmas. We implement Proposition 1.3 in three
steps starting with the fact that every monad gives raise to a Kleisli Category whose objects are the ones of
the base category C and morphisms are of the form £*: b — Ta for each £: b — a in C. Notice also that, nothing
more than a design criteria, @arrow C ab implements a Coq type of maps defined from b to a in the category C:

Definition Kleisli_Category (C: Category) (T: Functor C C) (M: Monad C T): Category.
Proof. unshelve econstructor.

- exact (Qobj C).

- intros a b. exact (Qarrow C (fobj T a) b).

Defined.

Once obtaining this category, we can then claim that there is a special adjunction, namely Kleisli adjunction,
between the base category C and the Kleisli Category. We implement the candidate adjoint functors as in
Equations (4) and (5). Below, we only show the way they map objects and arrows respectively.

Definition LA {C D: Category} (F: Functor C D) (G: Functor D C) (T £ Compose_Functors F G) (M: Monad C T)

(CT £ (Kleisli_Category C T M)): Functor C CT.
Proof. unshelve econstructor; simpl.
- exact id.
- intros a b f. exact (tramns b o f).

Defined.

Definition RA {C D: Category} (F: Functor C D) (G: Functor D C) (T £ Compose_Functors F G) (M: Monad C T)

(CT £ (Kleisli_Category C T M)): Functor CT C.
Proof. unshelve econstructor; simpl.
- exact (fobj T).
- intros a b g. exact (trans b o fmap T g).

Defined.

Above three definitions are implemented in the source Monads.v. We then prove that these candidate functors
do actually form an adjunction:

Theorem mon_kladj: ¥ {C D: Category} (F: Functor C D) (G: Functor D C) (T £ Compose_Functors F G) (M: Monad C T)
(FT 2 LAF G M) (GT £ RA F G M), Adjunction FT GT.

Now, we can state Theorem 1.4 in Coq.



Theorem ComparisonMacLane: V {C D: Category} (F: Functor C D) (G: Functor D C) (Al: Adjunction F G),
let M 2 (@adj_mon C D F G A1) in let CT £ (Kleisli_Category C (Compose_Functors F G) M) in

let FT 2 (LA F G M) in let GT £ (RA F G M) in let A2 2 (mon_kladj F G M) in
3 L: Functor CT D, Compose_Functors FT L = F A Compose_Functors L G = GT.

Notice that proving this statement, we only get the existence of a comparison functor L satisfying the given
properties but not that it is unique. Unicity proof is actually the work in progress. Also, we have formalized the
dual of this theorem again leaving the unicity proof of comparison functor aside. See Coq proofs of two theorems
above and the dual of the comparison theorem in the source Adjunctions.v.

3 Conclusion

We have formalized in Coq the comparison theorem without proving the uniqueness of comparison functor L.
This uniqueness (also for the dual case) is the next property in our queue to formalize. Once getting these done,
we plan to continue with implementing in Coq the proof of Beck’s theorem which is a variant of comparison
theorem where %7 being the Eilenberg-Moore category of algebras of the monad T. The theorem claims that the
comparison functor L is now an isomorphism.
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