Certifying Confluence of Quasi-Decreasing
Strongly Deterministic Conditional Term
Rewrite Systems

Christian Sternagel®™) and Thomas Sternagel ™

University of Innsbruck, Innsbruck, Austria
{christian.sternagel,thomas.sternagel}@uibk.ac.at

Abstract. We formalize a confluence criterion for the class of quasi-
decreasing strongly deterministic conditional term rewrite systems in
Isabelle/HOL: confluence follows if all conditional critical pairs are join-
able. However, quasi-decreasingness, strong determinism, and joinability
of conditional critical pairs are all undecidable in general. Therefore,
we also formalize sufficient criteria for those properties, which we incor-
porate into the general purpose certifier CETA as well as the confluence
checker ConCon for conditional term rewrite systems.

1 Introduction

In the area of equational reasoning canonicity—that is, termination together
with confluence—plays an important role towards deciding equations with
respect to equational theories and for avoiding redundant computations and
nondeterminism. In the presence of powerful methods and tools for prov-
ing termination [1,11,17,18,31,33], the remaining issue is to also establish
confluence.

For plain term rewrite systems (TRSs), this issue was settled early on by
Newman’s Lemma [22], stating that any terminating relation is confluent iff
it is locally confluent. Then, by the Critical Pair Lemma [15,16], local conflu-
ence reduces to joinability of all critical pairs, which in turn, can be decided by
exhaustive rewriting, due to termination.

However, for many applications plain TRSs are either inconvenient or not
expressible enough, leading to several extensions of the base formalism. The one
we are interested in here is conditional term rewriting. Two prominent areas
where conditional rewriting is employed are the rewriting engines of modern
proof assistants (like Isabelle’s simplifier [23]) and functional(-logic) program-
ming with where-clauses (like Haskell [21] and Curry [2]).

This work is supported by FWF (Austrian Science Fund) project P27502.

© The Author(s) 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 413-431, 2017.
DOI: 10.1007/978-3-319-63046-5_26



414 C. Sternagel and T. Sternagel

Example 1. As a first example, consider the following Haskell program, which
computes the minimum of a given list

of natural numbers. Below, we give a | min (x:[1) =X
straightforward translation into a con- | min (x:xs) | x <y =X
ditional term rewrite system Ry, with | otherwise =y
six rules that serves as our running where y = min xs
example.
min(cons(z, nil)) — = (1) z <0 —false (4)
min(cons(z, zs)) — = < min(zs) ® y, © < y ~ true (2) 0 <s(y) —true (5)

min(cons(z, zs)) — y < min(zs) ~ y, z <y ~ false (3) s(z) <s(y) »x<y (6)

Issue. Alas, even in the presence of termination, confluence is in general still
undecidable for conditional term rewrite systems (CTRSs). While Avenhaus
and Lorfa-Sdenz [4] gave a critical pair criterion for quasi-reductive and strongly
deterministic CTRSs: joinability of all conditional critical pairs (CCPs) implies
confluence; joinability of CCPs is undecidable in general, due to the inherent
complexities of conditional rewriting. This lead to the development of sufficient
criteria that are implemented in confluence tools for CTRSs like ConCon [27].

Such tools ultimately aim at automatic (program) verification. But they are
programs themselves, and rather complex ones at that. So why should we trust
them? This consideration lead to the introduction of certification in the area of
term rewriting [8,9,30]. Here, the output of an automated tool—the certificate—
is checked by a formally verified certifier that is code generated from a formal-
ization inside a proof assistant. This approach was already quite successful for
termination and confluence of TRSs, where state-of-the-art certifiers cover more
than 80% of all generated certificates in the respective tool competitions [3,13].

For confluence of CTRSs, not so many techniques are known and even less
are formalized and certifiable.

Contribution and Summary. In Sect. 3, we formalize the CCP criterion of Aven-
haus and Lorfa-Séenz [4, Theorem 4.2] (AL for short) and, based on our earlier
work [28], strengthen it from quasi-reductivity to quasi-decreasingness.

Moreover, to certify confluence of quasi-decreasing and strongly deterministic
CTRSs, we formalize the variant of AL replacing joinability of all CCPs by the
requirement that every CCP is either unfeasible! or context-joinable (Sect.4).
Both unfeasibility and context-joinability rely on the notion of contextual rewrit-
ing, which we formalize together with the crucial lemma that contextual rewriting
implies conditional rewriting for satisfying substitutions, a result that was stated
without proof by Avenhaus and Loria-Séenz [4, Lemma 4.2]. Unfeasibility further
employs strong irreducibility, which like strong determinism is an undecidable
property. Thus, we formalize these two properties together with the two sufficient
and decidable criteria of absolute irreducibility and absolute determinism.

! This is a technical term (see Definition 3) introduced by Avenhaus and Lorfa-
Séenz [4] and should not be confused with infeasibility.



Certifying Confluence of Quasi-Decreasing Strongly Deterministic 415

Along the way, we identify and fix some problems in proofs and definitions
(of absolute irreducibility, contextual rewriting, and unfeasibility) and provide
a (not entirely obvious) proof for [4, Lemma 4.2]. We further adapt the original
proof of AL to the new definitions and extend it by infeasibility.

In Sect.5, we point out some challenges concerning certification. Then, in
Sect. 6, we give an overview of all the check functions that are new in CeTA.
In Sect. 7, we evaluate our contribution through experiments on the confluence
problems database (Cops) [10]. Finally, we conclude in Sect. 8.

This work substantially contributes to the greater effort of making ConCon
100% certifiable by formalizing all of its methods. Our formalization is part of
the formal IsaFoR library and supported by version 2.29 of its accompanying
certifier CETA [30]. Both IsaFoR and CeTA are freely available online at

http://cl-informatik.uibk.ac.at/isafor/

2 Preliminaries

We assume familiarity with the basic notions of (conditional) term rewrit-
ing [5,24], but shortly recapitulate terminology and notation that we use in the
remainder. Given an arbitrary binary relation a_,, we write o, o™, and o*, for
its inverse, its transitive closure, and its reflexive transitive closure, respectively.
We use V(+) to denote the set of variables occurring in a given list of syntactic
objects, like terms, rules, etc. Given a term ¢, we write Pos(t) for the set of posi-
tions in t and t|, with p € Pos(t) for the subterm of ¢ at position p. We write s[t],
for the result of replacing s|, by ¢ in s. We say that terms s and t unify, written
s ~ t, if so = to for some substitution o. A substitution o is R-normalized if
o(z) is an R-normal form for all variables x. We call a bijective variable sub-
stitution m a renaming or permutation, and denote its inverse by 7. For two
substitutions o, 7 and a set of variables V' we write 0 = 7 [V] if o(z) = 7(z) for
all x € V. We write o7 for the composition of ¢ and 7 where (o7)(z) = o(x)T.
A term t is strongly R-irreducible if to is an R-normal form for all R-normalized
substitutions o. A strongly deterministic oriented 3-CTRS (SDTRS) R is a set
of conditional rewrite rules of the shape { — r < ¢ where ¢ and r are
terms and ¢ is a possibly empty sequence of pairs of terms (called conditions)
S$1 & t1,...,8, &~ tly, satisfying: ¢ is not a variable (CTRS), V(r) C V(¢,¢)
(3-CTRS), V(si) C V(l,t1,...,t;i—1) for all 1 < ¢ < n (DTRS), and ¢; is
strongly R-irreducible for all 1 < i < n (SDTRS). We sometimes label rules
like p: £ - r < c. Forarule p:{ — r < c of an SDTRS R the set of extra
variables is defined as EV(p) = V(c) —V(¢). Given an SDTRS R, extended TRSs
R, are inductively defined for each level n > 0

Ro=2
Ruy1={loc —-ro |l —r<«<ceR and so —5 toforalls=~tecc}

where —x, denotes the rewrite relation of the (unconditional) TRS R, that is,
the smallest relation — satisfying t[¢o], — ¢[ro], whenever £ — ris arule in R,,.


http://cl-informatik.uibk.ac.at/isafor/

416 C. Sternagel and T. Sternagel

We write s =, t if we have s =, ¢t and s — t whenever s —, t for some
n > 0. We say that a substitution o satisfies a sequence of conditions c if for all
s~ t € cwe have so —J to. Two variable-disjoint variants of rules {; — 7 < ¢;
and ¢y — 72 <= co in R such that ¢, |, is not a variable and ¢1|,u = ¢24 with most
general unifier (mgu) p, constitute a conditional overlap. A conditional overlap
that does not result from overlapping two variants of the same rule at the root
gives rise to a conditional critical pair (CCP) rip = l1[ro]pp < c1p, cop.

Example 2. The CTRS Ruyin from Example 1 has 6 CCPs, 3 modulo symmetry:

x &~ x < min(nil) =y, z < y ~ true (1,2)
zxy < min(il) 2y, z <y~ false (1,3)
xRy < min(zs) = 2z, x < z & true, min(zs) &y, x < y =~ false (2,3)

A CCP u = v < cis said to be infeasible if its conditions are not satisfied by
any substitution. Moreover, a CCP is joinable if uo | vo for all substitutions o
that satisfy ¢. The topmost part of a term that does not change under rewriting
(sometimes called its “cap”) can be approximated for example by the tcap func-
tion [12]. Informally, tcap(x) for a variable x results in a fresh variable, while
tcap(t) for a non-variable term ¢t = f(¢1,...,t,) is obtained by recursively com-
puting u = f(tcap(t1),...,tcap(t,)) and then asserting tcap(t) = u in case u does
not unify with any left-hand side of rules in R, and a fresh variable, otherwise.
It is well known that tcap(s) # t implies non-reachability of ¢ from s. We denote
the proper superterm relation by > and define =g = (= U )T for any order >.
If > is a reduction order, then an SDTRS R is quasi-reductive with respect to
= if for every substitution o and every rule { — r < s = t1,...,8, = t, in
R we have that sjo = tjo for 1 < j < ¢ implies lo >4 s;0 for all 1 < i < n,
and sjo = tjo for 1 < j < n implies o > ro. An SDTRS R is quasi-decreasing
if there exists a well-founded order > such that > = >4, —»% C >, and for all
rules { — r < s; = ty,...,8, = t, in R, all substitutions o, and 1 < ¢ < n, if
sj0 —% tjo for all 1 < j < 4 then o >~ s;0. Quasi-reductivity implies quasi-
decreasingness—a fact that is available in IsaFoR.

3 Confluence of Quasi-Decreasing SDTRSs

The main result of Avenhaus and Loria-Saenz is the following theorem:

Theorem 1 ([4, Theorem 4.1]). Let the SDTRS R be quasi-reductive with
respect to >=. Then R is confluent iff all CCPs are joinable.

That all CCPs of a CTRS R (no need for strong determinism or quasi-
reductivity) are joinable if R is confluent is straightforward. Thus, we concen-
trate on the other direction. Our formalization is quite close to the original proof.
The good news is: we could not find any errors (besides typos) in the original
proof but as is often the case with formalizations there are places where the paper



Certifying Confluence of Quasi-Decreasing Strongly Deterministic 417

! /

t [ Si+1T 01 Si+102
NN yoN N
t_. IH .’UJ ti+10'i IH Si+10'£ t7;+10'é
(a) (b)

Fig. 1. Applying the induction hypothesis.

proof is vague or does not spell out the technical details in favor of readability.
For example, we heavily rely on an earlier formalization of permutations [14] in
order to formalize variants of rules up to renaming. In contrast, the change from
quasi-reductivity to quasi-decreasingness was rather smooth.

Below, we give our main theorem and walk through the formalized proof.

Theorem 2. Let the SDTRS R be quasi-decreasing with respect to >=. Then R
1s confluent if all CCPs are joinable.

Proof. Assume that all critical pairs are joinable. We consider an arbitrary peak
t 3+ s =% u and prove ¢t |g u by well-founded induction with respect to .

By induction hypothesis (IH) we have that for all terms tg, ¢1,ts such that
5 st tg and t1 < tg —7 t2 there exists a join t; —% - g+ ta.

If s =1tor s = u then t and w are trivially joinable and we are done.
So we may assume that the peak contains at least one step in each direction:
tp—t re—s—-pu —% u

Let us show that ¢ |g «' holds. Then ¢t |z u follows by two applications
of the IH, as shown in Fig.la. Assume that s = Cl101], —r C[rio1], =t
and s = D[ly03]g —r Dlraos]g = u’ for rules p; : {1 — 11 < ¢ and ps :
ly — r9 < co in R, contexts C and D, positions p and ¢, and substitutions
o1 and oy such that uo; —% voy for all w = v € ¢; and woy —% wvoo for
all u = v € cy. There are three possibilities: either the positions are parallel
(p || q), or p is above ¢ (p < q), or ¢ is above p (¢ < p). In the first case
t' |z u' holds because the two redexes do not interfere. The other two cases are
symmetric and we only consider p < ¢ here. If s > s|, = 101 then s >4 {101
(by definition of ¢ ) and there exists a position r such that ¢ = pr and so we
have the peak ro1 A« 101 —% £101[r202], which is joinable by the IH. But
then the peak t' = s[ri01]p g s[lio1]p =5 s[l101[r202],]q = ¥ is also joinable
(by closure under contexts) and we are done. So we may assume that p = e and
thus s = £1071. Now, either ¢ is a function position in #; or there exists a variable
position ¢’ in £; such that ¢’ < ¢. In the first case we either have



418 C. Sternagel and T. Sternagel

1. a CCP which is joinable by assumption or we have

2. a root-overlap of variants of the same rule. Unlike in the unconditional case
this could lead to non-joinability of the ensuing critical pair because of the
extra-variables in the right-hand sides of conditional rules. We have p1m = po
for some permutation 7. Moreover, s = £101 = ¢505 and we have

n oy =02 [V(l2)] (7)

We will prove 01 |g xog for all z in V(ps). Since t' = rio1 = rom~ o
and v/ = roog this shows t' |g . Because R is terminating (by quasi-
decreasingness) we may define two normalized substitutions o} such that

_ * * .
L xoy and xos = xo) for all variables . (8)

We prove zo] = zo for x € EV(p2) by an inner induction on the length
of co = 81 &~ t1,...,8, = t,. If po has no conditions this holds vacuously
because there are no extra variables. In the step case the inner induction
hypothesis (IH;) is that zo} = zo) for x € V(s1,t1,...,8:,t;) — V(f2) and
we have to show that xo] = xol for © € V(s1,t1,..., 841, tir1) — V(o). If
x € V(s1,t1,...,58i,t;, Si+1) we are done by the TH; and strong determinism
of R. So assume x € V(t;41). From strong determinism of R, (7) and (8), and
the TH; we have that yo{ = yo}, for all y € V(s;41) and thus s; 107 = s;410%.
With this we can find a join between ¢;,107 and t;110% by applying the TH
twice as shown in Fig. 1b. Since t;41 is strongly irreducible and o} and o}, are
normalized, this yields t; 1107 = t;4105 and thus zo} = zd.

3. We are left with the case that there is a variable position ¢’ in £1 such that
g = ¢'r’ for some position 7’. Let = be the variable ¢1|,. Then zo1|,» = €309,
which implies o1 —% x01[r202],». Now let 7 be the substitution such that
7(2) = xoy1[reos], and 7(y) = o1(y) for all y # z, and 7/ some normalization,
that is, y7 —% y7’ for all y. Moreover, note that

Yo % y7 for all y. (9)

We have v = l101[re02]q = lio1[xT]y —% 617, and thus v/ —% ¢17. From
(9) we have rio1 —% 7 and thus ¢ = rioy —% ri7’. Finally, we will
show that ¢;7/ —x r17’, concluding the proof of ¢ |z u'. To this end, let
s; ~ t; € c1. By (9) and the definition of 7" we obtain s;01 —% t;o1 =% t;7’
and s;01 —% ;7. Then s;7" | t;7' by IH and also s;7" —% t;7/, since ¢; is
strongly irreducible. O

4 Certification

There are some complications for employing Theorem 2 in practice. Quasi-
decreasingness, strong irreducibility, and joinability of CCPs are all undecidable
in general. For quasi-decreasingness we fall back to the sufficient criterion that a
deterministic 3-CTRS is quasi-decreasing if its unraveling (a transformation to



Certifying Confluence of Quasi-Decreasing Strongly Deterministic 419

an unconditional term rewrite system) is terminating. This result was formalized
by Winkler and Thiemann [32] and is already available in IsaFoR. A sufficient
condition for strong irreducibility is absolute irreducibility:

Definition 1. A term t is absolutely R-irreducible if none of its non-variable
subterms unify with any variable-disjoint variant of left-hand sides of rules in
the CTRS R. A DTRS is called absolutely deterministic (or ADTRS for short)
if for each rule all right-hand sides of conditions are absolutely R-irreducible.

The proof of the following lemma [4, Lemma 4.1(a,b)] is immediate.
Lemma 1. For a termt and a CTRS R:

— Ift is absolutely R-irreducible, then t is also strongly R-irreducible.
- If R is absolutely deterministic, then R is also strongly deterministic. a

We replace joinability of CCPs by infeasibility [26] (already part of IsaFoR)
together with two further criteria which rely on contextual rewriting.

Definition 2. Consider a set C of equations between terms which we will call
a context. First we define a function = on terms such that t is the term t where
each variable x € V(C) is replaced by a fresh constant T. Moreover, let C denote
the set C where all variables have been replaced by fresh constants @. For a CTRS
R we can make a contextual rewrite step, denoted by s —r ¢ t, if we can make
a conditional rewrite step with respect to the CTRS RUC from s to t.

We formalized soundness of contextual rewriting [4, Lemma 4.2] as follows:
Lemma 2. If s =% ot then so —% to for all substitutions o satisfying C'.

This lemma is stated as obvious without proof by Avenhaus and Loria-Séenz.
However, we deem the strengthened statement (x) below intricate enough to
warrant a full proof (since without this strengthening, as far as we can tell, the
outermost induction fails).

Proof. Consider the auxiliary function [t],, which substitutes each Skolem con-
stant T in t by o(z), that is, it works like applying a substitution to a term,
but to Skolem constants instead of variables. Note that [{], = to whenever
V(t) C V(C). Now we show by induction on n that

§ ~ruc,, t implies [sle =%, [t]o (%)

for any o satisfying C'. The base case is trivial. In the inductive step we have a
rule { — r < c € RUC, a position p, and a substitution 7 such that s|, = ¢7,

t = s[r7]p, and ur *);(?,Ué,n vr forallu v € c. If £ — r < c € R, then we

obtain [u7], — R [vT], for all w = v € ¢ by IH. Then s —

*

RUC,n+1
shown by induction on the context s[-],. Otherwise, { — r <= ¢ € C' and thus c is

t can be



420 C. Sternagel and T. Sternagel

empty, /7 = £, and r7 = r, since C is an unconditional ground TRS. Moreover,
there is a rule ¢/ — 1’ € C (thus also V(¢,7') C V(C)) such that ¢ = ¢ and
r’ = r. Again, the final result follows by induction on s[-],,.

Assume s —g ¢ t. Then 5 —RUTC.n 7 for some level n. Let ¢ denote the
extension of ¢ where all variables x in ¢ (that is, not just those in V(C)) are
replaced by fresh constants Z. Note that ¢t = (£)(\z.Z) for every term t. But
then also 5 —RUC.n t since conditional rewriting is closed under substitutions.

Further note that [t], = to for all t. Thus taking 5 and ¢ for s and ¢ in (x)
we obtain so —7% ,, to. Since we just established the desired property for single
contextual rewrite steps it is straightforward to extend it to rewrite sequences. O

The above lemma is the key to overcome the undecidability issues of condi-
tional rewriting. For example, for joinability of CCPs the problem is that a single
joining sequence (as is usual in certificates for TRSs) does not prove joinability
for all satisfying substitutions. However, contextual rewriting has this property.

Now we are able to define the two promised criteria for CCPs that employ
contextual rewriting: context-joinability and unfeasibility.

Definition 3. Let s =t < ¢ be a CCP induced by an overlap between variable-
disjoint variants {1 — 11 < c¢1 and by — 19 <= co of rules in R with mgu p. We
say that the CCP is unfeasible if we can find terms u, v, and w such that (1)
for all o that satisfy ¢ we have lipo = uo, (2) u —% . v, (3) u =% . w, and
(4) v and w are both strongly irreducible and v % w. Moreover, we call the CCP
context-joinable if there exists some term u such that s =% . u and t —% . u.

Ezample 3. Consider the CTRS R, s consisting of the two rules
last(cons(z,y)) — @ <= y ~ nil last(cons(z, y)) — last(y) < y =~ cons(z, v)

having the CCP z = last(y) < ¢ with ¢ = {y ~ nil, y & cons(z,v)}. This CCP is
unfeasible because for all satisfying substitutions o we have last(cons(z,y))o >
YO, Y = Rpmc CONS(2,0), y —%, . nil, and both cons(z,v) and nil are strongly
irreducible and not unifiable. Now, look at the arbitrary CCP z ~ min(nil) < ¢
with ¢ = {min(nil) ~ z}. Since z —% . = and min(nil) —% . z it is context-
joinable (regardless of the actual CTRS R).

Due to Lemma 2 above, context-joinability implies joinability of a CCP for
arbitrary satisfying substitutions. The rationale for the definition of unfeasibility
is a little bit more technical, since it only makes sense inside the proof (by
induction) of the theorem below. Basically, unfeasibility is defined in such a way
that unfeasible CCPs contradict the confluence of all >-smaller terms, which we
obtain as induction hypothesis.

In the original paper the definition of quasi-reductivity requires its order to be
closed under substitutions. This property is used in the proof of [4, Theorem 4.2].
By a small change to the definition of unfeasibility we avoid this requirement for
our extension to quasi-decreasingness.

We are finally ready to state a concrete version of Theorem 2:



Certifying Confluence of Quasi-Decreasing Strongly Deterministic 421

Theorem 3. Let the ADTRS R be quasi-decreasing with respect to »=. Then R
s confluent if all CCPs are context-joinable, unfeasible, or infeasible.

Proof. Unfortunately, we cannot directly reuse Theorem 2 and its proof, since
we need our sufficient criteria in the induction hypothesis. However, the new
proof is quite similar. It only differs in case (1), where we consider a CCP:

1. If the CCP is context-joinable, we obtain a join with respect to contextual
rewriting which we can easily transform into a join with respect to R by
an application of Lemma 2 because we have a substitution satisfying the
conditions of the CCP.

2. If the CCP is unfeasible, we obtain two diverging contextual rewrite
sequences. Again since there is a substitution satisfying the conditions of the
CCP we may employ Lemma 2 to get two diverging conditional R-rewrite
sequences. Because {10 =g ty we can use the induction hypothesis to get
a join between the two end terms. But from the definition of unfeasibility
we also know that the end points are not unifiable (and hence are not the
same) and cannot be rewritten (because of strong irreducibility), leading to
a contradiction.

3. Finally, if the CCP is infeasible, then there is no substitution that satisfies its
conditions, contradicting the fact that we already have such a substitution. O

Ezxample 4. The CTRS Rpyin from Example 1 is actually an ADTRS and also
quasi-decreasing. To conclude confluence of the system it remains to check its
CCPs which are listed in Example 2. The first one, (1,2), is trivially context-
joinable because the left- and right-hand sides coincide. Unfortunately, the meth-
ods used in ConCon are not able to handle either of the CCPs (1,3) and (2,3).
So we are not able to conclude confluence of R, at this point.

We give a transformation on CTRSs which is often helpful in practice:

Definition 4 (Inlining of Conditions). Given a conditional rewrite rule p :
{—r<s xty,...,8, &t, and an index 1 < i < n such that t; = x for some
variable x, let inl;(p) denote the rule resulting from inlining the ith condition of
p, that is, { = ro <= sj0x=t,..., 810 & t;_1,5410 X tiy1,...,5,0 = t, with
o={x+ s;}.

Lemma 3. Let p € R and s = z be the ith condition of p. Whenever we have
x &V, s, t1, ... tim1,tiy1, ..., tn), then the relations —% and —%,, where R’ =
(R\ {p}) U{inl;(p)}, coincide.

Proof. We show —RnC—R and —g’,C—x, by induction on the level n.
For n = 0 the result is immediate. Consider a step s = C[lo] =g nt1 Clro] =t
employing rule p (for the other rules of R the result is trivial). Thus, uoc —% , vo
for all w =~ v € c. In particular so —% , xo. Thus, using the IH, for each
condition u = v of inl;(p) we have 1 < j < n such that uo = s;{z > s}o —%
$;0 —Ri n t;o0 = vo. Hence, {6 —rspni1 7{x — s}o —%, ., ro and thus

X
8§ =R/ my1 t-



422 C. Sternagel and T. Sternagel

Now, consider a step s = C[lo] =g/ ny1 Clr{z — s}o] employing rule inl;(p).
Together with the IH this implies that uoc —% ,, vo for all conditions u ~ v in
inl;(p). Let 7 be a substitution such that 7(x) = so and 7(y) = o(y) for all
y # x. We have 5,7 = s7 = o7 = ;7 and s;7 = s;{x > s}o —% , tj0 = t;T
for all 1 < j < n with ¢ # j, since x neither occurs in s nor the right-hand sides
of conditions in inl;(p). Therefore, u —Rr, v foraluswvec In total, we have
s = Clo] = Cll1] =R n+1 Clrr] = Clr{z — s}o], concluding the proof. O

We are not aware of any mention of this simple method in the literature, but
found that in practice, exhaustive application of inlining increases the applica-
bility of other methods like infeasibility via tcap and non-confluence via plain
rewriting: for the former inlining yields more term structure, which may prevent
tcap from replacing a subterm by a fresh variable and thus makes non-unifiability
more likely; while for the latter inlining may yield CCPs without conditions and
thereby make them amenable to non-joinability techniques for plain term rewrit-
ing [34].

Ezample 5. Rules (2) and (3) of Ruyin from Example 1 are both susceptible to
inlining of conditions. For each of them, we may remove the first condition and
replace y by min(zs) resulting in

min(cons(x, zs)) — x <= = < min(zs) ~ true (2"

min(cons(z, £s)) — min(zs) < x < min(zs) ~ false (3"

Now, instead of the CCPs from Example 2 we have the following CCPs
(modulo symmetry as before):

x &~ x <z < min(nil) = true (1,2")
x =~ min(nil) < z < min(nil) ~ false (1,3")
x & min(zs) < = < min(zs) ~ true, x < min(zs) ~ false (2,3

Again, the first CCP (1,2') is trivially context-joinable, (1,3’) is infeasible
since tcap(z < min(nil)) = 2 < min(nil) and false are not unifiable, and (2',3') is
unfeasible because with contextual rewriting we can reach the two non-unifiable
normal forms true and false starting from = < min(zs). Hence, we conclude
confluence of the quasi-decreasing ADTRS Ruin by Theorem 3.

Inlining of conditions is implemented in ConCon 1.4.0 as a first preprocessing
step and is certifiable by CelA.

5 Certification Challenges

One of the main challenges towards actual certification is typically disregarded
on paper: the definition of critical pairs may yield an infinite set of CCPs even
for finite CTRSs. This is because we have to consider arbitrary variable-disjoint



Certifying Confluence of Quasi-Decreasing Strongly Deterministic 423

variants of rules. However, a hypothetical certificate would only contain those
CCPs that were obtained from some specific variable-disjoint variants of rules.
Now the argument typically goes as follows: modulo variable renaming there are
only finitely many CCPs. Done.

However, this reasoning is valid only for properties that are either closed
under substitution or at least invariant under renaming of variables. For join-
ability of plain critical pairs—arguably the most investigated case—this is indeed
easy. But when it comes to contextual rewriting we spent a considerable amount
of work on some results about permutations that were not available in IsaFoR.

To illustrate the issue, consider the abstract specification of the check func-
tion check-CCPs, such that isOK (check-CCPs R) implies that each of the CCPs
of R is either unfeasible, context-joinable, or infeasible. To this end we work
modulo the assumption that we already have sound check functions for the lat-
ter three properties, which is nicely supported by Isabelle’s locale mechanism:?

locale al94-spec =

fixes v, and vy
and check-context-joinable
and check-infeasible
and check-unfeasible

assumes v, and v, are injective
and ran(v,) Nran(vy) = &
and isOK (check-context-joinable R st C) = Ju.s =1 c uNt =% o u)

We just list the required properties of the renaming functions v, and v, and the
soundness assumption for check-context-joinable.

Now what would a certificate contain and how would we have to check it?
Amongst other things, the certificate would contain a finite set of CCPs C’ that
were computed by some automated tool. Internally, our certifier computes its
own finite set of CCPs C where variable-disjoint variants of rules are created by
fixed injective variable renaming functions v, and v,, whose ranges are guar-

(1)

anteed to be disjoint. The former prefixes the character “x” and the latter the
character “y” to all variable names, hence the names. At this point we have to
check that for each CCP in C there is one in C’ that is its variant, which is not
too difficult. More importantly, we have to prove that whenever some desired
property P, say context-joinability, holds for any CCP, then P also holds for all
of its variants (including the one that is part of C).

To this end, assume that we have a CCP resulting from a critical overlap of
the two rules {1 — r1 < ¢; and f3 — ro < co at position p with mgu p. This
means that there exist permutations 7; and 75 such that (¢ — r1 < ¢1)m; and
(le — r9 < c9)ms are both in R. In our certifier, mgus are computed by the func-
tion mgu(s,t) which either results in None, if s ¢ t, or in Some p such that p is
an mgu of s and ¢, otherwise. Moreover, variable-disjointness of rules is ensured

2 For technical reasons, our formalization uses two locales (al94-ops, al94-spec) here.



424 C. Sternagel and T. Sternagel

by v, and vy, so that we actually call mgu(¢1|,m1v,, lamov,) for computing a con-
crete CCP corresponding to the one we assumed above. Thus, we need to show
that mgu(l1|p, l2) = Some p also implies that mgu(¢ |pm1vs, bomay,) = Some 1/
for some mgu p’. Moreover, we are interested in the relationship between p and
4/ with respect to the variables in both rules. Previously—for an earlier for-
malization of infeasibility [25]—IsaFoR only contained a result that related both
unifiers modulo some arbitrary substitution (that is, not necessarily a renaming).

Unfortunately, contextual rewriting is not closed under arbitrary substitu-
tions. Nevertheless, contextual rewriting is closed under permutations, provided
the permutation is also applied to C.

Lemma 4. For every permutation m we have that sm —% o U7 iff s —pct O

It remains to show that x4 and p’ differ basically only by a renaming (at least
on the variables of our two rules), which is covered by the following lemma.

Lemma 5. Let mgu(s,t) = Some p and V(s,t) C SUT for two finite sets of
variables S and T with SNT = &. Then, there exist a substitution p’ and a per-
mutation m such that for arbitrary permutations w, and 7o: mgu(smiv,, tmovy) =
Some p/, = mip'vem [S], and p = mop'vym [T.

Proof. Let h(x) = zvym if € S and h(z) = zvyms, otherwise. Then, since h is
bijective between S UT and h(SUT) we can obtain a permutation w for which
m=h [SUT]. We define ' == 7y and abbreviate smv, and tmav, to " and ¢/,
respectively. Note that s’ = s and ¢’ = 7. Since p is an mgu of s and ¢ we have
sy = tu, which further implies s'y’ = #/u/. But then p’ is a unifier of s’ and ¢t/
and thus there exists some u” for which mgu(s’,t’) = Some ' and s'p” = ¢'u”.
We now show that p' is also most general. Assume s't = /7 for some 7.
Then s77 = t77 and thus there exists some § such that 77 = pd (since p is most
general). But then 7~ 77 = 7~ pd and thus 7 = /6. Hence, p’ is most general.
Since p” is most general too, it only differs by a renaming, say 7', from p’,
that is, p”” = 7'y, This yields p = mp"v,n’'~ [S] and p = mop" vy’ [T], and
thus concludes the proof. O

6 Available Check Functions

Before we can actually certify the output of CTRS confluence tools with CeTA, we
have to provide an executable check function for each property that is required
to apply Theorem 3 and prove its soundness. It is worth mentioning that the
return type of these check functions is only “morally” bool. In order to have nice
error messages we actually employ a monad. So whenever we need to handle
the result of a check function as bool we encapsulate it in a call to isOK which
results in False if there was an error and True, otherwise.

As mentioned earlier, the check functions for quasi-decreasingness and
infeasibility are already in place. It remains to provide new check functions
for absolute irreducibility, absolute determinism, contextual rewrite sequences,



Certifying Confluence of Quasi-Decreasing Strongly Deterministic 425

context-joinability, and unfeasibility together with their corresponding sound-
ness proofs. For absolute irreducibility we provide the check function check-airr,
employing existing machinery from IsaFoR for renaming and unification, and
prove:

Lemma 6. isOK (check-airr R t) iff the term t is absolutely R-irreducible. O

This, in turn, is used to define the check function check-adtrs and the accompa-
nying lemma for ADTRSs.

Lemma 7. isOK (check-adtrs R) iff R is an ADTRS. O

Concerning contextual rewriting, we provide the check function check-csteps for
conditional rewrite sequences together with the following lemma:

Lemma 8. Given a CTRSR, a set of conditions C, two terms s andt, and a list
of conditional rewrite proofs ps, we have that isOK (check-csteps (RUC) 5 t ps)
implies s =% o t. a

Although conditional rewriting is decidable in our setting (strong determinism
and quasi-decreasingness), we require a conditional rewrite proof to provide all
the necessary information for checking a single conditional rewrite step (the
employed rule, position, and substitution; source and target terms; and recur-
sively, a list of rewrite proofs for each condition of the applied rule). That way, we
avoid having to formalize a rewriting engine for conditional rewriting in IsaFoR.
With a check function for contextual rewrite sequences in place, we can easily
give the check function check-context-joinable with the corresponding lemma:

Lemma 9. Given a CTRS R, three terms s, t, and u, a set of condi-
tions C, and two lists of conditional rewrite proofs ps and qs, we have that
isOK (check-context-joinable u ps qs R s t C) implies that there exists some
term u’ such that s —% o u' p At O

Here check-context-joinable is a concrete implementation of the homony-
mous function from the al94-spec locale. We further give the check func-
tion check-unfeasible and the accompanying soundness lemma;:

Lemma 10. Given a quasi-decreasing CTRS R, two variable-disjoint variants
of rules p1: €1 — 11 <=c1 and pa: by — 19 <=co in R, an mgu p of 1|, and {2
for some position p, a set of conditions C such that C' = ¢y, cap, three terms t,
u, and v, and two lists of conditional rewrite proofs ps and ¢s, we have that
isOK (check-unfeasible t uw v ps qs p1 p2 R €1 p C) implies that there exist three
terms t', v, and v’ such that for all o we have 1o = t'c, whenever o satisfies
C,u' g o=t =% v, u and v’ are both strongly irreducible, and u' £ v'. O
Again, check-unfeasible is a concrete implementation of the function of the same
name from the al94-spec locale and it additionally performs various sanity checks.
At this point, interpreting the al94-spec locale using the three check functions
check-context-joinable, check-infeasible, and check-unfeasible from above yields
the concrete function check-CCPs, which is used in the final check check-al94.



426 C. Sternagel and T. Sternagel

Lemma 11. Given a quasi-decreasing CTRS R, a list of context-joinability cer-
tificates ¢, a list of infeasibility certificates i, and a list of unfeasibility certifi-
cates u. Then, isOK (check-al94 ¢ i u R) implies confluence of R. O

7 Experiments

The largest available collection of CTRSs we are aware of is the confluence
problems database (Cops) [10]. At the time of writing it contains a total of 152
CTRSs. Among these, there are 119 oriented 3-CTRSs from which exactly 100
are also ADTRSs. We compare ConCon 1.3.2, which participated in last years
confluence competition (CoCo 2016) [3], to ConCon 1.4.0, the current version
which implements the results of the paper at hand. Our experiments ran on
the StarExec [29] platform with a timeout of 60 seconds per problem. The out-
come is summarized in Table1,? where columns labeled A, N, and T contain
the results of applying Theorem 3, using non-confluence methods, and trying all
methods implemented in ConCon concurrently, respectively. A suffix ‘+ i’ indi-
cates preprocessing by exhaustive inlining of conditions (Lemma 3). Results in
parentheses are not just proved by ConCon but also certified by CelA. For the
two A-columns the numbers following the ‘/’ indicate how many systems could
only be solved by Theorem 3 but not by any other method.

In total, ConCon 1.3.2 can decide confluence of 82 systems. Of those, 56 are
confluent and 26 are non-confluent. Using only Theorem 3, 42 systems can be
shown confluent. For 7 of these, none of the other methods are successful. Neither
Theorem 3 nor the non-confluence methods are certifiable in ConCon 1.3.2. How-
ever, in 38 cases (using other methods) the output of ConCon 1.3.2 is certifiable
by CeTA. Also inlining of conditions is absent in ConCon 1.3.2.

The new version of ConCon can decide confluence of 86 systems. Of those, 57
are confluent and 29 are non-confluent. Seven of the generated confluence proofs
cannot be certified by CeTA. This is due to an infeasibility method (using equa-
tional reasoning) that is not yet formalized. In contrast, all of the non-confluence
proofs can be certified by CeTA. When we subtract the certifiably non-confluent
systems we are left with 72 potentially confluent ADTRSs. From those 52 are
certifiably quasi-decreasing. Theorem 3 succeeds on 46 of these quasi-decreasing
ADTRSs (and can be certified for 43 of them). For three of these systems (288,
292, 326) testing for infeasibility is essential. When using inlining of conditions

Table 1. Comparison on 119 oriented 3-CTRSs from Cops.

ConCon A A+i N N+i T T+1i
1.3.2 42( 0)/7(0) - 2(0) - 82(38) -
1.4.0 46(43)/8(11) 47(44)/8(11) 27(27) 29(29) 84(77) 86 (79)

3 Detailed results are available at http://cl-informatik.uibk.ac.at/experiments/2017/
cade/.


http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cl-informatik.uibk.ac.at/experiments/2017/cade/
http://cl-informatik.uibk.ac.at/experiments/2017/cade/

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 427

we gain another (certifiably) confluent system (493). Finally, independent of
inlining of conditions, there are 8 systems where only Theorem 3 is successful.
In the certifiable case this number increases to 11 systems (because for 3 systems
the other methods are not certifiable). The most important message of Table 1
is that with the new versions of ConCon and CeTA the number of certifiably (non-
Jeonfluent systems has more than doubled from 38 to 79, which means that more
than 90% of the (non-)confluence proofs for CTRSs are certifiable.

8 Conclusion and Future Work

Even in the presence of a suitable notion of termination (like quasi-
decreasingness), proving confluence of conditional term rewrite systems is still
hard (unlike in the unconditional case, where confluence is decidable.)

We formalized a characterization of confluence of quasi-decreasing strongly
deterministic CTRSs in Isabelle/HOL. It requires joinability of all conditional
critical pairs, which is undecidable in general. Moreover, we formalized a more
practical variant of the previous characterization for which each conditional crit-
ical pair must be either context-joinable, unfeasible, or infeasible. These prop-
erties, in turn, rely on strong irreducibility, which like strong determinism is
undecidable in general. Thus, we further formalized decidable sufficient criteria.

In total, this paper constitutes the necessary work for the actual certifica-
tion of confluence of quasi-decreasing SDTRSs, which complements our existing
check functions for certifying confluence of CTRSs [26,32]. We have extended
our confluence tool ConCon and the certifier CETA accordingly.

Here is a rough impression of the involved effort: our formalization comprises
28 definitions, 14 recursive functions, and 83 lemmas with proofs, on approxi-
mately 2500 lines of Isabelle code (in addition to everything that we could reuse
from the IsaFoR library). The whole development took about 6 person-months.

Future Work. Concerning certification, our extension from quasi-reductive to
quasi-decreasing CTRSs is at the moment only of theoretical relevance, since the
only way of certifying quasi-decreasingness with CelA is via quasi-reductivity.

In principle it may be useful to use methods for proving operational ter-
mination [20]—a notation equivalent to quasi-decreasingness [19]—in order to
increase the applicability of Theorem 3. However, IsaFoR is currently lacking the
proof that operational termination and quasi-decreasingness coincide. Also, none
of the methods for proving operational termination have been formalized so far.
Moreover, when running AProVE [11] and MU-TERM [1] on the 72 ADTRSs
of Cops which have not already been shown to be non-confluent, the former
can show operational termination of the same 52 systems for which ConCon
could show quasi-reductivity, and the latter can show two additional systems
(266, 278), while losing another one (362). Of course, this insignificant difference
could be due to our example database.


http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1

428 C. Sternagel and T. Sternagel

Open Problem. After having finished our formalization, we realized that it is
not known whether quasi-decreasingness differs from quasi-reductivity at all,
that is, the question whether there exists a quasi-decreasing CTRS that is not
quasi-reductive, is still open. Regardless, we agree with Ohlebusch [24] that
quasi-decreasingness has two advantages: (1) it does not depend on signature
extensions and (2) o >4 s;0 is only required if s;0 —% t;o instead of s;0 = ;0.
Point (1) is illustrated by the quasi-decreasing CTRS Rqq = {f(b) — f(a),b —
c,a — c <= b~ c}. Assume that Rqq is quasi-reductive with respect to >. Then,
f(b) = f(a) and a (= U>)" b. If we are not allowed to introduce fresh function
symbols, the latter implies a = b, for otherwise, we would have a = f*(b) > b
for some k > 0, which together with closure under contexts and transitivity of
> contradicts the well-foundedness of >. But a > b also contradicts the well-
foundedness of >.

Proof Assistant. We found Sledgehammer [6,7] to be an indispensable tool for
our development. On the one hand, to quickly discharge subgoals that seemed
intuitively obvious but turned out tedious to prove, and on the other, as fast
“fact finder” for the huge IsaFoR library (especially for the second author, who
has not been involved in IsaFoR from the start).

Acknowledgments. We thank Bertram Felgenhauer and Julian Nagele for fruitful
discussions on the subject matter. Moreover, we would like to thank the anonymous
reviewers for their constructive and helpful comments.

A Browsing Isabelle/HOL Theory Files

We provide the Isabelle/HOL theory files for the presented formalization (AL94.
thy, AL94_Impl.thy, Inline Conditions.thy, and Inline Conditions_Impl.
thy all in the subdirectory thys/Conditional Rewriting/) as part of the formal
IsaFoR library which depends on the Archive of Formal Proofs (AFP). First, get
the AFP via

wget https://www.isa-afp.org/release/afp-current.tar.gz

and extract the archive. Then get IsaFoR via

hg clone \
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR

and from inside the IsaFoR directory update to tag v2.29:
hg update -r v2.29

For the remainder, you will need to have Isabelle2016-1 installed. Add the fol-
lowing lines to your $HOME/ .isabelle/Isabelle2016-1/etc/settings

init_component "/path/to/afp/directory/"
init_component "/path/to/isafor/directory"


https://www.isa-afp.org/release/afp-current.tar.gz
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 429

Finally—again from the IsaFoR directory—start Isabelle/jEdit in order to
browse our formal development:

isabelle jedit -1 TA thys/Conditional Rewriting/AL94 Impl.thy

This will take some time, even on a (more than) decent machine, the first time
around, but will be much faster thereafter.

References

1. Alarcén, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termina-
tion properties with MU-TERM. In: Johnson, M., Pavlovic, D. (eds.) AMAST
2010. LNCS, vol. 6486, pp. 201-208. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-17796-5_12

2. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74-85
(2010). doi:10.1145/1721654.1721675

3. Aoto, T., Hirokawa, N., Nagele, J., Nishida, N., Zankl, H.: Confluence competition
2015. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195,
pp. 101-104. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_5

4. Avenhaus, J., Loria-Sdenz, C.: On conditional rewrite systems with extra variables
and deterministic logic programs. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol.
822, pp. 215-229. Springer, Heidelberg (1994). doi:10.1007/3-540-58216-9_40

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

6. Blanchette, J., Paulson, L.: Hammering away - a user’s guide to sledgehammer for
Isabelle/HOL (2010). https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf

7. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101-148 (2016). doi:10.6092/issn.1972-5787/4593

8. Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci. 21(4), 827-859 (2011). doi:10.1017/S0960129511000120

9. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certi-
fied proofs with CiME 3 In: Proceedings of the 22nd International Conference on
Rewriting Techniques and Applications (RTA). LIPIcs, vol. 10, pp. 21-30. Schloss
Dagstuhl (2011), doi:10.4230/LIPIcs.RTA.2011.21

10. Cops: The confluence problems database. http://cops.uibk.ac.at/?q=ctrs

11. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS, vol. 4130, pp. 281-286. Springer, Heidelberg (2006). doi:10.
1007/11814771-24

12. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol.
3717, pp. 216-231. Springer, Heidelberg (2005). doi:10.1007/11559306-12

13. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination
competition (termCOMP 2015). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 105-108. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6_6

14. Hirokawa, N., Middeldorp, A., Sternagel, C.: A new and formalized proof of
abstract completion. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp- 292-307. Springer, Cham (2014). doi:10.1007/978-3-319-08970-6_19


http://dx.doi.org/10.1007/978-3-642-17796-5_12
http://dx.doi.org/10.1007/978-3-642-17796-5_12
http://dx.doi.org/10.1145/1721654.1721675
http://dx.doi.org/10.1007/978-3-319-21401-6_5
http://dx.doi.org/10.1007/3-540-58216-9_40
https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.1017/S0960129511000120
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://cops.uibk.ac.at/?q=ctrs
http://dx.doi.org/10.1007/11814771_24
http://dx.doi.org/10.1007/11814771_24
http://dx.doi.org/10.1007/11559306_12
http://dx.doi.org/10.1007/978-3-319-21401-6_6
http://dx.doi.org/10.1007/978-3-319-21401-6_6
http://dx.doi.org/10.1007/978-3-319-08970-6_19

430

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

C. Sternagel and T. Sternagel

Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797-821 (1980)

Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263-297. Pergamon Press
(1970)

Kop, C.: Higher-order termination: automatable techniques for proving termination
of higher-order term rewriting systems. Ph.D. thesis, VU University Amsterdam
(2012). http://hdl.handle.net/1871/39346

Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295-304. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02348-4_21

Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Inf. Process. Lett. 95(4), 446-453 (2005). doi:10.1016/j.ipl.2005.
05.002

Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of
conditional term rewriting systems. J. Logical Algebraic Methods Program. 86(1),
236-268 (2017). doi:10.1016/j.jlamp.2016.03.003

Marlow, S.: Haskell 2010 language report. https://www.haskell.org/definition/
haskell2010.pdf

Newman, M.: On theories with a combinatorial definition of equivalence. Ann.
Math. 43(2), 223-243 (1942)

Nipkow, T.: Equational reasoning in Isabelle. Sci. Comput. Program. 12(2), 123—
149 (1989). doi:10.1016/0167-6423(89)90038-5

Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)
Sternagel, C., Sternagel, T.: Level-confluence of 3-CTRSs in Isabelle/HOL.
In: Proceedings of the 4th International Workshop on Confluence (IWC),
arXiv:1602.07115 (2015)

Sternagel, C., Sternagel, T.: Certifying confluence of almost orthogonal CTRSs via
exact tree automata completion. In: Proceedings of the 1st International Confer-
ence on Formal Structures for Computation and Deduction (FSCD). LIPIcs, vol.
51, pp. 29:1-29:16 (2016). do0i:10.4230/LIPIcs.FSCD.2016.29

Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In:
Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 456—465. Springer, Cham (2014).
doi:10.1007/978-3-319-08918-8_31

Sternagel, T., Sternagel, C.: Formalized confluence of quasi-decreasing, strongly
deterministic conditional TRSs. In: Proceedings of the 5th International Workshop
on Confluence (IWC), arXiv:1609.03341 (2016)

Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastruc-
ture for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 367-373. Springer, Cham (2014). doi:10.1007/
978-3-319-08587-6-28

Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLSs 2009. LNCS, vol.
5674, pp. 452-468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9_31
Waldmann, J.: Matchbox: a tool for match-bounded string rewriting. In: Oostrom,
V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85-94. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-25979-4_6

Winkler, S., Thiemann, R.: Formalizing soundness and completeness of unravelings.
In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 239-255.
Springer, Cham (2015). doi:10.1007/978-3-319-24246-0-15


http://hdl.handle.net/1871/39346
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.1016/j.ipl.2005.05.002
http://dx.doi.org/10.1016/j.ipl.2005.05.002
http://dx.doi.org/10.1016/j.jlamp.2016.03.003
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
http://dx.doi.org/10.1016/0167-6423(89)90038-5
http://arxiv.org/abs/1602.07115
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.29
http://dx.doi.org/10.1007/978-3-319-08918-8_31
http://arxiv.org/abs/1609.03341
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-540-25979-4_6
http://dx.doi.org/10.1007/978-3-540-25979-4_6
http://dx.doi.org/10.1007/978-3-319-24246-0_15

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 431

33. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.
(ed.) RTA 2014. LNCS, vol. 8560, pp. 466-475. Springer, Cham (2014). doi:10.
1007/978-3-319-08918-8_32

34. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI — a confluence tool. In: Bjgrner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499-505.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_38

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.


http://dx.doi.org/10.1007/978-3-319-08918-8_32
http://dx.doi.org/10.1007/978-3-319-08918-8_32
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://creativecommons.org/licenses/by/4.0/

	Certifying Confluence of Quasi-Decreasing Strongly Deterministic Conditional Term Rewrite Systems
	1 Introduction
	2 Preliminaries
	3 Confluence of Quasi-Decreasing SDTRSs
	4 Certification
	5 Certification Challenges
	6 Available Check Functions
	7 Experiments
	8 Conclusion and Future Work
	A Browsing Isabelle/HOL Theory Files
	References


