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This article aims to develop a verification method for procedural programs via a transformation into logically
constrained term rewriting systems (LCTRSs). To this end, we extend transformation methods based on
integer term rewriting systems to handle arbitrary data types, global variables, function calls, and arrays, and
to encode safety checks. Then we adapt existing rewriting induction methods to LCTRSs and propose a simple
yet effective method to generalize equations. We show that we can automatically verify memory safety and
prove correctness of realistic functions. Our approach proves equivalence between two implementations; thus,
in contrast to other works, we do not require an explicit specification in a separate specification language.
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1. INTRODUCTION

Ensuring with certainty that a program always behaves correctly is a hard problem.
One approach to this is formal verification—proving with mathematical rigor that all
executions of the program will have the expected outcome. Several methods for this
have been investigated (e.g., see Huth and Ryan [2000]). However, classically many of
them require expert knowledge to manually prove relevant properties about the code.

Instead, it is our hope to raise the degree of automation, ideally creating a fully auto-
matic verification/refutation process and tools to raise developer productivity. Indeed,
over the past years, automatic provers for program verification have flourished, as wit-
nessed, for example, by tool competitions like SV-COMP [SV-COMP 2017] and the Ter-
mination Competition (http://termination-portal.org/wiki/Termination_Competition).
Program verification is also recognized in industry, such as Facebook’s safety prover
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Infer [Calcagno et al. 2015] or Microsoft’s temporal prover T2 [Brockschmidt et al.
2016]. However, these tools generally use specific reasoning techniques for imperative
programs and benefit from the progress in automated theorem proving over the past
decades only to a limited extent. This suggests likely avenues for improvement.

One such avenue is inductive theorem proving. This method is well investigated in
functional programming [Bundy 2001] and term rewriting, the underlying core calculus
of functional programming. To check a functional program f against a specification
by a reference implementation fspec, it suffices that f (−→x ) ≈ fspec(−→x ) is an inductive
theorem. Thus, no explicit specification language is needed: giving a (possibly not
optimized) reference implementation fspec in the same programming language suffices.

To analyze imperative programs (in C, Java, etc.), recent works have applied trans-
formations into term rewriting systems (TRSs) (e.g., Otto et al. [2010]). In particular,
constrained rewriting systems are popular as target language, since logical constraints
to model the control flow can be separated from terms to model intermediate states
[Furuichi et al. 2008; Falke and Kapur 2009; Sakata et al. 2009; Nakabayashi et al.
2010; Falke et al. 2011]. Unifying existing approaches, Kop and Nishida [2013] pro-
posed the framework of logically constrained term rewriting systems (LCTRSs).

Aims. The aim of this article is twofold. First, we propose a new transformation
method from procedural programs into constrained term rewriting. This transforma-
tion makes it possible to use the many methods available to term rewriting to also
analyze imperative programs. Unlike previous methods, we do not limit interest to
integer functions.

Second, we develop a verification method for LCTRSs, based on rewriting induc-
tion [Reddy 1990]—a well-investigated method of inductive theorem proving—to prove
(total) equivalence of two functions. We also supply two generalization techniques, the
main one of which is specialized for transformed iterative functions.

The applications are many. First, checking equivalence between different implemen-
tations comes to mind. This allows the user to determine automatically if a modification
in the program has changed its semantics (e.g., see Godlin and Strichman [2013] and
Lahiri et al. [2012]). Proposing equivalent replacements may even be done automati-
cally, via algorithm recognition (e.g., see Alias and Barthou [2003]).

In compilation, automated equivalence checking can validate correctness of compiler
optimizations on a per-instance basis [Necula 2000; Pnueli et al. 1998] or once-and-for-
all for a given optimization template [Kundu et al. 2009; Lopes and Monteiro 2016].
Equivalence checking is also used in proofs of secure information flow [Terauchi and
Aiken 2005] and can be used to prove safety properties (e.g., memory safety).

Why LCTRSs. Direct support of basic types, like the integers, and of constraints
to restrict evaluation—features absent in basic TRSs—is essential to handle realistic
programs. Unlike earlier constrained rewriting systems, LCTRSs do not limit the un-
derlying theory to (linear) integer arithmetic: we might use (combinations of) arbitrary
first-order theories, such as n-dimensional integer arrays, floating point numbers, and
bitvectors. This makes it possible to natively handle sophisticated programs.

Despite the generality, we get strong results on LCTRSs by reducing analysis prob-
lems like termination and equivalence to a sequence of satisfiability problems over
the underlying theories. Automatic tools—like our tool Ctrl [Kop and Nishida 2015] for
rewriting, termination, and inductive theorem proving—can defer such queries to an
external SAT modulo theories (SMT) solver [Nieuwenhuis et al. 2006], as a black box.
Future advances in the SMT world then directly transfer to analysis of LCTRSs.

Structure. We first recall the LCTRS formalism from Kop and Nishida [2013] (Sec-
tion 2) and show a way to translate procedural programs to LCTRSs (Section 3). Then
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we lift rewriting induction methods for constrained rewriting to LCTRSs (Section 4)
and strengthen them with two dedicated generalization techniques (Section 5). Fi-
nally, we discuss automation and experimental results (Section 6) as well as related
and future work (Sections 7 and 8). We conclude in Section 9.

Contributions over the conference version. The present article provides several addi-
tional contributions over the conference version [Kop and Nishida 2014]. First, we sig-
nificantly extend our method to translate procedural programs to LCTRSs. Second, we
extend our theory of constrained inductive theorem proving to disproving equivalence
(following Sakata et al. [2009] and Falke and Kapur [2012]) and add several inference
rules. Third, we provide an additional generalization technique and a detailed proof
strategy to automate rewriting induction for translated procedural programs. Fourth,
we have improved the implementation and added an automatic translation from C
programs to LCTRSs.

1.1. Motivating Example

Aside from business applications, automatic equivalence proving can be used as an aid
in grading student programming assignments. Combining a test run of the assignments
on a set of sample inputs (which identifies many incorrect programs but leaves false
positives) with an automatic correctness check can save teachers a lot of time.

Example 1.1. Consider the following programming assignment.

Write a function sum that, given an integer array and its length as input, returns the
sum of its elements. Do not modify the input array.

We consider four different C implementations of this exercise:

int sum1(int arr[],int n) {
int ret=0;
for(int i=0;i<n;i++)
ret+=arr[i];

return ret;
}

int sum2(int arr[], int n) {
int ret, i;
for (i = 0; i < n; i++) {
ret += arr[i];

}
return ret;

}

int sum3(int arr[], int len) {
int i;
for (i = 0; i < len-1; i++)
arr[i+1] += arr[i];

return arr[len-1];
}

int sum4(int *arr, int k) {
if (k <= 0) return 0;
return arr[k-1] +

sum4(arr, k-1);
}

The first solution (sum1) is correct. The second (sum2) is not, because ret is not
initialized—which may be missed in standard tests depending on the compiler used.
The third solution (sum3) is incorrect because the array is modified against the
instructions and moreover gives a random result or segmentation fault if len = 0. The
fourth solution (sum4) is correct.

These implementations can be transformed into the following LCTRSs:

(1a) sum1(arr, n) → u(arr, n, 0, 0)
(1b) u(arr, n, ret, i) → error [i < n∧ (i < 0 ∨ i ≥ size(arr))]
(1c) u(arr, n, ret, i) → u(arr, n, ret + select(arr, i), i + 1) [i <n∧ 0 ≤ i <size(arr)]
(1d) u(arr, n, ret, i) → return(arr, ret) [i ≥ n]
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(2a) sum2(arr, n) → u(arr, n, ret, 0)
u rules as copied from above

(3a) sum3(arr, len) → v(arr, len, 0)
(3b) v(arr, len, i) → error [i < len− 1 ∧ (i < 0 ∨ i + 1 ≥ size(arr))]
(3c) v(arr, len, i) → v(store(arr, i + 1, select(arr, i + 1) + select(arr, i)), len, i + 1)

[i < len− 1 ∧ 0 ≤ i ∧ i + 1 < size(arr)]
(3d) v(arr, len, i) → return(arr, select(arr, len− 1))

[i ≥ len− 1 ∧ 0 ≤ len− 1 < size(arr)]
(3e) v(arr, len, i) → error [i ≥ len− 1 ∧ (len− 1 < 0 ∨ len− 1 ≥ size(arr))]

(4a) sum4(arr, k) → return(arr, 0) [k ≤ 0]
(4b) sum4(arr, k) → error [k− 1 ≥ size(arr)]
(4c) sum4(arr, k) → w(select(arr, k− 1), sum4(arr, k− 1)) [0 ≤ k− 1 < size(arr)]
(4d) w(n, error) → error
(4e) w(n, return(a, r)) → return(a, n+ r)

Note that arrays carry an implicit size (their allocated memory) that is queried to
model the runtime behavior of the C program and test for out-of-bound errors. The
fresh variable in the right-hand side of (2a) models that the third parameter of u
is assigned an arbitrary integer. The details of this transformation are discussed in
Section 3.

Using inductive theorem proving, we can now prove that

—∀arr ∈ array(int). ∀len ∈ int. sum1(arr, len) ↔∗ sum4(arr, len) if 0 ≤ len ≤ size(arr)
—∃arr ∈ array(int). ∃len ∈ int. sum3(arr, len) 
↔∗ sum4(arr, len) with 0 ≤ len ≤ size(arr).

Thus, sum1 and sum4 return the same result on any input such that the given length
does not cause out-of-bound errors, but sum3 and sum4 do not. (It seems likely that the
disproof obtained from inductive theorem proving could be used to extract counterex-
ample inputs, but at present we have not studied a systematic way of doing so.)

For sum2, we do have sum2(arr, len) ↔∗ sum4(arr, len), as we can always choose
to instantiate ret with 0. The system is not confluent; we can also prove that there
exist a, n such that sum2(a, n) →∗ s 
= t ←∗ sum4(a, n) for terms s, t in normal form.
As explained in Section 6, we use a proof strategy that typically proves only the “
=”
statement.

1.2. Practical Use

The primary application that we see for our technique is the following.

1.2.1. Comparing a Function to a Specification. As in Example 1.1, we can verify correct-
ness of a C function f against a reference implementation g by translating both func-
tions to LCTRS rules (Section 3) and proving that f(x1, . . . , xn) ≈ g(x1, . . . , xn) [true]
is an inductive theorem. If we only need equivalence under given preconditions on
the input variables—such as 0 ≤ len ≤ size(arr) in Example 1.1—we formulate this
as a constraint ϕ and analyze whether f(x1, . . . , xn) ≈ g(x1, . . . , xn) [ϕ] is an inductive
theorem.

Note that we do not require a separate specification language—although if desirable,
it is of course possible to specify the reference implementation directly as an LCTRS.

Further possible applications of our technique include the following.

1.2.2. Code Optimization (or Other Improvement). Sometimes the “reference implemen-
tation” g suggested previously can simply be an existing—and inefficient, or
inelegant—version of a function. Thus, inductive theorem proving can be used to
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prove that it is safe to replace a function in a large real-life program by an optimized
alternative.

1.2.3. Error Checking. As the transformation from C to LCTRSs includes error checking
(as seen for memory safety violations in Example 1.1), we can use inductive theorem
proving to verify the absence of such errors. This is done by adding error-checking
rules, such as

errorfree(return(a, n)) → true errorfree(error) → false,

and proving that errorfree(sum4(a, n)) ≈ true [ϕ] is an inductive theorem, where ϕ is
the precondition on the input. Aside from memory safety, this approach can be used to
certify the absence of, for instance, divisions by zero or integer overflow. The key is in
the transformation, where we can choose which constructions result in an error.

1.2.4. Classical Correctness Checks. Aside from comparisons to an example implemen-
tation, we can also specify a correctness property directly in SMT. For instance, given
an implementation of the strlen function, its correctness could be verified by proving
that

strlen(x) ≈ return(n) [0 ≤ n < size(x)∧select(x, n) = 0∧∀i ∈ {0, . . . , n−1}(select(x, i) 
= 0)]

is an inductive theorem. Alternatively, we can use extra rules to test properties in SMT.

Example 1.2. To analyze correctness of an implementation of strcpy, we may use

test(x, n, error) → false
test(x, n, return(y)) → b [b ⇔ ∀i ∈ {0, . . . , n}(select(x, i) = select(y, i))]

and prove that the following equation is an inductive theorem:

test(x, n, strcpy(y, x)) ≈ true
[0 ≤ n < size(x) ∧ n < size(y) ∧ select(x, n) = 0 ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0)].

Note that this more sophisticated test is needed in this case, as correctness of strcpy
does not require that x = y if strcpy(x) →∗ return(y) (the sizes of x and y may differ).

2. PRELIMINARIES

In this section, we briefly recall LCTRSs, following the definitions in Kop and Nishida
[2013].

2.1. Logically Constrained Term Rewriting Systems

Many-sorted terms. We introduce terms, typing, substitutions, contexts, and subterms
(with corresponding terminology) in the usual way for many-sorted term rewriting.

Definition 2.1. We assume given a set S of sorts and an infinite set V of variables,
each variable equipped with a sort. A signature � is a set of function symbols f , disjoint
from V, each equipped with a sort declaration [ι1 × · · · × ιn] ⇒ κ, with all ιi and κ sorts.
For readability, we often write κ instead of [] ⇒ κ. The set Terms(�,V) of terms over �
and V contains any expression s such that � s : ι can be derived for some sort ι, using

� x : ι
(x : ι ∈ V)

� s1 : ι1 . . . � sn : ιn

� f (s1, . . . , sn) : κ
( f : [ι1 × · · · × ιn] ⇒ κ ∈ �).

We fix � and V. Note that for every term s, there is a unique sort ι with � s : ι.

Definition 2.2. Let � s : ι. We call ι the sort of s. Let Var(s) be the set of variables
occurring in s; we say that s is ground if Var(s) = ∅.
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Definition 2.3. A substitution γ is a sort-preserving total mapping from V to
Terms(�,V). The result sγ of applying a substitution γ to a term s is s with all oc-
currences of a variable x replaced by γ (x). The domain of γ , Dom(γ ), is the set of
variables x with γ (x) 
= x. The notation [x1 := s1, . . . , xn := sn] denotes a substitution γ
with γ (xi) = si for 1 ≤ i ≤ n, and γ (y) = y for y /∈ {x1, . . . , xn}. For two substitutions γ
and δ, their composition γ ◦ δ is given by (γ ◦ δ)(x) = γ (δ(x)) = (xδ)γ for all variables x.

Two terms s and t are unifiable if there exists a substitution γ such that sγ = tγ .
Then γ is called a unifier for s and t. If moreover for all unifiers γ ′ for s and t there is a
substitution δ such that γ ′ = δ ◦ γ , we call γ a most general unifier (mgu) for s and t.

Definition 2.4. Given a term s, a position in s is a sequence p of positive integers
such that s|p is defined, where s|ε = s and f (s1, . . . , sn)|i·p = (si)|p. We call s|p a subterm of
s. If � s|p : ι and � t : ι, then s[t]p denotes s with the subterm at position p replaced by
t. A context C is a term containing one or more typed holes �i : ιi. If s1 : ιi, . . . , sn : ιn,
we define C[s1, . . . , sn] as C with each �i replaced by si.

Logical terms. Specific to LCTRSs, we consider different kinds of symbols and terms.

Definition 2.5. We assume given:

—signatures �terms and �theory such that � = �terms ∪ �theory;
—a mapping I that assigns to each sort ι occurring in �theory a set Iι;
—a mapping J that assigns to each f : [ι1 × · · · × ιn] ⇒ κ ∈ �theory a function in

Iι1 × · · · × Iιn =⇒ Iκ ;
—for all sorts ι occurring in �theory a set Valι ⊆ �theory of values: function symbols

a : [] ⇒ ι such that J gives a bijective mapping from Valι to Iι.

We require that �terms ∩�theory ⊆ Val = ⋃
ι Valι. The sorts occurring in �theory are called

theory sorts, and the symbols theory symbols. Symbols in �theory \ Val are calculation
symbols. A term in Terms(�theory,V) is called a logical term.

Definition 2.6. For ground logical terms, let � f (s1, . . . , sn)� := J f (�s1�, . . . , �sn�). For
every ground logical term s, there is a unique value c such that �s� = �c�; we say that c is
the value of s. A constraint is a logical term ϕ of some sort bool with Ibool = B = {�,⊥},
the set of Booleans. A constraint ϕ is valid if �ϕγ � = � for all substitutions γ that map
Var(ϕ) to values, and satisfiable if �ϕγ � = � for some such substitutions. A substitution
γ respects ϕ if γ (x) is a value for all x ∈ Var(ϕ) and �ϕγ � = �.

Terms in Terms(�terms,∅) can be thought of as the primary objects of rewriting: a
reduction typically begins and ends with such terms, with elements of �theory \Val (also
called calculation symbols) to perform calculations in the underlying theory.

We typically choose a theory signature with �theory ⊇ �core
theory, where �core

theory contains
true, false : bool,∧,∨,⇒: [bool × bool] ⇒ bool, ¬ : [bool] ⇒ bool, and, for all theory
sorts ι, symbols =ι, 
=ι: [ι × ι] ⇒ bool, and an evaluation function J that interprets
these symbols as expected. We omit the sort subscripts from = and 
= when clear from
context.

Definition 2.7. The standard integer signature �int
theory is �core

theory ∪ {+,−, ∗, exp, div,

mod : [int× int] ⇒ int;≤,<: [int× int] ⇒ bool}∪{n : int | n ∈ Z} with values true, false, and
n for all n ∈ Z. Thus, we use n (in sans-serif font) as the function symbol for n ∈ Z (in
math font). We define J in the natural way, except since all J f must be total functions,
we set Jdiv(n, 0) = Jmod(n, 0) = Jexp(n, k) = 0 for all n and all k < 0. Of course, when
constructing LCTRSs, we normally add explicit error checks to prevent such calls.
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Example 2.8. Let S = {int, bool}, and � = �terms ∪ �int
theory, where

�terms = {fact : [int] ⇒ int } ∪ { n : int | n ∈ Z}.
Then both int and bool are theory sorts. We also define set and function interpretations—
for instance, Iint = Z, Ibool = B, and J is defined as earlier. With = for =int and infix
notation, examples of logical terms are 0 = 0 + −1 and x + 3 ≥ y + −42. Both are
constraints. Additionally, 5 + 9 is also a (ground) logical term but not a constraint.
Expected starting terms are, for example, fact(42) or fact(fact(−4)): ground terms fully
built using symbols in �terms.

Rules and rewriting. We adapt the standard notions of rewriting (e.g., see Baader
and Nipkow [1998]) by including constraints and adding rules to perform calculations.

Definition 2.9. A rule is a triple 	 → r [ϕ] with 	 and r terms of the same sort and
ϕ a constraint. Here, 	 has the form f (	1, . . . , 	n) and contains at least one symbol in
�terms \ �theory (so 	 is not a logical term). If ϕ = true with J (true) = �, we may write
	 → r. We define LVar(	 → r [ϕ]) as Var(ϕ) ∪ (Var(r) \ Var(	)). A substitution γ respects
	 → r [ϕ] if γ (x) ∈ Val for all x ∈ LVar(	 → r [ϕ]), and �ϕγ � = �. The rule is left linear if
	 is linear (i.e., all variables occur at most once in 	) and irregular if Var(ϕ)\Var(	) 
= ∅.

Note that it is allowed to have Var(r) 
⊆ Var(	), but fresh variables in the right-hand
side may only be instantiated with values. This is done to model user input or random
choice. Otherwise, variables outside the constraint may be instantiated by any term;
we do not impose strategies like innermost or call-by-value reduction.

Definition 2.10. We assume given a set of rules R and let Rcalc be the set
{ f (x1, . . . , xn) → y [y = f (−→x )] | f : [ι1 × · · · × ιn] ⇒ κ ∈ �theory \ Val} (writing −→x
for x1, . . . , xn). The rewrite relation →R is a binary relation on terms, defined by

C[	γ ] →R C[rγ ] if 	 → r [ϕ] ∈ R ∪Rcalc and γ respects 	 → r [ϕ].

Here, C is a context with exactly one hole. We say that the reduction occurs at position
p if C = C[�]p. Let s ↔R t if s →R t or t →R s. A reduction step with Rcalc is called a
calculation. A term is in normal form if it cannot be reduced with →R. We say that t
is a normal form of s if s →∗

R t and t is a normal form. The relation →R is confluent if
whenever s →∗

R t and s →∗
R t′ there exists also some u with t →∗

R u and t′ →∗
R u.

We usually call the elements of Rcalc rules—or calculation rules–even though their
left-hand side is a logical term. Note that if →R is confluent, every term has at most one
normal form (intuitively, then R is deterministic with respect to big-step semantics).

Definition 2.11. For f (	1, . . . , 	n) → r [ϕ] ∈ R, we call f a defined symbol; nondefined
elements of �terms and all values are constructors. Let D be the set of all defined symbols
and Cons the set of constructors. A term in Terms(Cons,V) is a constructor term.

Now we may define a logically constrained term rewriting system as the abstract
rewriting system (Terms(�,V),→R). An LCTRS is usually given by supplying �, R,
and an informal description of I and J if these are not clear from context.

Example 2.12. To implement an LCTRS calculating the factorial function, we use
the signature � from Example 2.8 and the following rules:

Rfact = {fact(x) → 1 [x ≤ 0], fact(x) → x ∗ fact(x − 1) [¬(x ≤ 0)]}.
Using calculation steps, a term 3 − 1 reduces to 2 in 1 step (using the calculation rule
x − y → z [z = x − y]), and 3 ∗ (2 ∗ (1 ∗ 1)) reduces to 6 in 3 steps. Using also the rules
in Rfact, fact(3) reduces in 10 steps to 6.
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Example 2.13. To implement an LCTRS calculating the sum of elements in an array,
let Ibool = B, Iint = Z, Iarray(int) = Z∗, so array(int) is mapped to finite-length integer
sequences. Let �theory = �int

theory ∪ {size : [array(int)] ⇒ int, select : [array(int) × int] ⇒
int} ∪ {a | a ∈ Z∗}. (We do not encode arrays as lists: every “array”—integer sequence—
a corresponds to a unique symbol a.) The interpretation function J behaves on �int

theory
as usual, maps the values a to the corresponding integer sequence, and has

Jsize(a) = k if a = 〈n0, . . . , nk−1〉 Jselect(a, i) = ni if a = 〈n0, . . . , nk−1〉 and 0 ≤ i < k
0 otherwise.

In addition, let �terms = { sum, sum0 : [array(int)] ⇒ int }∪{ n : int | n ∈ Z }∪{ a | a ∈ Z∗ },
and let R consist of

sum(x) → sum0(x, size(x) − 1) sum0(x, k) → select(x, k) + sum0(x, k− 1) [k ≥ 0]
sum0(x, k) → 0 [k < 0].

Note that this implementation differs from the ones in Example 1.1, because there we
analyzed encodings of imperative programs; on C level, there is no functionality for the
programmer to explicitly query the size of an array. Here, we avoided boundary checks.

Values are new in LCTRSs compared to older styles of constrained rewriting. These
representatives of the underlying theory are always constants (constructor symbols
that do not take arguments), even if they represent complex structures, as seen in
Example 2.13. Note that variables in a rule’s constraint must be instantiated by values;
for instance, in Example 2.12, a term fact(1+ 2) must be reduced by a calculation first.
We also do not match modulo theories (e.g., we do not equate 0 + (x + y) with y + x for
matching).

Differences to Kop and Nishida [2013]. In the original definition of LCTRSs, variables
in V are unsorted, and a separate variable environment is used for typing. In addition,
→R is there defined as the union of two relations →rule and →calc rather than including
Rcalc. These changes give equivalent results, but the current definitions cause less
bookkeeping. A larger difference is the restriction on rules: in Kop and Nishida [2013],
left-hand sides must have a root symbol in �terms \ �theory. We follow Kop [2013] and
Kop and Nishida [2014] in weakening this (only asking that they are not logical terms).

2.2. Quantification

The definition of LCTRSs does not permit constraints with quantifiers (constraints are
terms, and first-order rewriting does not allow quantifiers in terms). In, for instance,
an LCTRS over integers and arrays, which has addtoend : [int×array(int)] ⇒ array(int) ∈
�theory and extend : [array(int) × int] ⇒ array(int) ∈ �terms, we cannot specify a rule like

extend(arr, x) → addtoend(x, arr) [∀y ∈ {0, . . . , size(arr) − 1}(x 
= select(arr, y))].

However, one of the key features of LCTRSs is that theory symbols, including predi-
cates, are not confined to a fixed list. Therefore, we can add a new symbol to �theory (and
J ). For the extend rule, we might introduce a symbol notin : [int×array(int)] ⇒ bool with
Jnotin(u, 〈a0, . . . , an−1〉) = � if and only if for all i, u 
= ai, and replace the constraint by
notin(x, arr). This generates exactly the same reduction relation as the original rule.

Thus, we can permit quantifiers in the constraints of rules and also on right-hand
sides of rules, as an intuitive notation for fresh predicates. However, an unbounded
quantification would likely not be useful, as it would give an undecidable relation →R.
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Comment: One might argue that adding symbols like this is problematic in practice:
no SMT solver will support new symbols like notin. However, for the technique, this
makes no difference. In an implementation, we might allow quantifiers as syntactic
sugar (and pass the same sugar to the SMT solver) or add a layer on top of the SMT
solver that translates the new symbol(s), replacing, for instance, (notin u a) with
(forall ((x Int)) (distinct u (select a x))).

2.3. Rewriting Constrained Terms

In LCTRSs, the objects of study are terms, with →R defining the relation between
them. However, for analysis, it is often useful to consider constrained terms.

Definition 2.14. A constrained term is a pair s [ϕ] of a term s and a constraint ϕ.
We say that s [ϕ] and t [ψ] are equivalent, notation s [ϕ] ∼ t [ψ], if for all substitutions
γ that respect ϕ there is a substitution δ that respects ψ such that sγ = tδ, and vice
versa.

Intuitively, a constrained term s [ϕ] represents all terms sγ where γ respects ϕ
and can be used to reason about such terms. Equivalent constrained terms represent
the same set of terms. For example, f(0) [true] ∼ f(x) [x = 0], and g(x, y) [x > y] ∼
g(z, u) [u ≤ z − 1]. Note that s [ϕ] ∼ s [ψ] if and only if ∀−→x (∃−→y (ϕ) ↔ ∃−→z (ψ)) holds,
where Var(s) = {−→x }, Var(ϕ) \ Var(s) = {−→y } and Var(ψ) \ Var(s) = {−→z }.

Definition 2.15. For a rule ρ := 	 → r [ψ] ∈ R ∪ Rcalc and position q, we let
s [ϕ] →ρ,q t [ϕ] if there exists a substitution γ such that s|q = 	γ , t = s[rγ ]q, γ (x)
is a value or variable in Var(ϕ) for all x ∈ LVar(	 → r [ψ]), and ϕ ⇒ (ψγ ) is valid.
Let s [ϕ] →base t [ϕ] if s [ϕ] →ρ,q t [ϕ] for some ρ, q. The relation →R on constrained
terms is defined as ∼ · →base · ∼. We say that s [ϕ] →R t [ψ] at position q by rule ρ if
s [ϕ] ∼ · →ρ,q · ∼ t [ψ].

Example 2.16. In the LCTRS from Example 2.12, we have fact(x) [x > 3] →R x ∗
fact(x − 1) [x > 3]. Now we can use a calculation rule x − y → z [z = x − y], with a
nonempty ∼-step, as follows: x∗fact(x−1) [x > 3] ∼ x∗fact(x−1) [x > 3∧z = x−1] →base

x ∗ fact(z) [x > 3 ∧ z = x − 1]. The ∼-relation holds because indeed ∀x(x > 3 ↔ ∃z(x >
3 ∧ z = x − 1)).

Example 2.17. The ∼-relation also allows us to reformulate the constraint after
a reduction. For example, with the rule f(x) → g(y) [y > x], we have f(x) [x > 3] ∼
f(x) [x > 3 ∧ y > x] →base g(y) [x > 3 ∧ y > x] ∼ g(y) [y > 4]. We do not have that
f(x) [true] →R g(x + 1) [true], as x + 1 cannot be instantiated to a value.

Example 2.18. A constrained term does not always need to be reduced in the most
general way. With the rule f(x) → g(y) [y > x], we have f(0) [true] ∼ f(0) [y > 0] →base

g(y) [y > 0], but we also have f(0) [true] ∼ f(0) [1 > 0] →base g(1) [1 > 0] ∼ g(1) [true].

As intended, constrained reductions give information about usual reductions.

THEOREM 2.19. If s [ϕ] →R t [ψ], then for all substitutions γ that respect ϕ there exists
δ that respects ψ such that sγ →R tδ. Both steps use the same rule and position.

PROOF. We first observe (**): if u [ξ ] →base q [ξ ], then for any substitution γ that
respects ξ also uγ →R qγ . Proof: if u [ξ ] →base q [ξ ], then there are p, 	 → r [c] and
δ such that u|p = 	δ, q = u[rδ]p, δ(x) ∈ Var(ξ ) ∪ Val for all x ∈ LVar(	 → r [c]) and
ξ ⇒ (cδ) is valid. With η = γ ◦ δ, we have (uγ )|p = u|pγ = 	δγ = 	η and qγ = u[rδ]pγ =
(uγ )[rδγ ]p = (uγ )[rη]p. We also have η(x) = δ(x)γ ∈ Val for x ∈ LVar(	 → r [c]) because
γ respects ξ and, since �ξγ � = � and ξ ⇒ (cδ) is valid, also �(cδ)γ � = �cη� = �. Thus,
indeed uγ →R qγ .
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Now suppose that s [ϕ] →R t [ϕ], so s [ϕ] ∼ s′ [ξ ] →base t′ [ξ ] ∼ t [ψ], and let γ respect
ϕ. By definition of ∼, there is some substitution η that respects ξ such that sγ = s′η. By
(**), s′η →R t′η. Again by definition of ∼, we find δ that respects ψ such that t′η = tδ.

THEOREM 2.20. If s [ϕ] →R t [ψ], then for all substitutions δ that respect ψ there exists
γ that respects ϕ such that sγ →R tδ. Both steps use the same rule and position.

PROOF. Parallel to the proof of Theorem 2.19, if s [ϕ] ∼ s′ [ξ ] →base t′ [ξ ] ∼ t [ψ], then
by definition of ∼ there are suitable η, γ such that tδ = t′η ←R s′η = sγ .

Comment: The relation →R on constrained terms is not stable. For instance, in
the system from Example 2.18, we can derive f(x) [true] →R g(x) [true] even though
f(0) [true] 
→R g(0) [true]. This is because the variables in a constrained term s [ϕ]
are fully changeable; one can see variables in Var(s) as universal and the others as
existential. This is not problematic, as we do not instantiate constrained terms; to
reason with constrained reduction, we only use Theorems 2.19 and 2.20.

3. TRANSFORMING IMPERATIVE PROGRAMS INTO THE LCTRS

Equivalence-preserving transformations of imperative programs into constrained
rewriting systems operating on integers have been investigated in works such as Falke
and Kapur [2009], Falke et al. [2011], and Furuichi et al. [2008]; more generally, such
translations from imperative to functional programs have been investigated at least
since McCarthy [1960]. Although these works use different definitions of constrained
rewriting, the proposed transformations can be adapted to produce LCTRSs that oper-
ate on integers (i.e., use �theory as in Example 2.12). In addition, we can extend the ideas
to also handle more advanced programming structures, such as arrays and exceptions.

In this section, we discuss several ideas toward a translation from C to LCTRS. A
more detailed and formal treatment of the limitation to integers and one-dimensional
integer arrays is available online, along with an implementation, at http://www.trs.css.i.
nagoya-u.ac.jp/c2lctrs/.

Given the extensiveness of the C specification, we will not attempt to prove that the
result of our transformation corresponds to the origin. Instead, we shall rely on an
appeal to intuition. An advantage is that the same ideas apply to other programming
languages—for example, we should be able to use similar translations for Python or
Java.

3.1. Transforming Simple Integer Functions

The base form of the transformation—limited to integer functions with no global vari-
ables or function calls—is very similar to the transformations for integer TRSs in
Falke and Kapur [2009], Falke et al. [2011], and Furuichi et al. [2008]. Each function
is transformed separately. We introduce a function symbol for every statement (includ-
ing declarations), which operates on the variables in scope. The transition from one
statement to another is encoded as a rule, with assignments reflected by argument
updates in the right-hand side, and conditions by the constraint. Return statements
are encoded by reducing to an expression return f (e), where return f : [int] ⇒ result f is a
constructor.
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Example 3.1. Consider the following C function and its translation.

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++) z *= i;
return z;

}

fact(x) → u1(x, 1)
u1(x, z) → u2(x, z, 1)

u2(x, z, i) → u3(x, z, i) [i ≤ x]
u2(x, z, i) → u5(x, z) [¬(i ≤ x)]
u3(x, z, i) → u4(x, z ∗ i, i)
u4(x, z, i) → u2(x, z, i + 1)

u5(x, z) → returnfact(z)

For �theory, we assume the standard integer signature; �terms contains fact, all ui, and
the constructor return f , all of which have output sort result f and argument sorts int.

A realistic translation of C code must also handle the absence of a Boolean data type,
operator precedence, and expressions with side effects (e.g., a loop condition --x). All
of this is easily doable1 (and included in our implementation); however, for the sake of
brevity, we will not go into detail here.

Finally, the generated system is optimized to make it more amenable to analysis:2

—rules are combined where possible—for example, replacing a pair of rules 	 →
u(r1, . . . , rn) [ϕ] and u(x1, . . . , xn) → s [true] by 	 → s[x1 := r1, . . . , xn := rn] if u is
not used elsewhere;

—unused arguments of function symbols are removed, such as the second (but not the
first!) argument of u in an LCTRS with rules u(x, y, z) → u(x − 1, y + 1, z ∗ 2) [x > 0]
and u(x, y, z) → return(z) [¬(x > 0)];

—constraints are simplified—for instance, replacing ¬(x > 0) by x ≤ 0 in the preceding
rules.

We will use these optimizations also for the extended transformations of Sections 3.2
through 3.6.

Comment: When time complexity (defined as, e.g., the number of certain calculation
steps) is considered, the argument removal step is dangerous, as it may remove
calculations. In such cases, we would use a different simplification method.

Example 3.2. Optimizing the LCTRS from Example 3.1, we obtain

fact(x) → u2(x, 1, 1) u2(x, z, i) → u2(x, z ∗ i, i + 1) [i ≤ x]
u2(x, z, i) → returnfact(z) [i > x].

Differences from older work. In contrast to existing transformations to integer TRSs
(e.g., Falke and Kapur [2009], Falke et al. [2011], and Furuichi et al. [2008]), we do
not consider basic blocks but simply create rules for every statement; this gives no
substantial difference after optimization. Additionally, return f is new here: in the work
by Falke et al., the return statement is omitted, as they focus on termination, whereas
in Furuichi et al., the final term reduces directly to the return value (e.g., u4(x, z) →
z + x [x ≤ 0]).

3.2. Noninteger Data Types

Integers are not special: as the definition of LCTRSs permits arbitrary theories, we
can handle any data type in C. For instance, we might interpret double as either real

1This is discussed in the formal treatment at http://www.trs.css.i.nagoya-u.ac.jp/c2lctrs/formal.pdf.
2Variations of such preprocessing steps preserving the properties of interest to simplify the output of an
automatic translation are fairly standard in program analysis (e.g., see Albert et al. [2008], Alpuente et al.
[2007], Beyer et al. [2009], Falke et al. [2011], Giesl et al. [2017], and Spoto et al. [2009]).
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numbers or double-precision floating point numbers; this choice is left to the user and
may vary by application. The only requirement is that a suitable theory signature—
with the corresponding SMT solver if the system is to be analyzed automatically—is
available. The translation is straightforward, with the only difficulty that type casts
must be made explicit, and we need to use separate symbols such as +. for double
addition.

Example 3.3. Consider the following C function and its translation.

double halfsum(double thold) {
double ret = 0.0;
for (int d = 2; d < 100;

d *= 2) {
ret += 1.0 / d;
if (ret > thold) return ret;

} }

halfsum(t) → u2(t, 0.0, 2)
u2(t, r, d) → u4(t, r +. 1.0/todouble(d), d) [d < 100]
u2(t, r, d) → returnhalfsum(rnd) [d ≥ 100]
u4(t, r, d) → returnhalfsum(r) [r >. t]
u4(t, r, d) → u2(t, r, d ∗ 2) [r ≤. t]

This demonstrates both an explicit cast and one possible way to handle an undefined
return value (by a fresh variable, which may be instantiated with a random value).

3.3. Error Handling

The transformation of Section 3.1 does not fully reflect the original C program: as
computers have limited memory, integers are internally represented as bitvectors.
To address this, we could change the theory. Rather than using Z, we let Valint =
{MININT, . . . , MAXINT} and make J+, J−, and J∗ wrap around (e.g., J−(MININT, 1) =
MAXINT). The resulting LCTRS has the same rules but acts more closely to the real
program behavior.

However, integer overflow is often indicative of an error. Indeed, in C an overflow for
the type int leads to undefined behavior (which also surfaces in optimizing compilers
such as gcc or clang). To model this (or other instances of undefined behavior in C,
such as a missing return statement), we will reduce to a special error state.

Thus, for every rule ui(x1, . . . , xn) → r [ϕ], if this rule represents a transition where
an error may occur under condition τ , then we split it in two:

ui(x1, . . . , xn) → r [ϕ ∧ ¬τ ] ui(x1, . . . , xn) → error f [ϕ ∧ τ ].

As usual, we simplify the resulting constraint (writing, e.g., x < 0 instead of ¬(x ≥ 0)).

Example 3.4. Continuing Example 3.2, we generate the following rewrite rules.

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i + 1) [i ≤ x ∧ z ∗ i ≤ MAXINT ∧ z ∗ i ≥ MININT ∧ i + 1 ≤ MAXINT]
u2(x, z, i) → errorfact [i ≤ x ∧ (z ∗ i > MAXINT ∨ z ∗ i < MININT ∨ i + 1 >MAXINT)]
u2(x, z, i) → returnfact(z) [i > x]

Note that we could easily model assertions and throw statements for exceptions in the
same way. Division by zero is handled in a similar way.

We can choose whether to add error transitions before or after the simplification step.
The distinction is important: when simplifying, calculations that do not contribute to
the final result are thrown away. In the case of overflow errors, it may seem reasonable
to consider the postsimplification rules, as we did in Example 3.4. In the case of for
instance division by zero, we should add the errors to the presimplification rules.
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Comment: When transforming a function into an LCTRS, we can choose what errors
to model. For instance, we could ignore overflows (effectively assuming unbounded
integers) but still test for division by zero. We could also let error f be a constructor
that takes an argument—for instance, error f : [Errors] ⇒ result f ∈ �terms, where
Errors is a sort with constructors IntegerOverflow, DivisionByZero, and so on.

3.4. Global Variables

Thus far, we have considered very local code: a function never calls other functions
or modifies global variables. By altering the return constructors, we easily change the
latter: we assume that a function symbol is given all global variables that it uses as
input, and that it returns those global variables it alters as output, along with its
return value. This change also allows for nonredundant void functions.

Example 3.5. Consider the following short program and its (simplified) translation.

int best;
int up(int x) {

if (x > best) {best = x; return 1;}
return 0;

}

up(b, x) → returnup(x, 1) [x > b]
up(b, x) → returnup(b, 0) [x ≤ b]

3.5. Function Calls

Next, let us consider function calls. A difficulty is that they may occur in an expression
(e.g., fact(3) + 5) that is not well sorted in the corresponding LCTRS: fact(3) has sort
resultfact, not int. To avoid this issue, and to propagate errors, we split off function
calls occurring inside expressions other than var = func(arg1, . . . , argn) and store their
return value into a temporary variable. Take the following as an example.

int ncr(int x, int y) {
int a = fact(x);
int b = fact(y) * fact(x - y);
return a / b;

}

=⇒
int ncr(int x, int y) {

int a = fact(x);
int tmp1 = fact(y);
int tmp2 = fact(x - y);
int b = tmp1 * tmp2;
return a / b;

}

This change may cause declarations at places in the function where a C compiler would
not accept them, but for the translation, this is no issue. We translate the resulting
function by executing function calls in a separate parameter and using a separate step
to examine the outcome of a function call and assign it to the relevant variable(s).

Example 3.6. The preceding ncr program is transformed to the following optimized
LCTRS (where we test for division by zero but not integer overflow for simplicity).

ncr(x, y) → u2(x, y, fact(x)) u2(x, y, errorfact) → errorncr
u2(x, y, returnfact(k)) → u3(x, y, k, fact(y)) u3(x, y, a, errorfact) → errorncr

u3(x, y, a, returnfact(k)) → u4(x, y, a, k, fact(x − y)) u4(x, y, a, t1, errorfact) → errorncr
u4(x, y, a, t1, returnfact(k)) → errorncr [t1 ∗ k = 0]
u4(x, y, a, t1, returnfact(k)) → returnncr(a div (t1 ∗ k)) [t1 ∗ k 
= 0]

3.6. Statically Allocated Arrays

Finally, let us consider arrays. After seeing Example 1.1 and the way side effects were
handled in Section 3.4, this is largely as expected. For now, we will not consider aliasing.
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To start, we must fix a theory signature and corresponding interpretations. For a
given theory sort ι that admits at least one value, say 0ι, let array(ι) be a new sort and
Iarray(ι) = I∗

ι —so each value corresponds to a finite sequence. We introduce the following
theory symbols (in addition to �int

theory and other desired theories):

—sizeι : [array(ι)] ⇒ int: we define Jsizeι
(a) as the length of the sequence a.

—selectι : [array(ι)× int] ⇒ ι: if a = 〈a0, . . . , an−1〉, we define Jselectι(a, k) = ak if 0 ≤ k < n
and Jselectι (a, k) = 0ι otherwise.

—storeι : [array(ι) × int × ι] ⇒ array(ι): if a = 〈a0, . . . , an−1〉, we define Jstoreι
(a, k, v) =

〈a0, . . . , ak−1, v, ak+1, . . . , an−1〉 if 0 ≤ k < n and Jstoreι
(a, k, v) = a otherwise.

We will usually omit the subscript ι when the sort is clear from context.
Our arrays are different from SMT-LIB (see http://www.smt-lib.org/), where arrays

are functions from one (possibly infinite) domain to another. For program analysis,
finite-length sequences seem practical instead. SMT problems on our arrays can be
translated to SMT-LIB format using an additional integer variable asize for the size of
an array a and universal quantification to set entries outside the array to a fixed value.

We encode lookups a[i] as select(a, i); for assignments a[i] = e, we replace a by store(a,
i, e). To ensure correctness here, we add boundary checks to the constraint and reduce
to error f if such a check is not satisfied. After an assignment, the updated variable is
included in the return value since the underlying memory of the array was altered.

Example 3.7. Consider the following C implementation of the strcpy function, which
copies the contents of original into the array goal, until a 0 is reached.

void strcpy(char goal[], char original[]) {
int i = 0;
for (; original[i] != 0; i++) goal[i] = original[i];
goal[i] = 0;

}

For simplicity, we think of strings as integer arrays (although alternative choices
for Ichar make little difference). The function never updates original but may update
goal, so the return value must include the latter. We obtain the following LCTRS.

strcpy(gl, org) → v(gl, org, 0)
v(gl, org, i) → errorstrcpy [i < 0 ∨ i ≥ size(org)]
v(gl, org, i) → w(gl, org, i) [0 ≤ i < size(org) ∧ select(org, i) = 0]
v(gl, org, i) → errorstrcpy [0 ≤ i < size(org) ∧ select(org, i) 
= 0 ∧ i ≥ size(gl)]
v(gl, org, i) → v(store(gl, i, select(org, i)), org, i + 1)

[0 ≤ i < size(org) ∧ select(org, i) 
= 0 ∧ i < size(gl)]
w(gl, org, i) → errorstrcpy [i < 0 ∨ i ≥ size(gl)]
w(gl, org, i) → returnstrcpy(store(gl, i, 0)) [0 ≤ i < size(gl)]

Here, the notation 0 ≤ i < size(org) is shorthand for 0 ≤ i ∧ i < size(org). Note that
this LCTRS could be further simplified by combining the third rule with the last two
rules.

Comment: It should now be clear how the systems from Section 1.1 have been
translated from C code to LCTRSs. The only deviation is that there we have included
the array arr in the return value of sum1, sum2, and sum4, which is not necessary
as it is not modified in these cases. This was done to allow for a direct comparison
with sum3, where the array is modified. In addition, the return and error symbols in
these examples are not indexed for the same reason.
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3.7. Dynamically Allocated Arrays and Aliasing

The transformation in Section 3.6 allows us to abstract from the underlying memory
model when encoding arrays. This makes analysis easier but does not allow for aliasing
or pointer arithmetic beyond accessing an array element. As a result, properties we
prove about strcpy from Example 3.7 might fail to hold for a call like strcpy(a, a).

As we seek to handle only part of the language, this does not need to be an issue; in
practice, a fair number of programs are written without explicit pointer use and with
easily removable aliasing only. For example, we might replace strcpy(a, a) by strcpy′(a),
and create new rules for strcpy′ by collapsing the variables in the rules for strcpy. To
handle programs with more sophisticated pointer use, including dynamically allocated
arrays, we can encode the memory as a list of arrays and pass this along as a variable.
This is somewhat beyond the scope of this article but is explored later in Appendix A.2.

3.8. Remarks

The treatment in this section is both informal and incomplete: we have discussed only
a fraction of the C language—albeit an important fraction for verification. We believe
that these ideas easily extend further, such as with the switch statement, user-defined
data structures, or standard library functions, as well as compiler-specific choices. It is
important to note that the translation gives several choices. Most pertinently, we saw
the choices of what sort interpretations to use (e.g., whether int should be mapped to
the set of integers or bitvectors) and what errors to consider.

In this article, and in line with our automatic translation at http://www.trs.css.
i.nagoya-u.ac.jp/c2lctrs/, we have chosen to work with real integers and not test for
overflows. We also do not permit aliasing. By avoiding the more sophisticated transla-
tion steps, we obtain LCTRSs that are correspondingly easier to analyze.

The LCTRSs from this transformation are well behaved: all rules are left linear and
nonoverlapping,3 and they have the property that all ground terms can be reduced or
are constructor terms. Rules 	 → r [ϕ] can have variables in r or ϕ that do not occur in
	: this is mostly due to unspecified values in the C code. Where such variables do not
occur—or are removed in the optimization step—the resulting LCTRSs are confluent.

4. REWRITING INDUCTION FOR THE LCTRS

In this section, we adapt the inference rules from Reddy [1990], Falke and Kapur [2012],
and Sakata et al. [2009] to inductive theorem proving with LCTRSs. This provides the
core theory for rewriting induction, strengthened with two generalization techniques
in Section 5.

We start by listing some restrictions that we need to impose on LCTRSs for the
method to work (Section 4.1). Then we provide the theory for the technique (Section 4.2)
and some illustrative examples (Section 4.3). Compared to older definitions of rewriting
induction, we make several changes to best handle the new formalism. We complete by
proving correctness (Section 4.4).

4.1. Restrictions

For rewriting induction to be successful, we need to impose certain restrictions.

Definition 4.1. In the following, we limit interest to LCTRSs that satisfy restrictions
(1) through (4):

3Nonoverlappingness means that for every term s and rule ρ : 	 → r [ϕ] such that s reduces with ρ at the root
position: (a) there are no other rules ρ′ such that s reduces with ρ′ at the root position, and (b) if s reduces
with any rule at a nonroot position q, then q is not a position of 	. For our translations, this holds because
(a) rules with the same defined symbol have either incompatible constraints or nonunifiable arguments, and
(b) in a rule f (	1, . . . , 	n) → r [ϕ], the terms 	i do not contain defined or calculation symbols.
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(1) all core theory symbols are present in �theory: �theory ⊇ �core
theory;

(2) the LCTRS is terminating: there is no infinite reduction s1 →R s2 →R · · · ;
(3) the system is quasi-reductive: i.e., for every ground term s, either s ∈ Terms(Cons,∅)

(we say that s is a ground constructor term) or there is some t such that s →R t;
(4) there are ground terms of every sort occurring in �.

Property 1 is the standard assumption from Section 2. We will need symbols such
as =, ∧, and ⇒ to add new information to a constraint. Termination (property 2)
essentially indicates that a program cannot run indefinitely; this is crucial for our
inductive reasoning, as the method uses induction on an extension of →R on terms.

Property 3 indicates that an evaluation cannot get “stuck”—roughly, that pattern
matching and case analysis are exhaustive. Termination and quasi-reductivity together
ensure that every ground term reduces to a constructor term. This makes it possible
to do an exhaustive case analysis on the rules applicable to an equation and lets us
assume that variables are always instantiated by ground constructor terms.

The last property is natural, as inductive theorem proving makes a statement
on ground terms; there is no point in regarding empty sorts. Together with quasi-
reductivity and termination, this implies that all sorts admit ground constructor terms.

Methods to prove both quasi-reductivity and termination have previously been pub-
lished for different styles of constrained rewriting (e.g., see Falke and Kapur [2012]
for quasi-reductivity and Falke [2009] and Sakata et al. [2011] for termination. These
methods are easily adapted to LCTRSs. Quasi-reductivity is handled in Kop [2017] and
is moreover always satisfied by systems obtained from the transformations in Section 3.
Some basics of termination analysis for LCTRSs are discussed in Kop [2013].

Example 4.2. As a running example in this section, we will consider Rfact, which com-
bines the factorial function from Example 3.2 with a recursive variant obtained from
int fact(int x) { if (x <= 1) return 1; else return x * fact(x - 1); }.

(1) factiter(x) → iter(x, 1, 1) (4) factrec(x) → return(1) [x ≤ 1]
(2) iter(x, z, i) → iter(x, z ∗ i, i + 1) [i ≤ x] (5) factrec(x) →
(3) iter(x, z, i) → return(z) [i > x] mul(x, factrec(x − 1)) [x > 1]

(6) mul(x, return(y)) → return(x ∗ y)

(Function symbols were renamed for readability.) We can choose a signature that in-
cludes �core

theory, and each of the sorts—int, bool, result—clearly admits ground terms (e.g.,
0, false, return(0)). The system was obtained using Section 3 and thus is quasi-reductive.
Termination follows because in the recursive rule (2), the value x−i is decreased, while
bounded from below by 0, and in the recursion in rule (5), x decreases against the bound
1. This could be proved using, for example, interpretations with support for built-in
integers and nontheory symbols [Fuhs et al. 2009], and is automatically handled by
our tool Ctrl.

4.2. Rewriting Induction

We now introduce the notions of constrained equations and inductive theorems.

Definition 4.3. A (constrained) equation is a triple s ≈ t [ϕ] with s and t terms and
ϕ a constraint. We write s � t [ϕ] to denote either s ≈ t [ϕ] or t ≈ s [ϕ]. A substitution
γ respects s ≈ t [ϕ] if γ respects ϕ and Var(s) ∪ Var(t) ⊆ Dom(γ ); it is called a ground
constructor substitution if all γ (x) with x ∈ Dom(γ ) are ground constructor terms.

An equation s ≈ t [ϕ] is an inductive theorem of an LCTRS R if sγ ↔∗
R tγ for any

ground constructor substitution γ that respects this equation.
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Intuitively, if an equation f (−→x ) ≈ g(−→x ) [ϕ] is an inductive theorem, then f and g
define the same function (conditional on ϕ and assuming confluence). As we require
termination, we thus consider total equivalence in the categorization of Godlin and
Strichman [2008]: on all inputs, both programs terminate and return the same values.

To prove that an equation is an inductive theorem, we consider nine inference rules
in Sections 4.2.1 through 4.2.9. Four originate in Reddy [1990]; three are based on
extensions [Bouhoula 1997; Falke and Kapur 2012; Sakata et al. 2009]; and two are
new. All of these rules modify a triple (E,H, b), called a proof state. Here, E is a set of
equations, H is a set of rules with →R∪H terminating, and b ∈ {COMPLETE, INCOMPLETE}.
A rule in H plays the role of an induction hypothesis for “proving” the equations in E
and is called an induction rule. The flag b indicates whether we can use the current
proof state to refute that the initial equation is an inductive theorem; we can do so if
b = COMPLETE.

The definition of these rules is used in the following result, proved in Section 4.4.

THEOREM 4.4. Let an LCTRS with rules R and signature �, satisfying the restrictions
from Definition 4.1, be given. Let E be a finite set of equations and let flag = COMPLETE

if we can confirm that R is confluent and flag = INCOMPLETE otherwise. If (E,∅, flag) �∗
ri

(∅,H, flag′) for some H, flag′, then every equation in E is an inductive theorem of R. If
(E,∅, flag) �∗

ri ⊥, then there is some equation in E that is not an inductive theorem of R.

Example 4.5. We will illustrate the various rules by proving that factrec and factiter
are equivalent on positive input4 by showing that (FCT.A) is an inductive theorem:

(FCT.A) factrec(n) ≈ factiter(n) [n ≥ 1].

Rfact is confluent: as seen in Section 3.8, it is left linear and nonoverlapping, and the
right-hand sides do not introduce fresh variables, so confluence is given by Theorem 4 of
Kop and Nishida [2013]. Thus, we start with the proof state ( { (FCT.A) }, ∅, COMPLETE ).

Let us now define the nine inference rules to reduce proof states.

4.2.1. SIMPLIFICATION. Our first inference rule originates in Reddy [1990] and can be
considered one of the core rules of rewriting induction.

Definition 4.6. If s ≈ t [ϕ] →R∪H u ≈ t [ψ], where ≈ is seen as a fresh constructor for
the purpose of constrained term reduction,5 then we may derive

(E � {(s � t [ϕ])},H, b) �ri (E ∪ {(u ≈ t [ψ])},H, b).

This inference rule allows us to reduce one side of an equation. This is altered from
Reddy’s definition by using constrained rather than normal reduction.

Example 4.7. Following Example 4.5, we observe that factiter(n) can be reduced by
the unconstrained rule (1). Thus, using SIMPLIFICATION, we obtain the proof state:

({ (FCT.B) : iter(n, 1, 1) ≈ factrec(n) [n ≥ 1] }, ∅, COMPLETE).

Here we reduce the right-hand side of the equation (recall that s � t in the rule means
that s ≈ t or t ≈ s); the reduced term moves to the left-hand side of the new equation.

4We limit interest to positive input for demonstration purposes only: these functions give the same result on
all input, but considering only n ≥ 1 allows us to apply the inference rules in a convenient order.
5It does not suffice if s [ϕ] →R u [ψ]: when reducing constrained terms, unused variables may be manipulated
at will, which causes problems if they are used in t. For example,

f (x + 0) [x > y] ∼ f (x + 0) [z = x + 0] →base f (z) [z = x + 0] ∼ f (x) [x < y],

but we should certainly not replace an equation f (x + 0) ≈ g(y) [x > y] by f (x) ≈ g(y) [x < y].
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Next, observe that iter(n, 1, 1) can be reduced by rule (2) if n ≥ 1; SIMPLIFICATION then
gives

({ (FCT.C) : iter(n, 1 ∗ 1, 1 + 1) ≈ factrec(n) [n ≥ 1] }, ∅, COMPLETE).

Recall that constrained reduction also allows for steps with calculation rules (e.g.,
see Example 2.16). The added complexity is that we must decide how to handle the
fresh variable that these rules introduce. In this article, we use the following strategy:

—if s →calc u, then s ≈ t [ϕ] is simplified to u ≈ t [ϕ]—for example, f(0 + 1) ≈ r [ϕ]
reduces to f(1) ≈ r [ϕ];

—a calculation containing variables can be replaced by a fresh variable, which is defined
in the (updated) constraint—for example, f(x + 1) ≈ r [ϕ] reduces to f(y) ≈ r [ϕ ∧ y =
x + 1]. If such a definition already occurs in the constraint, the relevant variable is
used instead—for example, f(x+1) ≈ r [ϕ∧y = x+1] reduces to f(y) ≈ r [ϕ∧y = x+1].

Example 4.8. The proof state from Example 4.7 is further simplified to

({ (FCT.D) : iter(n, 1, 2) ≈ factrec(n) [n ≥ 1] }, ∅, COMPLETE).

4.2.2. EXPANSION. Our second core rule also originates from Reddy [1990] but has been
more heavily adapted to support irregular rules.

Definition 4.9. Let s, t be terms and ϕ a constraint, all with variables distinct from
those in R (we can always rename the variables in the rules to support this), and p
a position of s. Let Expd(s ≈ t [ϕ], p) be a set of equations containing, for all rules
	 → r [ψ] ∈ R such that 	 is unifiable with s|p with most general unifier γ , an equation
s′ ≈ t′ [ϕ′], where sγ ≈ tγ [(ϕγ ) ∧ (ψγ )] →R s′ ≈ t′ [ϕ′] with rule 	 → r [ψ] at position
1 · p. Here, as in SIMPLIFICATION, ≈ is seen as a fresh constructor for the reduction. If s|p
is basic (i.e., s|p = f (s1, . . . , sn) with f ∈ D and all si constructor terms), we may derive

(E � {s � t [ϕ]},H, b) �ri (E ∪ Expd(s ≈ t [ϕ], p),H, b).

If, moreover, R ∪H ∪ {s → t [ϕ]} is terminating, we may even derive

(E � {s � t [ϕ]},H, b) �ri (E ∪ Expd(s ≈ t [ϕ], p),H ∪ {s → t [ϕ]}, b).

Intuitively, this inference rule uses narrowing for a case analysis: Expd generates all
resulting equations if a ground constructor instance of s ≈ t [ϕ] is reduced at position
p of s. In addition, we save the current equation as a rule to take an induction step.

Example 4.10. Following Example 4.8, we consider which rules may apply to an
instance of factrec(n) with n ≥ 1. For Expd(factrec(n) ≈ iter(n, 1, 2) [n ≥ 1], ε), we choose{

(FCT.E): return(1) ≈ iter(n, 1, 2) [n ≥ 1 ∧ n ≤ 1],
(FCT.F): mul(n, factrec(n− 1)) ≈ iter(n, 1, 2) [n ≥ 1 ∧ n > 1]

}
.

In both cases, we used the unifier γ = [x := n]. If we write (FCT.D−1) for the rule
generated from the inverse of (FCT.D) (so the rule factrec(n) → iter(n, 1, 2) [n ≥ 1]),
then R ∪ {(FCT.D−1)} is terminating as the new rule does not cause mutual recursion
between iter and factrec. We continue with ( {(FCT.E), (FCT.F)}, {(FCT.D−1)}, COMPLETE ).
Now we can show the second kind of calculation step, using SIMPLIFICATION on (FCT.F),
which gives({

(FCT.E): return(1) ≈ iter(n, 1, 2) [n ≥ 1 ∧ n ≤ 1],
(FCT.G): mul(n, factrec(m)) ≈ iter(n, 1, 2) [n > 1 ∧ m= n− 1]

}
,
{(FCT.D−1)},

COMPLETE

)
.

Here, we also removed the redundant clause n ≥ 1, which is allowed by definition of →R
on constrained terms. As n ≥ 1 ∧ n ≤ 1 implies that n = 1, we may use SIMPLIFICATION
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with rule (3) on (FCT.E), and with rule (2) followed by calculations on (FCT.G), to get({
(FCT.H): return(1) ≈ return(1) [n = 1],
(FCT.I): iter(n, 2, 3) ≈ mul(n, factrec(m)) [n > 1 ∧ m= n− 1]

}
,
{(FCT.D−1)},

COMPLETE

)
.

Now we can use “induction”: we eliminate the occurrence of factrec with a SIMPLIFICATION

step using the induction rule (FCT.D−1) and substitution [n := m]. This gives({
(FCT.H): return(1) ≈ return(1) [n = 1],
(FCT.J): mul(n, iter(m, 1, 2)) ≈ iter(n, 2, 3) [n > 1 ∧ m= n− 1]

}
,
{(FCT.D−1)},

COMPLETE

)
.

Note that the choice of Expd is nondeterministic, as it uses reduction of constrained
terms. The most natural choice for Expd(s ≈ t [ϕ], p)—which we use in examples—is

{ s[r]pγ ≈ tγ [(ϕγ ) ∧ (ψγ )] | 	 → r [ψ] ∈ R, s|p unifies with 	 with mgu γ }.
However, for irregular rules in particular, it may be strategic to choose a different set.
Consider, for example, a (nonconfluent) LCTRS with rules f (x) → g(y) [x > 0 ∧ x > y]
and f (x) → g(y) [x ≤ 0∧x ≤ y]. With the choice for Expd(s ≈ t [ϕ], p) above, an equation
f (x) ≈ g(0) [true] results in { g(y) ≈ g(0) [x > 0 ∧ x > y], g(y) ≈ g(0) [x ≤ 0 ∧ x ≤ y] }. If
g is a constructor, neither of these equations can be handled. Using the full definition
of EXPANSION, we can choose g(0) ≈ g(0) [true] for both equations.

Also note that there is no choice in the orientation of the rule added to H: this is
determined by the side of the equation on which the expansion was applied. Thus, in
Example 4.10, we were not allowed to add (FCT.D) instead of (FCT.D−1).

Our definition of EXPANSION differs from both its original and existing work on con-
strained rewriting induction. To start, those works define Expd(s ≈ t [ϕ], p) simply as
the “natural choice” that we suggested. Second, we included a case where no rule is
added to allow for progress when adding the rule might cause nontermination. Forms
of this case appear as a separate rule in other work, such as CASE ANALYSIS in Bouhoula
[1997] and REWRITE/PARTIAL SPLITTING in Bouhoula and Jacquemard [2008a, 2008b]. A
weaker form with constraints is given in Falke and Kapur [2012] (CASE-SIMPLIFY).

4.2.3. DELETION. The last of the core rules serves to remove solved equations from E .

Definition 4.11. If s = t or ϕ is not satisfiable, we can delete s ≈ t [ϕ] from E :

(E � {s ≈ t [ϕ]},H, b) �ri (E,H, b).

Compared to the corresponding rule in Reddy [1990], the unsatisfiability case is new;
it is similar to the corresponding rules in Sakata et al. [2009] and Falke and Kapur
[2012].

Example 4.12. Following Example 4.10, the left- and right-hand sides of (FCT.H)
are the same, so we may remove the equation with DELETION, obtaining ( { (FCT.J) },
{ (FCT.D−1) }, COMPLETE ). We will see the other form of DELETION later in Example 4.18.

4.2.4. POSTULATE. Sometimes it is useful to make the problem seemingly harder. To
this end, we consider the last inference rule from Reddy [1990].

Definition 4.13. For any set of equations E ′, we can derive

(E,H, b) �ri (E ∪ E ′,H, INCOMPLETE).

The POSTULATE rule allows us to add additional equations to E (although at a price:
we cannot conclude nonequivalence after adding a potentially unsound equation). The
reason to do so is that in proving the equations in E ′ to be inductive theorems, we may
derive new induction rules. These can then be used to simplify the elements of E .
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Example 4.14. Following Example 4.12, EXPANSION followed by SIMPLIFICATION gives

(FCT.K): mul(n, iter(m, 2, 3)) ≈ iter(n, 6, 4) [n ≥ 3 ∧ m= n− 1].

But now a pattern starts to arise. Expanding and fully simplifying again, we obtain

(FCT.L): mul(n, iter(m, 6, 4)) ≈ iter(n, 24, 5) [n ≥ 4 ∧ m= n− 1].

And so on. Here, (FCT.K) cannot be handled by the induction rule (FCT.J−1), nor can
(FCT.L) be handled by (FCT.K−1). We have a divergence: a sequence of increasingly
complex equations, each generated from the same leg in an EXPANSION (see also the
divergence critic in Walsh [1996]). Yet the previous induction rules never apply to the
new equation. This suggests that we need a lemma equation. We use POSTULATE to get⎛

⎜⎝
⎧⎪⎨
⎪⎩

(FCT.J): mul(n, iter(m, 1, 2)) ≈ iter(n, 2, 3)
[n > 1 ∧ m= n− 1]

(FCT.M): mul(n, iter(m, x, y)) ≈ iter(n, x′, y′)
[n ≥ y ∧ m= n− 1 ∧ y′ = y + 1 ∧ x′ = x ∗ y]

⎫⎪⎬
⎪⎭ ,

{(FCT.D−1)},
INCOMPLETE

⎞
⎟⎠ .

Using EXPANSION on the right-hand of (FCT.M), we have⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(FCT.J): mul(n, iter(m, 1, 2)) ≈ iter(n, 2, 3)
[n > 1 ∧ m= n− 1]

(FCT.N): iter(n, x′ ∗ y′, y′ + 1) ≈ mul(n, iter(m, x, y))
[n ≥ y ∧ m= n− 1 ∧ y′ = y + 1 ∧ x′ = x ∗ y ∧ y′ ≤ n]

(FCT.O): return(x′) ≈ mul(n, iter(m, x, y))
[n ≥ y ∧ m= n− 1 ∧ y′ = y + 1 ∧ x′ = x ∗ y ∧ y′ > n]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

{
(FCT.D−1)
(FCT.M−1)

}
,

INCOMPLETE

⎞
⎟⎟⎟⎟⎟⎠

.

But now we have added (FCT.M−1) as an induction rule. As a result—since n > 1
clearly implies that n ≥ 2—we can use SIMPLIFICATION with a substitution [n := n, x :=
1, y := 2, x′ := 2, y′ := 3] to reduce (FCT.J) to the equation mul(n, iter(m, 1, 2)) ≈
mul(n, iter(m, 1, 2)) [. . . ], which we may immediately remove by DELETION. We continue
with the proof state ({ (FCT.N), (FCT.O) }, { (FCT.D−1), (FCT.M−1) }, INCOMPLETE).

Although the need to choose arbitrary new equations for use in POSTULATE may seem
somewhat problematic, this is actually a key step. Complex theorems typically require
more than straight induction, both in our setting and in mathematical proofs in general.
Thus, generation of suitable lemma equations E ′ is not only part, but even at the heart,
of inductive theorem proving. Hence, this subject has been extensively investigated
[Bundy et al. 2005; Kapur and Sakhanenko 2003; Kapur and Subramaniam 1996;
Nakabayashi et al. 2010; Urso and Kounalis 2004; Walsh 1996], and a large variety of
lemma generation techniques exist, at least in the setting without constraints.

4.2.5. GENERALIZATION. A very typical use of POSTULATE is to generalize a problematic
equation. For simplicity, we add a shortcut to do this in one step.

Definition 4.15. If for all substitutions γ that respect ϕ there is a substitution δ that
respects ψ with sγ = s′δ and tγ = t′δ, then we can derive

(E � {s ≈ t [ϕ]},H, b) �ri (E ∪ {s′ ≈ t′ [ψ]},H, INCOMPLETE).

This inference rule is rarely necessary: we could usually add s′ ≈ t′ [ψ] using POSTU-
LATE and use the resulting induction rules to eliminate s ≈ t [ϕ], as we did in Exam-
ple 4.14. By generalizing instead, we avoid extra steps, and intuitively we strengthen an
induction statement rather than add a separate lemma. Without constraints, GENERAL-
IZATION can be seen as a combination of POSTULATE and the SUBSUMPTION rule in Bouhoula
[1997]. As there are several results for generalizing equations in the literature [Bundy
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et al. 1993, 2005; Basin and Walsh 1992; Walsh 1996; Urso and Kounalis 2004], the
combination is useful beyond just this article.

Example 4.16. In Example 4.14, we could have used GENERALIZATION immedi-
ately to move from the proof state ({ (FCT.J) }, { (FCT.D−1) }, INCOMPLETE) to
({ (FCT.M) }, { (FCT.D−1) }, INCOMPLETE).

4.2.6. EQ-DELETION. The following rule, which was adapted from Sakata et al. [2009],
provides a link between the equation part s ≈ t and the constraint.

Definition 4.17. Let C be an arbitrary context with n holes (C may contain symbols
in �theory). If all si, ti ∈ Terms(�theory, Var(ϕ)), then we can derive

(E � {C[s1, . . . , sn] � C[t1, . . . , tn] [ϕ]},H, b) �ri

(E ∪ {C[s1, . . . , sn] ≈ C[t1, . . . , tn] [ϕ ∧ ¬(
∧n

i=1 si = ti)]},H, b).

Intuitively, if
∧n

i=1 si = ti holds, then C[s1, . . . , sn]γ ↔∗
Rcalc

C[t1, . . . , tn]γ , so we are
done. EQ-DELETION excludes this case from the equation. In combination with DELETION,
this rule gives a more general variation of THEORY� in Falke and Kapur [2012].

Example 4.18. Continuing from Example 4.14 (or Example 4.16), we observe that
n ≥ y, y′ = y + 1 and y′ > n together imply n = y, and with m = n− 1 we thus have
y > m as well. Therefore, SIMPLIFICATION on (FCT.O) by rule (3) followed by (6) gives

(FCT.P): return(n∗ x) ≈ return(x′) [n = y ∧ m= n− 1 ∧ y′ = y + 1 ∧ x′ = x ∗ y].

We can use EQ-DELETION with the context C[�] = return(�) to replace (FCT.P) by

(FCT.Q): return(n∗x) ≈ return(x′) [n = y∧m= n−1∧ y′ = y+1∧x′ = x∗ y∧¬(n∗x = x′)]

As n = y and x′ = x ∗ y together imply that n ∗ x = x′, the constraint of this
equation is not satisfiable. We may remove it using DELETION, giving the proof state
({ (FCT.N) }, { (FCT.D−1), (FCT.M−1) }, INCOMPLETE).

EQ-DELETION is among the core rules for constrained rewriting induction: almost all
inductive proofs use it, in contrast to the remaining three inference rules.

Example 4.19. To complete our example, consider (FCT.N). As y + 1 = y′ ≤ n∧ m=
n− 1 implies that y ≤ m, we may apply SIMPLIFICATION with rule (2) to replace it by

(FCT.R): mul(n, iter(m, x ∗ y, y + 1)) ≈ iter(n, x′ ∗ y′, y′ + 1)
[n ≥ y ∧ m= n− 1 ∧ y′ = y + 1 ∧ x′ = x ∗ y ∧ y′ ≤ n] .

Then, using SIMPLIFICATION with calculations (and observing that both x ∗ y and y + 1
are “defined” in the constraint, as discussed in Section 4.2.1), we get

(FCT.S): mul(n, iter(m, x′, y′)) ≈ iter(n, x′′, y′′)
[n ≥ y′ ∧ m= n− 1 ∧ x′ = x ∗ y ∧ x′′ = x′ ∗ y′ ∧ y′′ = y′ + 1] .

(We removed the clauses with y from the constraint, as y does not occur in the equation
part.) But now the induction rule (FCT.M−1) applies! As this rule is irregular, we must
be careful. We use the substitution γ = [n := n, m := m, x′′ := x′, y′ := y′′, x := x′, y :=
y′], which also affects variables not occurring in the left-hand side. The substituted
constraint for the rule is n ≥ y′ ∧ m= n− 1 ∧ y′′ = y′ + 1 ∧ x′′ = x′ ∗ y′, which is indeed
implied by the constraint of (FCT.S). Using SIMPLIFICATION, we thus obtain({

(FCT.T): mul(n, iter(m, x′, y′)) ≈ mul(n, iter(m, x′, y′))
[n ≥ y′ ∧ m= n− 1 ∧ x′ = x ∗ y ∧ x′′ = x′ ∗ y′ ∧ y′′ = y′ + 1]

}
,

{· · · } ,
INCOMPLETE

)
.
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As the left- and right-hand sides of the remaining equation are the same, we may
remove it using DELETION. This leaves a proof state of the form (∅,H, INCOMPLETE), so by
Theorem 4.4, the equation factrec(n) ≈ factiter(n) [n ≥ 1] is an inductive theorem.

4.2.7. CONSTRUCTOR. Where Falke and Kapur [2012] and Sakata et al. [2009] focus on
systems with only theory symbols and defined symbols, here we are also interested in
nontheory constructors, such as error f and return f . To support this, we add the following
inference rule.

Definition 4.20. If f is a constructor, we can derive

(E � { f (s1, . . . , sn) ≈ f (t1, . . . , tn)[ϕ]},H, b) �ri (E ∪ {si ≈ ti [ϕ] | 1 ≤ i ≤ n},H, b).

The CONSTRUCTOR rule originates in Bouhoula [1997], where it is called POSITIVE

DECOMPOSITION, although variations occur in earlier work on implicit induction, such as
Huet and Hullot [1982]. It is used to split up a large equation into smaller problems.
This inference rule is particularly useful in applications where a recursive structure,
such as a list, is inductively built up but will also be invaluable as part of a disproof.

Example 4.21. Suppose that in Example 4.5 we had started with
(BAD.A): factiter(x) ≈ factrec(x − 1) [true]. Following some expansions and simplifi-
cations, we arrive at({

(BAD.B): return(2) ≈ return(1) [x = 2]
(BAD.C): iter(x, 1, 1) ≈ factrec(y) [y = x − 1 ∧ y > 1]

}
,H, COMPLETE

)

(for some H). We can use CONSTRUCTOR to replace (BAD.B) by (BAD.D): 2 ≈ 1 [x = 2].

4.2.8. DISPROVE. Recall that to show that an equation is not an inductive theorem, we
must derive ⊥ from a COMPLETE proof state. For this, we use DISPROVE.

Definition 4.22. Suppose that � s : ι and one of the following holds:

—s, t ∈ Terms(�theory,V), ι is a theory sort, and ϕ ∧ s 
= t is satisfiable;
—s = f (−→s ) and t = g(−→t ) with f, g distinct constructors and ϕ satisfiable;
—s ∈ V \ Var(ϕ), ϕ is satisfiable, at least two different constructors have output sort ι,

and either t is a variable distinct from s or t has the form g(−→t ) with g ∈ Cons.

Then we may derive the following.

(E � {s � t [ϕ]},H, COMPLETE) �ri ⊥
The first case of this rule corresponds to THEORY� in Falke and Kapur [2012] and

Theorem 7.2 in Sakata et al. [2009]; note that the restriction to theory sorts only
excludes the case where s and t are nonlogical variables. The second case corresponds
to POSITIVE CLASH in Bouhoula [1997]. The third case is new in rewriting induction but
appears in Huet and Hullot [1982], an implicit induction method based on completion.

Example 4.23. Following Example 4.21, we observe that x = 2∧ 2 
= 1 is satisfiable.
Thus, by DISPROVE, we reduce ({ (BAD.D), (BAD.C) }, H, COMPLETE) to ⊥. By confluence
of Rfact, we see that factiter(x) and factrec(x−1) have different normal forms for some x.

4.2.9. COMPLETENESS. A downside of POSTULATE and GENERALIZATION is the potential
loss of the completeness flag. To weaken this problem—and empower automatic tools
to combine the search for a proof and a disproof—we add our final inference rule.

Definition 4.24. For any set of equations E and E ′ ⊆ E, we can derive the following:

If (E,H, COMPLETE) �∗
ri (E ′,H′, INCOMPLETE),

then (E,H, COMPLETE) �ri (E ′,H′, COMPLETE).
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Essentially, COMPLETENESS allows us to return the completeness flag that was lost
due to a POSTULATE or GENERALIZATION step, once we have managed to remove all the
added/generalized lemma equations. In practice, a tool or human prover might have a
derivation that could be denoted (E,H, COMPLETE) �ri (POSTULATE) (E∪E ′,H, INCOMPLETE) �ri

· · · �ri (E,H∪H′, INCOMPLETE) �ri (COMPLETENESS) (E,H∪H′, COMPLETE) by remembering the
set E where the completeness flag was lost.

Example 4.25. Recall Example 4.14. Starting in ({ (FCT.J) }, { (FCT.D−1) }, COMPLETE),
we lost completeness by adding a lemma equation. Then, after using EXPANSION, we ar-
rived at ({ (FCT.J), (FCT.N), (FCT.O) }, { (FCT.D−1), (FCT.M−1) }, INCOMPLETE). Applying
the proof steps of Examples 4.18 and 4.19 without touching (FCT.J), we could reduce
this state to ({ (FCT.J) }, { (FCT.D−1), (FCT.M−1) }, INCOMPLETE). But the only equation
(FCT.J) in this set is the one we started with. Thus, we may restore the completeness
flag, resulting in ({ (FCT.J) }, { (FCT.D−1), (FCT.M−1) }, COMPLETE).

There are many other potential inference rules that we could consider, as various
extensions of the base method have been studied in the literature (e.g., see Bouhoula
[1997]). For now, we stick to these nine rules and leave the remainder to future work.

4.3. Examples

The running example in Section 4.2 gives a good general idea of the power of the method
and the way that it is applied. In this section, we present some further examples. For
brevity, we only list the equations E in each step, not the completeness flag or induction
rules H. Unless stated otherwise, these induction rules are not applicable to new
equations.

Example 4.26. Let us look at an assignment to implement strlen, a string function
that operates on 0-terminated char arrays. As char is a numeric data type, we use
integer arrays in the LCTRS translation (although another underlying sort Ichar would
make little difference). The example function and its LCTRS translation are as follows.

int strlen(char *s){
for(int i = 0;;i++){

if(s[i] == 0)
return i;

}
}

(1) strlen(x) → u(x, 0)
(2) u(x, i) → error [i < 0 ∨ i ≥ size(x)]
(3) u(x, i) → return(i) [0 ≤ i < size(x) ∧ select(x, i) = 0]
(4) u(x, i) → u(x, i + 1) [0 ≤ i < size(x) ∧ select(x, i) 
= 0]

Note that the bounds checks guarantee termination. To see that strlen does what we
would expect it to do, we want to know that for valid C strings, strlen(a) returns the first
integer i such that a[i] = 0. Following Section 1.2.4, this corresponds to the following
equation:

(LEN.A) strlen(x) ≈ return(n)
[0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧ select(x, n) = 0].

Here we use bounded quantification, which, as described in Section 2.2, can be seen as
syntactic sugar for an additional predicate; the underlying LCTRS could, for example,
use a symbol nonzero and replace ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) by nonzero(x, n) in
the constraint.

We first use SIMPLIFICATION with rule (1), which gives (LEN.B):

u(x, 0) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧ select(x, n) = 0].
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We continue with EXPANSION, again on the left-hand side. Since the constraint implies that
0 < size(x), the error case (2) is unsatisfiable, so we delete it, which leaves

(LEN.C) return(0) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧
select(x, n) = 0 ∧ 0 ≤ 0 < size(x) ∧ select(x, 0) = 0]

(LEN.D) u(x, 0 + 1) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧
select(x, n) = 0 ∧ 0 ≤ 0 < size(x) ∧ select(x, 0) 
= 0].

As the constraint of (LEN.C) implies that n = 0, we can remove (LEN.C) using
EQ-DELETION and DELETION. (LEN.D) is simplified with a calculation:

(LEN.E) u(x, 1) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧
select(x, n) = 0 ∧ 0 < size(x) ∧ select(x, 0) 
= 0],

which we expand again (once more skipping the error case due to unsatisfiability):
(LEN.F) return(1) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧

select(x, n) = 0 ∧ 0 < size(x) ∧ select(x, 0) 
= 0 ∧ 0 ≤ 1 < size(x) ∧ select(x, 1) = 0]
(LEN.G) u(x, 1 + 1) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧

select(x, n) = 0 ∧ 0 < size(x) ∧ select(x, 0) 
= 0 ∧ 0 ≤ 1 < size(x) ∧ select(x, 1) 
= 0].

The constraint of (LEN.F) implies that n = 1, so we easily remove this equation. (LEN.G) is
simplified using a calculation and then expanded again:

(LEN.H) return(2) ≈ return(n) [· · · ∧ 2 < size(x) ∧ select(x, 2) = 0]
(LEN.I) u(x, 2 + 1) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0)

∧ select(x, n) = 0 ∧ 0 < size(x) ∧ select(x, 0) 
= 0 ∧ 1 <
size(x) ∧ select(x, 1) 
= 0 ∧ 2 < size(x) ∧ select(x, 2) 
= 0].

We drop (LEN.H) easily. Simplifying (LEN.I) and reformulating its constraint gives

(LEN.J) u(x, 3) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧
select(x, n) = 0 ∧ 0 ≤ 2 < size(x) ∧ ∀ j ∈ {0, . . . , 2}(select(x, j) 
= 0)].

Note that we grouped together the 
= 0 statements into a quantification, which looks a lot like
the other quantification in the constraint. Now let us generalize! We will use the generalized
equation (LEN.K): u(x, k) ≈ return(n) [ϕ], where

ϕ : k = m+ 1 ∧ 0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧
select(x, n) = 0 ∧ 0 ≤ m < size(x) ∧ ∀ j ∈ {0, . . . , m}(select(x, j) 
= 0).

Obviously, (LEN.J) is an instance of (LEN.K); we use EXPANSION to obtain

(LEN.L) error ≈ return(n) [ϕ ∧ (k < 0 ∨ k ≥ size(x))]
(LEN.M) return(k) ≈ return(n) [ϕ ∧ 0 ≤ k < size(x) ∧ select(x, k) = 0]
(LEN.N) u(x, k+ 1) ≈ return(n) [ϕ ∧ 0 ≤ k < size(x) ∧ select(x, k) 
= 0].

The two ∀ statements in ϕ, together with select(x, n) = 0, imply that m < n, so k ≤ n. Conse-
quently, (LEN.L) has an unsatisfiable constraint and may be deleted: k < 0 cannot hold because
k = m+ 1 and 0 ≤ m, nor k ≥ size(x) because k ≤ n and n < size(x).

For (LEN.M), the two ∀ statements together with select(x, k) = 0 imply that n −
1 < k, so n ≤ k. Thus, n = k. EQ-DELETION gives an equation with an unsatisfiable
constraint, which we remove using DELETION. As for (LEN.N), we use SIMPLIFICATION

with a calculation and reformulate the constraint to obtain
(LEN.O) u(x, p) ≈ return(n) [p = k+ 1 ∧ select(x, n) = 0 ∧ 0 ≤ n < size(x) ∧

∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧ 0 ≤ k < size(x) ∧
∀ j ∈ {0, . . . , k}(select(x, j) 
= 0) ∧ some constraints on m].

This equation is simplified to an equation of the form return(n) ≈ return(n) [. . .] using
the induction rule obtained from (LEN.K); we complete with DELETION.

Example 4.27. We consider Rsum, the LCTRS with the two correct implementations
of the motivating Example 1.1—that is, rules (1a) through (1d) and (4a) through (4e).
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The rules are terminating because in the recursive rule (1c), n− i decreases in every
step and is bounded from below by 0, and in rule (4c), the value k decreases against the
bound 0.

To prove equivalence of these implementations when the given length is within the
array bounds, we must show that (ARR.A) is an inductive theorem:

(ARR.A) sum1(a, k) ≈ sum4(a, k) [0 ≤ k ≤ size(a)].

The derivation follows a similar pattern as with factorial: we first simplify the left-hand
side using rule (1a), then expand on the right and use the induction rule, sum4(a, k) →
u(a, k, 0, 0) [0 ≤ k ≤ size(a)], to eliminate the remaining occurrence of sum4. This gives

w(n, u(a, k′, 0, 0)) ≈ u(a, k, r, 1)
[k′ = k− 1 ∧ 0 ≤ k′ < size(a) ∧ n = select(a, k′) ∧ r = 0 + select(a, 0)].

Continuing to expand and simplify, we easily remove the equations resulting from rules
(1b) and (1d) in every step, but the recursive rule (1c) causes a divergence.

u(a, k, r2, 3) ≈ w(n, u(a, k′, r1, 2)) [k′ =k−1 ∧ 2 < k ≤ size(a) ∧ r2 = r1 + select(a, 1) ∧ . . .]
u(a, k, r3, 4) ≈ w(n, u(a, k′, r2, 3)) [k′ =k−1 ∧ 3 < k ≤ size(a) ∧ r3 = r2 + select(a, 2) ∧ . . .]
u(a, k, r4, 5) ≈ w(n, u(a, k′, r3, 4)) [k′ =k−1 ∧ 4 < k ≤ size(a) ∧ r4 = r3 + select(a, 3) ∧ . . .]

We can easily complete after generalizing any of these equations to

(ARR.GEN): u(a, k, r, i) ≈ w(n, u(a, k′, r′, i′)) [k′ = k− 1 ∧ 0 ≤ i′ < k ≤ size(a) ∧
i′ = i − 1 ∧ r = r′ + select(a, i′) ∧ n = select(a, k′)].

Example 4.28. Recall strcpy from Example 3.7 and the analysis rules and equation
from Example 1.2. The inductive proof follows roughly the same lines as the one for
strlen and is found automatically by our tool (see Section 6). We reach a divergence in
equations such as follows:

• test(x, n, v(a, x, 1)) ≈ true [0 ≤ n < size(x) ∧ n < size(a) ∧ select(x, n) = 0 ∧
∀i ∈ {0, . . . , n− 1}(select(x, i) = 0) ∧ select(x, 0) 
= 0 ∧ select(x, 0) = select(a, 0)]

• test(x, n, v(b, x, 2)) ≈ true [0 ≤ n < size(x) ∧ n < size(b) ∧ select(x, n) = 0 ∧
∀i ∈ {0, . . . , n− 1}(select(x, i) = 0) ∧ select(x, 0) 
= 0 ∧ select(x, 0) = select(b, 0) ∧

select(x, 1) 
= 0 ∧ select(b, 1) = select(x, 1)]
• test(x, n, v(c, x, 3)) ≈ true [· · · ∧ select(c, 2) 
= 0 ∧ select(c, 2) = select(x, 2)].

To generalize, we abstract 1, 2, 3 by k ≥ 0, collect similar statements into quantifica-
tions, and remove the endpoint. We quickly complete after this GENERALIZATION to

test(x, n, v(c, x, k)) ≈ true [0 ≤ n < size(x) ∧ n < size(c) ∧ select(x, n) = 0 ∧ 0 ≤ k ∧
∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧ ∀i ∈ {0, . . . , k− 1}(select(x, i) 
= 0) ∧

∀i ∈ {0, . . . , k− 1}(select(c, i) = select(x, i))].

Example 4.29. Let us compare two implementations of the Fibonacci function.

(1) fibrec(x) → 0 [x ≤ 0]
(2) fibrec(1) → 1
(3) fibrec(x) → plus(fibrec(x − 1), fibrec(x − 2)) [x ≥ 2]
(4) plus(return(x), return(y)) → return(x + y)
(5) fibiter(x) → iter(x, 1, 0, 1)
(6) iter(x, i, y, z) → iter(x, i + 1, z, y + z) [x ≥ i]
(7) iter(x, i, y, z) → return(y) [x < i]
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Starting with the equation fibrec(x) ≈ fibiter(x) [true] eventually results in a divergence.

iter(n, 3, 1, 2) ≈ plus(iter(m, iter(m, 2, 1, 1)), iter(k, iter(k, 1, 0, 1))) [m= n− 1 ∧ k = n− 2]
iter(n, 4, 2, 3) ≈ plus(iter(m, iter(m, 3, 1, 2)), iter(k, iter(k, 2, 1, 1))) [m= n− 1 ∧ k = n− 2]
iter(n, 5, 3, 5) ≈ plus(iter(m, iter(m, 4, 2, 3)), iter(k, iter(k, 3, 1, 2))) [m= n− 1 ∧ k = n− 2]

The proof is easily finished by using the following generalization.

iter(n3, i3, z3, z4) ≈ plus(iter(n2, i2, z2, z3), iter(n1, i1, z1, z2))
[n2 = n3 − 1 ∧ n1 = n2 − 2 ∧ i3 = i2 + 1 ∧ i2 = i1 + 1 ∧ z3 = z1 + z2 ∧ z4 = z2 + z3]

Thus, we can show equivalence of functions with wildly different time complexities
(fibrec’s running time is exponential in the input value, whereas that of fibiter is linear).

Example 4.30. Finally, we consider an example that Section 6, item 2 of Godlin
and Strichman [2008] describes as beyond their method. Here, two recursive impera-
tive programs calculating

∑n
i=1 i are compared. The methods from Section 3 yield the

following LCTRS:

(1) f(n) → return(n) [n ≤ 0] (4) g(n) → return(n) [n ≤ 1]
(2) f(n) → u(n, f(n−1)) [n > 0] (5) g(n) → v(n, g(n−1)) [n > 1]
(3) u(n, return(m)) → return(n+m) (6) v(n, return(m)) → return(n+m).

Starting with the equation f(x) ≈ g(x) [true] eventually results in a divergence:

(CR.A): u(x, u(y1, g(y2))) ≈ v(x, u(z1, g(z2)))
[x > 1 ∧ y1 = x − 1 ∧ z1 = x − 1 ∧ y2 = y1 − 1 ∧ z2 = z1 − 1]

(CR.B): u(x, u(y1, u(y2, g(y3)))) ≈ v(x, u(z1, u(z2, g(z3))))
[x > 1 ∧ y1 = x − 1 ∧ z1 = x − 1 ∧ y2 = y1 − 1 ∧ z2 = z1 − 1 ∧ y3 = y2 − 1 ∧ z3=z2− 1]

(CR.C): u(x, u(y1, u(y2, u(y3, g(y4))))) ≈ v(x, u(z1, u(z2, u(z3, g(z4))))) [. . . ].

As the constraints imply that each yi = zi, these equations can all be generalized to
u(x, u(y, z)) ≈ v(x, u(y, z)) [x > 1]. Again, the proof is quickly completed.

4.4. Soundness and Completeness of Rewriting Induction

We now give an intuition on how to prove Theorem 4.4. The complete proof can be
found in Appendix B. We follow the proof method of Sakata et al. [2009], which builds
on the original proof idea in Reddy [1990]. This uses the relation ↔E , defined by

C[sγ ]p ↔E C[tγ ]p if s ≈ t [ϕ] ∈ E or t ≈ s [ϕ] ∈ E, and γ respects ϕ

for E a set of equations. The proof is split up into several auxiliary lemmas. To start,
we have the following lemma.

LEMMA 4.31. All equations in E are inductive theorems if and only if↔E ⊆ ↔∗
R on

ground terms (so if s, t are ground and s ↔E t, then also s ↔∗
R t).

This is obvious from the definitions. The next lemma originates in Sakata et al.
[2009], which is adapted from Koike and Toyama [2000] and is key to our method.

LEMMA 4.32 [SAKATA ET AL. 2009]. Let →1 and →2 be binary relations over some set
A. Then ↔∗

1 = ↔∗
2 if all of the following hold:

—→1 ⊆ →2,
—→2 is well founded, and
—→2 ⊆ (→1 · →∗

2 · ↔∗
1 · ←∗

2).

PROOF. It follows from →1 ⊆ →2 that ↔∗
1 ⊆ ↔∗

2. To show that ↔∗
2 ⊆ ↔∗

1, we prove
→∗

2 ⊆ ↔∗
1 by well-founded induction on →2. Since the base case s →∗

2 s is clear, we
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suppose that s→2 t →∗
2 u. As →2 ⊆ (→1 · →∗

2 · ↔∗
1 · ←∗

2), there must be some a, b, c
such that s →1 a →∗

2 b↔∗
1 c ←∗

2 t. Since →1 ⊆ →2 (i.e., s →2 a), we can apply the
induction hypothesis both on a and on t, so a ↔∗

1 b ↔∗
1 c ↔∗

1 t and t ↔∗
1 u. Therefore, s

↔∗
1 u.

We will use Lemma 4.32 with →R for →1, and →R∪H for →2. Soundness of the
algorithm then follows if ↔E is included in ↔∗

H whenever (E,∅, flag) �∗
ri (∅,H, flag′).

Theorem 4.4 is the combination of Lemma 4.31 with following Lemmas 4.33 and 4.34.

LEMMA 4.33. If (E,∅, flag) �∗
ri (∅,H, flag′), then ↔E ⊆ ↔R holds on ground terms.

PROOF IDEA. Let ←→‖ E denote a parallel application of zero or more ↔E steps.
We first show that (E,H, flag) �ri (E ′,H′, flag′) by any rule other than COMPLETENESS

implies both (a) ←→‖ E ⊆ (→∗
R∪H′ · ←→‖ E ′ · ←∗

R∪H′
)

on ground terms, and (b) if →R∪H
⊆ (→R · →∗

R∪H · ←→‖ E · ←∗
R∪H) on ground terms, then →R∪H′ ⊆ (→R · →∗

R∪H′ · ←→‖ E ′

·←∗
R∪H′) on ground terms. We show this by considering how each step alters E and H,

which we use to see that (E,H, flag) �∗
ri (E ′,H′, flag′) implies (a) and (b), by induction on

the total number of �ri-steps in the derivation (counting also the hidden steps inside
COMPLETENESS). Thus, if (E,∅, flag) �∗

ri (∅,H, flag′), then →R∪H ⊆ →R · →∗
R∪H · ←∗

R∪H,
so we can apply Lemma 4.32 to conclude that →R and →R∪H are the same (on ground
terms). Therefore, and by property (a), ↔E ⊆ ←→‖ E ⊆ →∗

R∪H · ←∗
R∪H ⊆ ↔∗

R.

LEMMA 4.34. If R is confluent and (E,∅, COMPLETE) �∗
ri ⊥, then ↔E 
⊆ ↔R holds on

ground terms.

PROOF IDEA. By confluence and termination together, we can speak of the normal
form u↓R of any term u; if u is ground, then by quasi-reductivity its normal form is a
ground constructor term. A property of confluence is that if w ↔∗

R q, then w↓R= q↓R.
Thus, it suffices to prove that for some s ≈ t [ϕ] ∈ E there is a ground constructor
substitution γ that respects this equation such that sγ 
= tγ . We first note that if
(E,H, COMPLETE) �ri ⊥, then this can only be a DISPROVE step; in all cases, the equation
that causes the disproof has this property. We also see, by examining the various
inference rules, that if (E1,H1, COMPLETE) �ri (E2,H2, COMPLETE) and both (a) →R∪H1 ⊆
→R · →∗

R∪H1
· ←→‖ E · ←∗

R∪H1
and (b) ↔E1 ∪ ↔H1 ⊆ ↔∗

R on ground terms, then also
↔E2 ∪ ↔H2 ⊆ ↔∗

R on ground terms. In a reduction (E,∅, COMPLETE) = (E1,H1, flag1) �ri

· · · �ri (En,Hn, flagn) �ri ⊥, we may assume (a) by the observations in the proof of
Lemma 4.33, and (b) is inductively preserved. As ↔En∪Hn cannot be included in ↔∗

R,
therefore neither can ↔E = ↔E1∪H1 . We complete by Lemma 4.31.

5. GENERALIZING EQUATIONS

Divergence, as encountered in all examples in Section 4, is very common in inductive
theorem proving: we often need a more general claim to obtain a stronger induction
hypothesis. As it is not always easy to find a suitable generalization, the (automatic)
generation of suitable generalizations, and lemma equations for POSTULATE, has been
extensively investigated [Bundy et al. 2005; Kapur and Sakhanenko 2003; Kapur and
Subramaniam 1996; Nakabayashi et al. 2010; Urso and Kounalis 2004; Walsh 1996].

Also for transformed procedural programs, we will certainly need a large variety of
lemma generation techniques to handle most practical cases. We start the work by
proposing two methods to generalize equations, specialized to deal with constraints.

5.1. Generalizing Initializations

Our first and most important technique fundamentally relies on the constrained set-
ting. Although it may appear deceptively simple (at its core, the generalization just
drops a part of the constraint), it is particularly effective for dealing with loops.
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Example 5.1. Let us state the rules of Rfact from Example 4.2 in an alternate way.
We replace rule (1) factiter(x) → iterm(x, 1, 1) by (1′): factiter(x) → iter(x, v1, v2) [v1 =
1∧v2 = 1]. In other words, the values corresponding to initializations int z = 1; int
i = 1; are moved into the constraint. Evidently, this change does not alter the relation
→R.

Now consider what happens if we use the same steps as in Examples 4.2 through
4.14. The resulting proof has the same shape but with more complex equations. Some
instances include the following.

(FCT.B′) : iter(n, v1, v2) ≈ factrec(n) [n ≥ 1 ∧ v1 = 1 ∧ v2 = 1]
(FCT.D′) : iter(n, z1, i1) ≈ factrec(n) [n ≥ 1 ∧ v1 = 1 ∧ v2 = 1 ∧ z1 = v1 ∗ v2 ∧ i1 = v2 + 1]
(FCT.J′) : mul(n, iter(m, z1, i1)) ≈ iter(n, z2, i2) [n > 1 ∧ v1 = 1 ∧ v2 = 1 ∧ m= n− 1 ∧

z1 = v1 ∗ v2 ∧ i1 = v2 + 1 ∧ z2 = z1 ∗ i1 ∧ i2 = i1 + 1]
(FCT.K′) : mul(n, iter(m, z2, i2)) ≈ iter(n, z3, i3) [n > 1 ∧ v1 = 1 ∧ v2 = 1 ∧ m= n− 1 ∧

z1 = v1 ∗ v2 ∧ i1 = v2 + 1 ∧ z2 = z1 ∗ i1 ∧ i2 = i1 + 1 ∧ z3 = z2 ∗ i2 ∧ i3 = i2 + 1]

Here the left- and right-hand side of the divergent equations (FCT.J′) and (FCT.K′) are
the same modulo variable renaming, while the constraint grows. Essentially, we keep
track of parts of the history of an equation in its constraint. We generalize (FCT.J′) by
dropping all clauses vi = qi where vi is an initialization variable and qi a value. We
rename the variables vi (as they no longer play a special role) and obtain the following.

(FCT.M′) : mul(n, iter(m, z1, i1)) ≈ iter(n, z2, i2)
[n > 1 ∧ m= n− 1 ∧ z1 = x1 ∗ x2 ∧ i1 = x2 + 1 ∧ z2 = z1 ∗ i1 ∧ i2 = i1 + 1]

We can complete the derivation with (FCT.M′) as we did with (FCT.M) before.

Formally, what we do here is threefold. First, we alter the set of rules we work from.

Definition 5.2 (Initialization-Free Rules). Given R, fix a set Vinit � V of variables
not occurring in R. The initialization-free counterpart R′ of R is obtained by stepwise
replacing any rule 	 → C[ f (r1, . . . , ri, . . . , rn)] [ϕ] with f ∈ D and ri a value by 	 →
C[ f (r1, . . . , v, . . . , rn)] [ϕ ∧ v = ri] for some fresh v ∈ Vinit, until no such rules remain.

Then, to apply GENERALIZATION to an equation s ≈ t [ϕ1 ∧ · · · ∧ ϕn], we choose

s ≈ t
[ ∧

{ϕi | 1 ≤ i ≤ n∧ ϕi does not have the form v = u with v ∈ Vinit and u ∈ Val}
]

as the generalized equation and rename its variables in Vinit to variables in V.
Finally, we restrict the SIMPLIFICATION and EXPANSION steps to preserve initialization

constraints throughout the proof. The strategy we use in Ctrl—which includes an ap-
proach to handle the v ∈ Vinit—is described in Section 6.1, but in particular:

—When we rename rules for use in SIMPLIFICATION or EXPANSION, the renaming must
respect membership in Vinit (i.e., if x is renamed to y, then y ∈ Vinit if and only if
x ∈ Vinit).

—In∼-steps, any conjuncts v = nare ignored: to simplify s ≈ t [ϕ∧v1 = n1∧· · ·∧vk = nk],
we modify s ≈ t [ϕ], obtaining s′ ≈ t′ [ϕ′], and continue with s′ ≈ t′ [ϕ ∧ v1 =
n1 ∧ · · · ∧ vk = nk]. Thus, we avoid, for example, translating f (vi) [vi = 0] back to
f (0) [true].

5.2. Abstracting Equivalent Recursive Calls

Our second generalization technique aims to remove recursive symbols where possible.

Definition 5.3. For symbols f, g, let f � g if there is a rule f (
−→
	 ) → r [ϕ] with g a

symbol in r. A symbol f is recursive if it is a defined symbol with f �+ f .
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The key idea is to identify equivalent occurrences of a recursive call on
both sides of an equation and to replace them by a variable. For example,
g(x) + f(y) ≈ f(z) + g(x) [y ≥ z ∧ y ≤ z] is replaced by a + b ≈ b + a [true], because
for values k, n, m: if n ≥ m∧ m ≤ n holds, then both g(k) and g(k), as well as f(n) and
f(m), are syntactically equal.

Definition 5.4. A recursion-abstraction of s ≈ t [ϕ] is any equation of the form
C[x1, . . . , xn] ≈ D[xi1 , . . . , xin] such that (a) s = C[s1, . . . , sn] and t = D[ti1 , . . . , tin] for
some "s, "t; (b) {i j | 1 ≤ j ≤ n} = {1, . . . , n}; (c) neither C nor D contain recursive symbols;
(d) each sj and tj has a recursive symbol as root symbol; (e) for 1 ≤ i ≤ n and all ground
substitutions γ that respect s ≈ t [ϕ]: siγ = tiγ ; and (f) x1, . . . , xn are fresh with respect
to s, t.

For a given equation, at most one choice of C, D is possible, and there are only finitely
many permutations i1, . . . , in. Requirement (e) can be checked by confirming that an
equation sj ≈ tj [ϕ] is removed by the combination of EQ-DELETION and DELETION.

Example 5.5. In Example 4.30, we find an abstraction for (CR.A) by choosing C =
u(x, u(y1,�)), D = v(x, u(z1,�)), s1 = g(y2) and t1 = g(z2). Requirement (e) holds: if
we write ϕ for the constraint of (CR.A), EQ-DELETION on g(y2) ≈ g(z2) [ϕ] produces the
unsatisfiable constraint ϕ ∧ y2 
= z2. Thus, we generalize the equation to u(x, u(y1, a)) ≈
v(x, u(z1, a)) [ϕ], which is ∼-equivalent to the equation used in Example 4.30.

Example 5.6. Given g(x) + f(y) ≈ f(z) + g(x) [y ≥ z ∧ y ≤ z], let C and D be � + �,
s1 = g(x), s2 = f(y), t1 = g(x), t2 = f(z), i1 = 2, and i2 = 1. We must see that for all γ that
respect y ≥ z ∧ y ≤ z: g(x)γ = g(x)γ and f(y)γ = f(z)γ . Both are easily confirmed, so we
generalize to x1 + x2 ≈ x2 + x1 [y ≥ z ∧ y ≤ z] ∼ a + b ≈ b+ a [true] as suggested.

One can see this generalization heuristic as an instance of the inference rule SPE-
CIALIZATION by Aubin [1979] for unconstrained explicit induction, restricted to recursive
function calls and combined with SUBSTITUTIVITY OF EQUALITY from the same work. Here
we lift equality from syntactic level to semantic level in SMT.

5.3. Discussion

The first method to generalize equations is strong (Section 5.1), but only for equations
of a specific form: we can only use the method if the equation part of the divergence has
the same shape every time. This is the case for fact, because the rule that causes the
divergence has the form iter(x1, . . . , xn) → iter(r1, . . . , rn) [ϕ], preserving its outer shape.

In general, the method is most likely to be successful for the analysis of tail-recursive
functions (with accumulators), such as those obtained from procedural programs. We
can also handle mutually recursive functions, like u(x1, . . . , xn) → w(r1, . . . , rm) [ϕ]
and w(y1, . . . , ym) → u(q1, . . . , qn) [ψ]. It is not suitable for analyzing systems with
(only) non–tail recursion, however. Here, the second technique comes in (Section 5.2).
Although we do not claim that this technique is very powerful, it is often useful to
eliminate apparently simple equations. It is also straightforward to use in practice.

Note that strlen and strcpy also have the required tail-recursive form to successfully
use the first generalization method. However, here we additionally have to collect
multiple clauses into a quantification before generalizing, as with equation (LEN.I).

One may wonder if generalizing initializations loses too much. For example, when
removing vi = 1, we also forget that vi ≥ 0. However, this is usually not an issue: if a
rule is constrained with vi ≥ 0, this clause is added to the constraint of the equation via
EXPANSION before we generalize, as in the expansion from (LEN.B). There is, however,
a possible issue with losing information on the relations between variables; we will say
more on this in Section 6.2.
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6. IMPLEMENTATION

The method for program verification in this article can be broken down into two parts:

(1) transforming a procedural program into an LCTRS;
(2) proving correctness properties on this LCTRS using rewriting induction.

An initial implementation of part 1, limited to functions on integers and one-
dimensional statically allocated integer arrays, is available at http://www.trs.css.i.
nagoya-u.ac.jp/c2lctrs/.

In future work, it is our hope to extend this implementation to include the remaining
features discussed in Section 3 and Appendix A.2, such as floating points and explicit
pointers.

Part 2, the core method on LCTRSs, has been implemented in our tool Ctrl [Kop
and Nishida 2015], along with basic techniques to verify termination, confluence, and
quasi-reductivity. To handle constraints, the tool is coupled both with a small internal
reasoner and the external SMT solver Z3 [de Moura and Bjørner 2008]. Z3 is equipped
to prove unsatisfiability as well as satisfiability, which is essential for testing validity.

The internal reasoner serves to detect satisfiability or validity of simple statements
quickly, without a call to an SMT solver, and to preprocess certain kinds of queries that
arise often (e.g., for termination proving by polynomial interpretations, we preprocess
queries with ∃∀-quantifier prefix to ∃-queries). The reasoner is also used to simplify the
constraints of equations, such as by combining statements into quantifications (which
is an essential part of the derivations for functions like strlen or strcpy).

We also translate our array formulas into the SMT-LIB array format as discussed in
Section 3.6, encoding an array as a function from Z to Z with a second variable for its
size.

The latest version of Ctrl (tool paper: Kop and Nishida [2015]) can be downloaded at
http://cl-informatik.uibk.ac.at/software/ctrl/.

6.1. Strategy

Let us discuss the various choices made during a derivation with rewriting induction.

6.1.1. What Inference Rule to Apply. Ctrl always selects the first rule (combination) from
the following list:

(1) EQ-DELETION (if applicable) immediately followed by DELETION;
(2) DISPROVE, but without the limitation to COMPLETE proof states;
(3) CONSTRUCTOR;
(4) SIMPLIFICATION;
(5) a limited form of EXPANSION;
(6) GENERALIZATION using a recursion-abstraction;
(7) GENERALIZATION of all initialization variables vi ∈ Vinit at once;
(8) the full form of EXPANSION.

6.1.2. Generalization and Backtracking. Core to the rewriting induction process is a back-
tracking mechanism. Every proof state (E,H) keeps track of all ancestor states on
which GENERALIZATION was applied; a state is COMPLETE if it has no such ancestors. The
completeness restriction on DISPROVE is dropped; however, when DISPROVE succeeds on
an incomplete state, the prover does not conclude failure but instead backtracks to the
most recent ancestor and continues without (immediately) generalizing. Typically, if a
GENERALIZATION is attempted too soon in the proof and results in an unsound equation,
this can be derived very quickly, which allows Ctrl to conclude failure of the GENERAL-
IZATION step and to move on to the remaining expansions.
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Example 6.1. Following Example 4.26 (but altered with initialization-free rules), our
strategy moves from ({(LEN.A′)},∅) to ({(LEN.B′)},∅) as before. But here, “restricted
expansion” does not apply (as we will see in Example 6.3), nor is there a recursion-
abstraction. Thus, we generalize the initializations, obtaining({

(BGEN) u(x, r0) ≈ return(n)
[0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧ select(x, n) = 0]

}
, ∅

)
.

We store ({(LEN.B′)},∅) as an ancestor state of ({(BGEN)},∅). The only option now is
EXPANSION. Expanding in the left-hand side gives three equations, including

return(r0) ≈ return(n)
[0 ≤ n < size(x) ∧ ∀i ∈ {0, . . . , n− 1}(select(x, i) 
= 0) ∧ select(x, n) = 0].

CONSTRUCTOR gives r0 ≈ n [ϕ], where ϕ is satisfied by, for example, [r0 := 0, n := 1, x :=
[1, 0]]; by DISPROVE, we obtain ⊥. However, the state is incomplete, as it has an ancestor
stored. Thus, we backtrack to ({(LEN.B′)},∅) and continue with full expansion.

The COMPLETENESS rule is implemented via the same mechanism: if (E,H) has a most
recent ancestor (E ′,H′) with E ⊆ E ′, then (E ′,H′) is dropped from the ancestor list. If a
DISPROVE succeeds when the list is empty, we conclude failure, resulting in NO if the
system is confluent and MAYBE otherwise.

Example 6.2. In Example 4.16, we would add ({(FCT.J)}, {(FCT.D−1)}) to the list of
ancestors when generalizing (FCT.J) to (FCT.M). Once (FCT.T) is removed in Exam-
ple 4.19, we are allowed to remove this state from the list (although since the proof is
finished at that point, it is not really necessary in this example).

Aside from backtracking due to DISPROVE, there is a second backtracking mechanism:
although SIMPLIFICATION and EXPANSION prioritize choices (for positions and rules) most
likely to result in success, sometimes the first choice does not work out, but the second
one does. Thus, Ctrl uses an evaluation limit: when a path has more than N expansions,
it is aborted, and the prover backtracks to a direct parent. Ctrl starts with N = 2 and
increases this limit if it does not result in a successful proof or disproof.

6.1.3. Simplification. For SIMPLIFICATION, there are three choices to be made: the position,
the rule, and how to instantiate fresh variables in that rule.

For the position, Ctrl selects the leftmost, innermost position where a rule matches.
This prevents a need to reevaluate a term after its subterms change.

For the rule, rules in H are attempted before rules in R; if a rule leads to a (presumed)
divergence, the backtracking mechanism ensures that the next one is tried.

In some cases—in particular for induction rules—the right-hand side and perhaps
the constraint of a rule contain variables not occurring in the left-hand side, such as
(FCT.M−1) in Example 4.14 and (LEN.K) in Example 4.26. Here, Ctrl tries to instantiate
as many variables in the rule by variables in the equation as possible. To rewrite an
equation s ≈ t [ϕ1 ∧ · · · ∧ ϕn] at the root of s with a rule 	 → r [ψ1 ∧ · · · ∧ ψm], we
first determine a γ such that s = 	γ and γ (vi) = vi for all vi ∈ Vinit. If any ψi has
the form C[x, y1, . . . , yk] with x ∈ Dom(γ ) and all yi /∈ Dom(γ ), and there is some
ϕ j = Cγ [γ (x), s1, . . . , sk], then we extend γ with [yi := si] for all i. This process is finite
and corresponds to the choices for the equations (FCT.S) and (LEN.O). Other variables
are chosen fresh.

Note: If some rule can be applied but the backtracking mechanism aborts all at-
tempts, Ctrl backtracks to the parent state rather than continuing with EXPANSION.
This is because testing suggests that allowing EXPANSION to be applied on terms not in
R-normal form is generally not effective and causes an explosive number of states.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 14, Publication date: June 2017.



14:32 C. Fuhs et al.

6.1.4. Expansion. To categorize EXPANSIONs for steps (5) and (8) of Section 6.1.1, we
analyze recursion. Let f � g if f �∗ g (following Definition 5.3), and let f # g if f � g
and g 
� f . Symbols are split into five categories: constructors, calculation symbols,
nonrecursive defined symbols, tail-recursive symbols, and non–tail-recursive symbols.
A recursive symbol is tail recursive if its only defining rules (in R) have either the form
f (	1, . . . , 	k) → x [ϕ] with x a variable or the form f (	1, . . . , 	k) → g(r1, . . . , rm) [ϕ] with
f # h for all h in any ri. Recursive functions not of this form are non–tail recursive.

An expansion of s � t [ϕ] at position p of s, with s|p = f ("u), is restricted—so eligible
for step (5)—if (a) f is nonrecursive, or (b) the induction rule s → t [ϕ] is admissible
and either f is tail recursive and (Var(s)∪Var(t))∩Vinit = ∅, or f is non–tail recursive.
The induction rule is added only in case (b). Here, a rule ρ : g(	1, . . . , 	k) → r [ϕ] is
admissible if R∪H∪{ρ} is terminating and g ∈ D: we do not add rules with a constructor
or calculation symbol as root symbol g, as this makes it harder to prove termination,
which may prevent the addition of more promising rules later on.

For unrestricted expansion, an induction rule is added when admissible, unless f
is tail recursive. The unrestricted tail-recursive case concerns rules such as those got
from (FCT.J), (LEN.B), and (LEN.E), which—testing suggests—are typically not useful.
Omitting them lets Ctrl skip many termination checks, a bottleneck in the process.
Similarly, we do not add induction rules when expanding at a nonrecursive position.

Example 6.3. In Examples 4.2 through 4.18, the first expansion occurs in
({(FCT.D′)},∅, COMPLETE), in the right-hand side. This is not an arbitrary choice: re-
stricted expansion cannot be used with the tail-recursive symbol iter, only the non–
tail-recursive symbol factrec. Then our strategy closely follows the given derivation.
When we reach ({(FCT.J)}, {(FCT.D−1)}, COMPLETE), restricted expansion is impossible,
so we generalize instead. After this, an expansion on the iter symbol on either side is
restricted. We can complete the example without backtracking or using unrestricted
EXPANSION.

For the position at which to expand, we follow the same approach as for SIMPLIFICATION,
trying all suitable positions via the backtracking mechanism. However, rather than a
pure leftmost innermost choice, in the restricted case (step (5) of Section 6.1.1), we
prioritize the more promising equations by first attempting expansions on a non–tail-
recursive symbol, then those with a nonrecursive defined symbol, and finally those
with a tail-recursive one. In the unrestricted setting, we follow the leftmost innermost
strategy.

Testing shows that this method is very effective for proving equivalence between
a non–tail-recursive and a tail-recursive function (as needed for equivalence of a
recursive and an iterative C function). The examples of Section 4 show its effect:
by eliminating the non–tail-recursive functions early on, we are more likely to ar-
rive at a diverging sequence where all equations have the same outer shape (e.g.,
(u(−→q i) ≈ C[u(−→v i), u(−→w i)] | i ∈ N)). As observed in Section 5.3, this is ideal for our
generalization method.

Following an EXPANSION, we first process those new equations in Expd(s ≈ t [ϕ], p)
whose multiset of new symbols is smallest in the recursion order #. Thus, for example,
in Example 4.10, after expanding (FCT.D), we consider (FCT.E), which has new symbols
{return, 1}, before (FCT.F), with new symbols {mul, factrec,−, 1}, since factrec # return, 1.
Intuitively, “smaller” terms are “closer” to the end of a function, which allows DISPROVE

to succeed faster and thus aids the backtracking mechanism.

6.1.5. Constraint Modification. Following SIMPLIFICATION and EXPANSION, Ctrl modifies the
constraint as follows. First, when a clause ϕi in the constraint ϕ1 ∧ · · · ∧ ϕn is implied
by the others, it is removed unless it is a definition clause vi = n. We also remove
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clauses for variables that do not play a role. Most importantly, Ctrl introduces ranged
quantifications ∀x ∈ {k1, . . . , kn}(ϕ(x)) whenever possible, provided n ≥ 3 (to lessen the
effect of coincidence). Formally, we could describe our approach as follows:

If ϕ has clauses C[a], C[b], C[c] for some context C and variables a, b, c, as well as
b = f (a) and c = f (b), then we may replace the C-clauses by ∀i ∈ {0, . . . , 2}(C[ f i(a)]).

This is more general than what we use; it lets us, for instance, replace a[i] = 0∧a[ j] =
0∧a[k] = 0∧ j = i+2∧k = j+2 by ∀l ∈ {0, . . . , 2}(a[i+2 ·l] = 0), for f = λx.x+2. But to
represent f i, Ctrl must know the relevant theory. Therefore, we currently only consider
clauses where b = a + 1 and c = b + 1, and replace them by ∀i ∈ {a, . . . , c}(C[i]). Since
we implement loop counters as integers, this still captures a large group of constraints.

After ∀-introduction, if a boundary of the range (0 and 2 in the example) is some
vi ∈ Vinit, we replace it by the value it is defined as to avoid generalizing the starting
point of a quantification. Thus, for example, ∀ j ∈ {v0, . . . , k}(select(x, j) 
= 0) ∧ v0 =
0 ∧ i = v0 + 1 ∧ k = i + 1 is replaced by ∀ j ∈ {0, . . . , k}(select(x, j) 
= 0) ∧ v0 = 0 ∧ i =
v0 + 1 ∧ k = i + 1.

6.1.6. Nonconfluence. Our strategy is admittedly unfair to nonconfluent systems. A
successful application of DISPROVE is treated as evidence of an unsound equation, which
is not the case without confluence: the nonconfluent (LC)TRSs R = {f → a, f → b, g →
a, g → b} along with the inductive theorem f ≈ g highlights that we only have to prove
that two functions can produce the same result, not that they always do.

This is deliberate: when proving that two functions produce the same result, we can
see nonconfluent LCTRSs as inherently incorrect. Thus, we focus on confluent systems.
For LCTRSs whose confluence is unknown, it is preferable to show nonequivalence
(which translates to a MAYBE in the output) over equivalence.

6.2. Experiments

To assess performance and precision of Ctrl empirically, we tested five assignments
from a group of students in the first-year programming course in Nagoya, all auto-
matically translated to LCTRSs by c2lctrs: sum: given n, implement

∑n
i=1 i; fib: com-

pute the nth Fibonacci number; sumfrom: given n, m, implement
∑m

i=n i; strlen and
strcpy. We compared the first three to LCTRS versions of recursive reference imple-
mentations;6 for strlen and strcpy, we used a specification as in Examples 4.26 and
4.28.7 We also tested our own implementations of fact from Example 4.2 and arrsum
from Example 4.27, along with 25 function comparisons from the literature and 12
memory-safety benchmarks from the Competition on Software Verification [SV-COMP
2017]. The benchmarks (also from the literature) are typically fairly small: the largest,
lit03_GS13_fig6, has 70 lines of C code and 55 rewrite rules. We used an Intel i7-5600U
CPU at 2.6GHz under Linux.

We quickly found that many of the student programs had failed to account for bound-
ary conditions, such as empty strings or negative input. On such programs, ctrl answers
NO, or MAYBE if the system cannot be proved confluent—that is, if not all variables
are initialized. To limit the impact of these errors, we did a second test, where we
altered the specification to account for these mistakes. The results of both tests are
summarized in Figure 1.

6However, honesty compels us to mention that for fib, we used a manual translation because the one
obtained from c2lctrs was impractical: where our manual translation has a rule fibrec(x) → plus(fibrec(x −
1), fibrec(x−2)) [x ≥ 2], the automatic one splits the two recursive calls (recall Section 3.5). Therefore, a more
sophisticated termination argument is needed, and it is harder to eliminate the recursion in the inductive
process. Handling such cases in the future will likely necessitate an additional lemma generation technique.
7Interestingly, in strcpy02, the student’s strlen solution is called as a helper function for strcpy.
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Fig. 1. Results of Ctrl in the initial test (before the slash) and with obvious mistakes fixed (after the slash).

We found five classes of recurring failures. The first class consists of cases where
the function was wrong, but Ctrl could not answer NO as it could not prove confluence.
This accounts for six MAYBEs in the initial test and two in the second, and could
be considered an incorrect implementation. Second (six failures in either table) is the
termination requirement: we need termination independent from the starting symbol,
which is often not satisfied or cannot be proved by our admittedly limited termination
module.

The remaining groups of failures each demonstrate a weakness of our method. The
third failure occurs when generalization drops a relation between two variables, such
as when x and y are both initialized to 0 and then increased by 1 in every loop iteration
(with loops corresponding to tail-recursive functions); after generalizing, the informa-
tion that they are equal is lost. Typically, this manifests as an EXPANSION where the
nondiverging case can easily be removed before generalization but afterward gives an
equation that can be disproved. This suggests a natural direction for improvement.

The fourth group includes those benchmarks where our primary generalization tech-
nique (Section 5.1) does not apply because there are no variables to generalize. This
happens when both sides have non–tail-recursive functions or loops counting down
rather than up. Recursion-abstraction (Section 5.2) lets us solve several benchmarks,
but further lemma generation will be needed for the majority. Nonetheless, this gen-
eralization technique does allow us to handle Example 4.30, which can be challenging
for existing approaches.

The final group concerns nested loops. Ctrl’s strategy fails because the counters for
the inner and outer loop are generalized at the same time. However, inductive proofs
with Ctrl’s interactive mode show that such benchmarks can be handled by our method.
Thus, in future work, a more sophisticated generalization strategy would be desirable.

Demonstrative examples of these last three issues are given in Appendix D. A full
evaluation page, including exact problem statements, is given at http://cl-informatik.
uibk.ac.at/software/ctrl/tocl/.

7. RELATED WORK

The related work can be split into two categories: (1) the literature on rewriting induc-
tion and (2) the work on program verification and equivalence analysis.

7.1. Rewriting Induction

Our inductive theorem–proving method builds on a long literature about rewriting
induction (e.g., see Bouhoula [1997], Falke and Kapur [2012], Reddy [1990], and Sakata
et al. [2009]). Its core method extends existing techniques to the LCTRS formalism
introduced in Kop and Nishida [2013], thus generalizing the possibilities of earlier
work.
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The most relevant related works are those of Falke and Kapur [2012] and Sakata
et al. [2009], defining rewriting induction for different styles of constrained rewrit-
ing. Both use only integer functions and predicates; it is not clear how to generalize
these approaches to more advanced theories. The more general setting of LCTRSs en-
ables rewriting induction also for systems with for instance arrays, bitvectors, or real
numbers. Moreover, not restricting the predicates in �theory enables (a limited form of)
quantifiers in constraints.

These advantages are enabled by subtle changes to the inference rules, particularly
SIMPLIFICATION and EXPANSION. Our changes let us modify constraints of an equation and
handle irregular rules with fresh variables in the constraint. This additionally enables
EXPANSION steps to create such (otherwise infeasible) rules. The method requires a very
different implementation from previous definitions: we need separate strategies to sim-
plify constraints (e.g., deriving quantified statements) and, for the desired generality,
must rely primarily on external solvers to manipulate constraints.

Moreover, we have introduced a completely new generalization technique, as a pow-
erful tool for analyzing loops in particular. Nakabayashi et al. [2010] use a similar
idea (abstracting the initialization values), but the execution is very different: for an
equation s ≈ t [ϕ], first s ≈ t is adapted via templates obtained from the rules, then ϕ
is generalized via a set of relations between positions tracked by the proof process. In
our method, the constraint carries all of the information. We succeed on all examples
in Nakabayashi et al. [2010], and on some where their method fails (see Appendix C;
e.g., for nonnegative n, a for-loop summing up from 1 to n is compared to n*(n+1)/2).

For unconstrained systems, the literature contains several generalization methods
(e.g., Kapur and Sakhanenko [2003], Kapur and Subramaniam [1996], and Urso and
Kounalis [2004]). Mostly, our method in Section 5.1 is very different from these ap-
proaches. Most similar, perhaps, is the work of Kapur and Sakhanenko [2003], which
also proposes a method to generalize initial values. As observed by Nakabayashi et al.
[2010], this method is not sufficient for even our simplest benchmarks sum and fact, as
the argument for the loop variable cannot be generalized; in contrast, our method has
no problem with such variables. As discussed in Section 5.2, the recursion-abstraction
technique presented there essentially lifts a technique from explicit induction [Aubin
1979] to constrained rewriting induction.

As far as we are aware, there is no other work for lemma generation of rewrite
systems (or functional programs) obtained from procedural programs.

Like Giesl et al. [2007], we verify procedural programs via a transformation to a
functional program, followed by an invocation of an inductive theorem prover. In an un-
constrained setting, they propose an equivalence-preserving program transformation
to a non–tail-recursive program to eliminate accumulator arguments. A combination
of their approach with ours could be beneficial; for example, for programs with nested
loops.

7.2. Automatic Program Verification and Equivalence Proving

Our goal is to (automatically) verify correctness properties of procedural programs.
Fully automated verifiers for properties like (memory) safety and termination are reg-
ularly assessed at the Competition on Software Verification [SV-COMP 2017]. However,
a comparison with these tools does not seem useful. Although we can, to some extent,
tackle (memory) safety and termination, our main topic is equivalence, which is not
studied in SV-COMP. Technically, equivalence problems can be formulated as safety
problems (by self-composition [Barthe et al. 2011]: call both programs on equal in-
puts and assert that their results are also equal). However, none of the tools in the
“recursive” category of SV-COMP 2015 could prove equivalence for our simplest (inte-
ger) example sum.
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Apart from constrained rewriting, another intermediate representation for verifica-
tion of imperative programs is based on (constrained) logic programs or, closely related,
Horn clauses [Albert et al. 2007; Gupta et al. 2011]. It should be possible to express our
contributions also in this framework, provided that constructor terms are supported.

For the setting of Example 1.1, automated grading, Vujosevic-Janicic et al. [2013]
apply verification techniques like bounded model checking. Although this enables sig-
nificant improvements over classic testing, there is still a nonzero risk of missing bugs
due to underapproximation. Thus, it could be beneficial to add our approach to the
portfolio.

For program equivalence, we discuss (fully) automated techniques for proving par-
tial equivalence and its special case, total equivalence. Two programs P1 and P2 are
partially equivalent if for the same inputs the terminating executions of P1 and P2
return the same value. They are totally equivalent if they moreover both terminate on
all inputs (see Godlin and Strichman [2008] for a more extensive discussion).

This article addresses total equivalence: we require termination to analyze partial
equivalence. We allow constrained equivalence queries so that only certain inputs are
considered. This includes properties that cannot be checked programmatically, like the
size of an array in a C program. As mentioned in Section 6.1, for nonconfluent programs
P1 and P2, we analyze if running P1 on the input can lead to the same result as P2.

Godlin and Strichman [2008] propose a Hoare-style proof rule for partial equivalence
of recursive programs (among other properties). To analyze two recursive functions
f1 and f2, these symbols are first replaced in recursive calls in their bodies by the
same uninterpreted function symbol f . Under this premise, it is then proved (e.g., by
a bounded model checker) that the bodies of f1 and f2 also have equivalent results.
In this sense, Godlin and Strichman [2008] also use inductive reasoning. However,
our approach proves equivalence of Example 4.30 with different recursion base cases,
whereas their proof rule is not applicable. Moreover, the use of uninterpreted function
symbols requires that the programs must be deterministic, in contrast to our approach.

Lopes and Monteiro [2016] prove partial equivalence for programs on integers and
undefined function symbols (which may arise also as abstractions of deterministic com-
plex functions). They combine self-composition [Barthe et al. 2011], a safety-preserving
transformation of undefined functions to polynomials (yielding a program on integers
only), recurrence solving for loops, and a standard software model checker. However,
their approach does not support mutable arrays, whose content can be changed during
the program’s execution (as in Example 4.28 for strcpy), in contrast to our method.

Verdoolaege et al. [2012] use widening to prove program equivalence. For validation
of compiler optimizations [Necula 2000], they consider programs with (linear-)affine
arithmetic and arrays. A restriction of their approach is that it does not exploit the
semantics of arithmetic operations beyond associativity and commutativity.

Recently, regression verification has become an active topic of research in program
equivalence proving [Godlin and Strichman 2013; Lahiri et al. 2012; Felsing et al.
2014]. As in regression testing, two programs are compared that are syntactically
almost the same (e.g., different revisions of the same code base with a refactored
function). Regression verification then analyzes if the two programs are semantically
equivalent.

Godlin and Strichman [2013] improve modularity over their previous work [Godlin
and Strichman 2008] by decomposing the proof obligations into smaller units via the
call graph of the program. Hawblitzel et al. [2013] propose mutual summaries, relating
the postconditions of two program functions. This generalizes uninterpreted functions
as summaries and allows analysis of nondeterministic programs. A challenge is to
find such mutual summaries automatically. Felsing et al. [2014] address this problem
via Horn constraint solving to find coupling predicates over linear arithmetic between
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program points. It would be interesting to adapt their approach for lemma generation.
They also analyze total equivalence: a separate termination proof is required. The Web
interface of their tool llrêve currently fails on the same example as Nakabayashi et al.
[2010] (see Section 7.1). They mention an extension to arrays and heap data structures
as future work.

8. DIRECTIONS FOR FUTURE WORK

This article is by no means intended as the end station for inductive theorem proving on
LCTRSs, but rather as the beginning. The generalization methods that we supply are
powerful together, but they do not suffice for more complicated systems or equations.
A mere two methods cannot bypass the need to search for loop invariants altogether.

A natural extension would thus be both to adapt existing lemma generation tech-
niques to the constrained setting and to adapt techniques for finding loop invariants
toward the setting of rewriting induction (e.g., to suggest suitable lemmas). It might
also be worthwhile to directly look at the constraints and develop advanced methods
for constraint modification, which could be followed by a generalization step. Moreover,
our generalization technique from Section 5.1 could be improved to generalize not only
initializations with constants but also initializations with other values (e.g., copies of
function parameters). This is motivated by loops that count down instead of up. Ad-
ditionally, inspired by Lopes and Monteiro [2016], one might consider LCTRSs with
uninterpreted functions to model functions with unknown implementations.

For a different direction, we may extend the translation from Section 3; for exam-
ple, by translating structs to term data structures (see Otto et al. [2010]). The ideas
from Section 3 can also be applied for languages such as Python or Java, enabling
equivalence proofs between functions in different languages. This could be particularly
interesting for a reference implementation in an inherently memory-safe language
like F# or Java, and an efficient implementation in a language like C that has no such
memory safety guarantees.

Finally, it is our hope to extend the implementation in the future, both to increase
the strength of the inductive theorem proving—adding new theory and testing for more
sophisticated heuristics—and to add more features to the translation from C code.

9. CONCLUSIONS

In this article, we have done two things. First, we have discussed a transformation from
procedural programs to constrained term rewriting. By abstracting from the memory
model underlying a particular programming language and instead encoding concepts
like integers and arrays in an intuitive way, this transformation can be applied to
various different (imperative) programming languages. The resulting LCTRS is close
to the original program and has built-in error checking for all mistakes of interest.

Second, we have extended rewriting induction to the setting of LCTRSs. We have
shown how this method can be used to prove correctness of procedural programs. The
LCTRS formalism is a good analysis backend for this, since the techniques from stan-
dard rewriting can typically be extended to it, and native support for logical constraints
and data types like integers and arrays is present.

We have also introduced two new techniques to generalize equations. The idea of
the core method is to identify constants used as variable initializations, keep track
of them during the proof process, and abstract from these constants when a proof
attempt diverges. The LCTRS setting is instrumental in the simplicity of this method,
as it boils down to dropping a (cleverly chosen) part of a constraint. The second method
recognizes—and abstracts—recursive calls on semantically equivalent arguments.
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In addition to the theory, we provide an implementation of these techniques. Initial
results on a small database of programs from students and the literature are very
promising. In future work, we aim to increase the strength of our implementations.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

APPENDIXES

A. TRANSLATING C PROGRAMS TO THE LCTRS

This appendix provides further details on the translation from C programs to LCTRSs.

A.1. Optimizing LCTRSs

After generating the LCTRS, we simplify the (left-linear) result by the following steps:

(1) Combining unconstrained rules. Like Falke et al. [2011], we repeat the following:
—select any unconstrained rule ρ of the form u(x1, . . . , xn) → r where u is not the

initial symbol of a C function (like fact in Example 3.1), and u neither occurs in r
nor in the left-hand side of any other rule; the repetition stops if no such ρ exists;

—rewrite all right-hand sides with ρ;
—remove both the rule ρ and the symbol u.
This process does not substantially alter the multistep reduction relation →∗, as
the only symbols removed are those that we think of as “intermediate” symbols.

(2) Combining constrained rules. If there are distinct rules 	 → r [ϕ] and 	 → r [ψ]
(modulo renaming), these are combined into 	 → r [ϕ ∨ ψ]. Given rules 	 →
u(s1, . . . , sm) [ϕ] and u(x1, . . . , xm) → ri [ψi] for 1 ≤ i ≤ n with all xj variables,
we may replace them by 	 → ri[x1 := s1, . . . , xm := sm] [ϕ ∧ψi[x1 := s1, . . . , xm := sm]]
for 1 ≤ i ≤ n if:
—u is not the initial symbol of a function and does not occur in any other rule, or 	;
—the terms sj do not contain defined symbols (as then we might remove a nonter-

minating subterm, which would impact the multistep reduction relation).
(3) Removing unused arguments. For all function symbols and all of their argument

positions, we mark whether the position is “used”:
—all argument(s) of every return f and initial symbols (e.g., fact) are used;
—for other symbols ui of arity n and every 1 ≤ j ≤ n: if there is a rule

ui(	1, . . . , 	n) → r [ϕ] where 	 j is not a variable (which can arise for instance with
the transformation in Section 3.5) or occurs in ϕ, then argument j is used in ui;

—for all rules ui(	1, . . . , 	n) → r [ϕ] and 1 ≤ j ≤ n, argument j is used in ui if 	 j is a
variable occurring at a used position in r; here, a position p is used in s if either
p = ε or p = i · p′, s = f ("t), argument i is used in f and position p′ is used in ti.

The last, recursive, step essentially calculates a fixpoint; in summary, an argument
position is used if it is possible to reduce to a term where we actually need the
subterm at that position as part of a constraint or the function’s return value.
When a variable is not used in any later statement, we will avoid carrying it along.

(4) Simplifying constraints. Constraints may be brought into an equivalent form, for
example by removing duplicate clauses or by replacing a clause eg (x > y) with
x ≤ y. Here, ϕ is “equivalent” to ψ in a rule 	 → r [ϕ] if ∀"x(∃"y(ϕ) ↔ ∃"z(ψ)) holds,
where Var(	)∪Var(r) = {"x}, Var(ϕ) \ {"x} = {"y}, and Var(ψ) \ {"x} = {"z} (much like the
observation on ∼ below Definition 2.14). We typically only remove negations and
unused variables.

Example A.1. As an example, let us consider the simplification of a toy function.
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int f(int x) {
int y,z;
if (x < 0) return 0;
z = 0;
while (x > 0) {

x--;
z += x;

}
y = z + x;
return y;

}

f(x) → u1(x, y, z)
u1(x, y, z) → u2(x, y, z) [x < 0]
u1(x, y, z) → u3(x, y, z) [¬(x < 0)]
u2(x, y, z) → returnf(0)
u3(x, y, z) → u4(x, y, 0)
u4(x, y, z) → u5(x, y, z) [x > 0]
u4(x, y, z) → u7(x, y, z) [¬(x > 0)]
u5(x, y, z) → u6(x − 1, y, z)
u6(x, y, z) → u4(x, y, z + x)
u7(x, y, z) → u8(x, z + x, z)
u8(x, y, z) → returnf(y)

The rule f(x) → u1(x, y, z) has unconstrained variables y and z in the right-hand side
that do not occur on the left. A step with this rule instantiates y and z by arbitrary
type-correct values. This reflects that in the C program, the variables y and z are at
first not initialized and may contain an arbitrary value (depending on the compiler).
In the simplified version, this does not occur; consider the remainder obtained from
combining rules.

f(x) → returnf(0) [x < 0]
f(x) → u4(x, y, 0) [¬(x < 0)]

u4(x, y, z) → u4(x − 1, y, z + x − 1) [x > 0]
u4(x, y, z) → returnf(z + x) [¬(x > 0)]

Now, the first and third arguments of u4 are used (in the constraint and return value),
but the second is not: it is merely passed along in the recursive call. Removing this
variable and simplifying the constraints, we obtain the following.

f(x) → returnf(0) [x < 0]
f(x) → u4(x, 0) [x ≥ 0]

u4(x, z) → u4(x − 1, z + x − 1) [x > 0]
u4(x, z) → returnf(z + x) [x ≤ 0]

This system is orthogonal in the sense of Kop and Nishida [2013] and thus confluent,
which is beneficial for analysis. The original LCTRS was also confluent, but this was
harder to see.

Correctness relies on the fact that the LCTRSs created using the transformation
described in Section 3 are “well behaved”; most importantly, all rules are left linear.

A.2. Translating C Programs with Explicit Pointers

As observed at the end of Section 3.6, the simple translation explored there has both
up- and downsides. On the one hand, by abstracting from the memory model, we can
simplify analysis. On the other hand, there are certain programs that we cannot handle.

For C programs with dynamically allocated arrays and/or explicit pointer use, we
consider the memory model from the C standard. Declaring or allocating an array
selects an amount of currently unused space in memory and designates it for use by the
given array. The allocated space is not guaranteed to be at a given position in memory
relative to existing declarations; when an array is indexed out of its declared bounds,
the resulting behavior is undefined—so this can safely be considered an error (see
paragraph 6.5.6:9 at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf).

We will think of a program’s memory as a set of blocks, each block corresponding to a
sequence of values. A pointer then becomes a location in such a block. In an LCTRS, we
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will model this using a “global memory” variable, which lists the blocks as a sequence
of arrays; a pointer is a pair of integers, selecting a memory block and its offset.

Limiting interest to programs on (dynamically allocated) integer or char arrays, we
will use a memory variable of sort array(array(int)), which represents a sequence of
integer arrays (i.e., (Z∗)∗); the default value 0array(int) is the empty sequence 〈〉 ∈ Z∗. We
use a theory signature with the array symbols introduced in Section 3.6 along with

—allocate : [array(array(int)) × array(int)] ⇒ array(array(int)), where Jallocate(〈a0, . . . , ak〉,
b) = 〈a0, . . . , ak, b〉—that is, allocate(mem, arr) adds the new sequence arr to the
memory;

—free : [array(array(int)) × int] ⇒ array(array(int)), where Jfree(〈a0, . . . , ak〉, n) = 〈a0, . . . ,
an−1, 〈〉, an+1, . . . , ak〉 if 0 ≤ n ≤ k and 〈a0, . . . , ak〉 otherwise—that is, the memory block
indexed by n is considered empty, and any further attempt to address a location in
that memory block should be considered an error.

A pointer is represented by a pair (b, o) of a block index and an offset within that block.
The NULL-pointer is represented by (−1, 0).

Example A.2. Consider the following example C++ function.
int *create(int k) {
int *a = new int[k];
int *b = a + 1;
for (int i = 0; i < k; i += 2) b[i] = 42;
return a;

}

Now, a and b share memory, and new memory is allocated. We might encode this as
follows.

create(mem, k) → u(allocate(mem, x), k, size(mem), 0) [size(x) = k]
u(mem, k, ai, ao) → v(mem, k, ai, ao, ai, ao + 1, 0)

v(mem, k, ai, ao, bi, bo, i) → w(mem, k, ai, ao, bi, bo, i) [i < k]
v(mem, k, ai, ao, bi, bo, i) → return(mem, ai, ao) [i ≥ k]
w(mem, k, ai, ao, bi, bo, i) → error [bo + i < 0 ∨ bo + i ≥ size(select(mem, bi))]
w(mem, k, ai, ao, bi, bo, i) → v(store(mem, bi, store(select(mem, bi), bo + i, 42)), k,

ai, ao, bi, bo, i + 2) [0 ≤ bo + i < size(select(mem, bi))]

(For clarity, we omit the optimization step that combines the first two rules, and the
one that combines the third with the last two.)

Consider how this example is executed, starting from empty memory. We will use 〈·〉
to refer to specific arrays of type array(array(int)) and [·] for arrays of type array(int):

(1) We call create(〈〉, 2), representing a function call when no arrays have been
allocated.

(2) By the first rule, we get u(allocate(〈〉, x), 2, size(〈〉), 0), where x is a random array. All
we know is that it has size 2—this rule uses irregularity to represent the random-
ness involved in an allocation. Thus, assume that the sequence [−4, 9] is chosen.
Using calculation steps to evaluate allocate and size, we get u(〈[−4, 9]〉, 2, 0, 0).
Here, the pair (0, 0) represents the array a: the first block in memory, read from
the start (offset 0).

(3) Then by the second rule (and a calculation), we reduce to v(〈[−4, 9]〉, 2, 0, 0, 0, 1, 0).
The new pair (0, 1) represents b: the same memory block as a but with offset 1. This
location points to the sequence [9]. The final 0 is the index for the loop counter i.

(4) Entering the loop (as indeed 0 < 2), we reduce to w(〈[−4, 9]〉, 2, 0, 0, 0, 1, 0).
(5) Here, we do an array store: b[i] = 42;. The LCTRS first tests whether b[i]

corresponds to a position in allocated memory and reduces to an error state if
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not. This is done by selecting the corresponding block from mem, then testing
whether the offset for b and i together exceed the block’s bounds. We succeed, as
0 ≤ 0 + 1 < size(select(〈[−4, 9]〉, 0)) ⇔ 0 ≤ 1 < size([−4, 9]) ⇔ 0 ≤ 1 < 2.

(6) Thus, the update is done, and we reduce to
v(store(〈[−4, 9]〉, 0, store(select(〈[−4, 9]〉, 0), 1 + 0, 42)), 2, 0, 0, 0, 1, 0 + 2)
→∗

calc v(store(〈[−4, 9]〉, 0, store([−4, 9], 1, 42)), 2, 0, 0, 0, 1, 2)
→∗

calc v(store(〈[−4, 9]〉, 0, [−4, 42]), 2, 0, 0, 0, 1, 2)
→calc v(〈[−4, 42]〉, 2, 0, 0, 0, 1, 2).
Thus, we retrieve the space for b from memory (getting the full block [−4, 9]),
update the position corresponding to b[0] (which is the same as a[1]), get [−4, 42],
and store the result into the corresponding position in memory. Then we carry on
with i + 2.

(7) Since 2 ≥ 2, we reduce to return(〈[−4, 42]〉, 0, 0), returning the dynamic array
[−4, 42].

Note that in step 5, we do not test whether b corresponds to currently allocated memory.
This is safe because if b is the NULL pointer or corresponds to previously freed memory,
then select(mem, bi) is 〈〉, and any indexing in this array will cause an error regardless.
Note also that this function gives a nonerror result only for even k.

Although Example A.2 considers only integer arrays, we could also handle programs
with dynamically allocated arrays of varying types. In this case, we would simply use
multiple memory variables with different type declarations.

B. CORRECTNESS PROOF

In this appendix, we give the full correctness proof, which was only sketched in
Section 4.4.

First, we prove Lemma 4.31, reformulated as follows.

LEMMA 4.31. The following statements are equivalent:

—all equations in E are inductive theorems;
—↔E ⊆ ↔∗

R on ground terms (so if s, t are ground and s ↔E t, then also s ↔∗
R t).

PROOF. Suppose that ↔E ⊆ ↔∗
R on ground terms. If s ≈ t [ϕ] ∈ E and the ground

constructor substitution γ respects this equation, then sγ and tγ are ground (since,
by definition of “respects” (Definition 4.3), Var(s) ∪ Var(t) ⊆ Dom(γ )). Since obviously
sγ ↔E tγ (with empty C), by assumption sγ ↔∗

R tγ . Thus, s ≈ t [ϕ] is an inductive
theorem.

Suppose that all equations in E are inductive theorems, and u ↔E w for ground u, w;
we must see that u ↔∗

R t. We have u = C[sγ ] and w = C[tγ ] for some s ≈ t [ϕ] ∈ E and
substitution γ that respects ϕ and maps all variables in s, t to ground terms. Let δ be
a substitution such that each δ(x) is a normal form of γ (x); by termination of R, such
a δ exists, and by quasi-reductivity, it is a ground constructor substitution. As values
cannot be reduced, also δ respects ϕ. Therefore, sδ ↔E tδ, which implies that sδ ↔∗

R tδ.
We conclude that C[sγ ] ↔∗

R C[sδ] ↔∗
R C[tδ] ↔∗

R C[tγ ], giving the desired result.

Recall also the following key lemma (whose proof has been given in the main text).

LEMMA 4.32 [SAKATA ET AL. 2009]. Let →1 and →2 be binary relations over some set
A. Then ↔∗

1 = ↔∗
2 if all of the following hold:

—→1 ⊆ →2,
—→2 is well founded, and
—→2 ⊆ (→1 · →∗

2 · ↔∗
1 · ←∗

2).
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Lemma 4.33 in the main text is the combination of the following Lemmas B.1 through
B.4.

LEMMA B.1. Let s, t be terms, ϕ a constraint, and p a position of s such that s|p has
the form f (s1, . . . , sn) with f a defined symbol and all si constructor terms. Suppose that
the variables in s, t, ϕ are distinct from those in R. Then

(1) For any ground constructor substitution γ that respects s ≈ t [ϕ] and any choice of
Expd(s ≈ t [ϕ], p), we have

sγ
(→R,p · ↔Expd(s≈t [ϕ],p)

)
tγ.

Here, →R,p indicates a reduction at position p with a rule in R ∪Rcalc.
(2) For any s′ → t′ [ϕ′] in any choice of Expd(s ≈ t [ϕ], p) and any ground constructor

substitution δ that respects s′ ≈ t′ [ϕ′], we have

s′δ
(←R,p · ↔{s ≈ t [ϕ]}

)
t′δ.

PROOF. sγ|p = s|pγ = f (s1γ, . . . , snγ ), where all siγ are ground constructor terms.
Since f is defined, f (−→s γ ) reduces by quasi-reductivity, which can only be a root reduc-
tion. Thus, sγ = (sγ )[	δ]p for some rule 	 → r [ψ] and substitution δ that respects ψ .
Since the rule variables are distinct from the ones in the equation, we can assume that
δ is an extension of γ , so sγ = s[	]pδ. Clearly, both ϕδ and ψδ evaluate to �.

As δ unifies s|p and 	, there is a most general unifier η, so s|pη = 	η and we can write
δ = δ′ ◦ η for some δ′. Now, by definition of constrained term reduction, any choice of
Expd(s ≈ t [ϕ], p) has an element s′ ≈ t′ [ϕ′] where we can write (for suitable u, η′ etc.)
the following:

sη[	η]p ≈ tη [ϕη ∧ ψη]
∼ u[	η′]p ≈ t′′ [ϕ′′]

→	→r[ψ],1·p u[rη′]p ≈ t′′ [ϕ′′]
∼ s′ ≈ t′ [ϕ′].

Consider the “term” sδ ≈ tδ. This is an instance of the first constrained term in this
reduction, so by Theorem 2.19, this term reduces at position 1 · p to s′δ′′ ≈ t′δ′′ for
some substitution δ′′ that respects ϕ′. As the reduction happens inside sδ, we see that
tδ = t′δ′′. Thus, sγ = sδ →R s′δ′′ ↔Expd(s≈t [ϕ],p) t′δ′′ = tδ = tγ .

As for the second part, note that by definition of Expd there are a substitution γ and
constraint ψ such that the constrained term sγ ≈ tγ [ϕγ ∧ ψγ ] reduces to s′ ≈ t′ [ϕ′] at
position 1 · p. By Theorem 2.20, we find a substitution η that respects ϕγ ∧ ψγ such
that sγ η ≈ tγ η →R s′δ ≈ t′δ at position 1 · p. Since the reduction takes place in the left
part of ≈, we have tγ η = t′δ and sγ η →R s′δ. We are done if also sγ η ↔s≈t [ϕ] tγ η, which
indeed holds because η ◦ γ respects ϕ (as (ϕγ ∧ ψγ )η implies ϕγ η).

LEMMA B.2. Suppose that (E,H, flag) �ri (E ′,H′, flag′) by any inference rule other
than COMPLETENESS. Then

←→‖ E ⊆ (→∗
R∪H′ · ←→‖ E ′ · ←∗

R∪H′
)

on ground terms.

Here, ←→‖ E ′ denotes a parallel application of zero or more ↔E ′ steps.

PROOF. It suffices to show that ↔E\E ′ ⊆(→∗
R∪H′ · ←→‖ E ′ · ←∗

R∪H′) on ground terms: if
C[u1, . . . , un] ←→‖ E C[v1, . . . , vn] because each ui ↔ρi vi for some ρi ∈ E , then this gives
ui →∗

R∪H′ u′
i ←→‖ E ′ v′

i ←∗
R∪H′ vi if ρi /∈ E ′ and ui = u′

i ←→‖ E ′ v′
i = vi if ρi ∈ E ′, so (sequen-

tializing parallel steps) C[u1, . . . , un] →∗
R∪H′ C[u′

1, . . . , u′
n] ←→‖ E ′ C[v′

1, . . . , v
′
n] ←∗

R∪H′
C[v1, . . . , vn] as desired. For all inference rules (except COMPLETENESS), either E \ E ′ = ∅
or we can write E \ E ′ ={s � t [ϕ]}. Consider which inference rule is applied for �ri:
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—(SIMPLIFICATION). Suppose that s � t [ϕ] is replaced by u ≈ t [ψ], where s ≈ t [ϕ]→R∪H
u ≈ t [ψ]. Let C[sγ ] ↔{s�t [ϕ]} C[tγ ], where γ is a substitution that respects ϕ. It
follows from Theorem 2.19 that sγ ≈ tγ →R∪H uδ ≈ tδ, where δ is a substitution
that respects ψ , and thus, as ≈ is a constructor, C[sγ ] →R∪H C[uδ] and tγ = tδ. Then
C[uδ] ↔{u≈t [ψ]} C[tδ] = C[tγ ], and we have C[sγ ] →R∪H · ↔E ′ C[tγ ]. Symmetrically,
if C[tγ ] ↔{s�t [ϕ]} C[sγ ], then C[tγ ] ↔E ′ · ←R∪H C[sγ ]. Thus, ↔s�t [ϕ]⊆ (→∗

R∪H · ↔E ′

· ←∗
R∪H). This suffices because in this case H = H′.

—(DELETION). In the case that s = t, the relation ↔E\E ′ is the identity. Otherwise, ϕ is
unsatisfiable, so s � t [ϕ] is never used (i.e., ↔E\E ′ = ∅).

—(EXPANSION). Suppose that C[sγ ] ↔s�t [ϕ] C[tγ ], where γ respects s � t [ϕ]; as we only
consider ground terms, γ (x) is ground for all variables in its domain. Noting that by
quasi-reductivity and termination every ground term reduces to a ground constructor
term, let δ be a substitution where for each x ∈ Dom(γ ), δ(x) is a constructor term
such that γ (x) →∗

R δ(x). Then it follows from Lemma B.1 that C[sγ ] →∗
R C[sδ] (→R

· ↔E ′) C[tδ] ←∗
R C[tγ ]. The situation where C[tγ ] ↔s�t [ϕ] C[sγ ] is symmetric.

—(EQ-DELETION). Let s = C[s1, . . . , sn] and t = C[t1, . . . , tn], where s1, t1, . . . , sn, tn ∈
Terms(�theory, Var(ϕ)). Any ground substitution γ that respects ϕ, and whose domain
contains all variables in the terms si and ti, must map these variables to values.
Therefore, siγ →∗

calc vi and tiγ →∗
calc wi, where vi is the value of siγ and wi is the value

of tiγ . Now, suppose that q ↔s�t[ϕ] u for ground q, u. Then (a) q = D[C[s1, . . . , sn]]γ
and u = D[C[t1, . . . , tn]]γ for some ground γ that respects ϕ, or (b) u = D[C[−→t ]]γ and
q = D[C[−→s ]]γ . In case (a), q →∗

R Dγ [Cγ [v1, . . . , vn]] and u →∗
R Dγ [Cγ [w1, . . . , wm]].

If each vi = wi, then clearly q →∗
R · ←∗

R u. Otherwise, (ϕ ∧ ¬(s1 = t1 ∧ · · · ∧ sn = tn))γ
is valid, so we easily get the desired q →∗

R · ↔E ′ · ←∗
R u. Case (b) is symmetric.

—(DISPROVE) In this case, we do not have (E,H, b) �ri (E ′,H′, b′).
—(CONSTRUCTOR) Let s = f (s1, . . . , sn), t = f (t1, . . . , tn), and suppose that C[sγ ] ↔{s≈t [ϕ]}

C[ f (tγ )], where γ is a substitution that respects ϕ. Since E ′ contains all equations
si ≈ ti [ϕ], we have C[sγ ] = C[ f (s1γ, . . . , snγ )] ←→‖ E ′ C[ f (t1γ, . . . , tnγ )] = C[tγ ].

—(POSTULATE) E \ E ′ = ∅, so there is nothing to prove!
—(GENERALIZATION) Suppose that s ≈ t [ϕ] is replaced by s′ ≈ t′ [ψ]. Suppose that

C[sγ ] ↔{s≈t [ϕ]} C[tγ ] for some substitution γ that respects ϕ. Then there exists a
substitution δ that respects ψ such that C[sγ ] = C[s′δ] ↔{s′≈t′[ϕ] C[t′δ] = C[tγ ].

LEMMA B.3. Suppose that (E,H, flag) �ri (E ′,H′, flag′) by any inference rule other
than COMPLETENESS. If

→R∪H ⊆ (→R · →∗
R∪H · ←→‖ E · ←∗

R∪H
)

on ground terms, then

→R∪H′ ⊆ (→R · →∗
R∪H′ · ←→‖ E ′ · ←∗

R∪H′
)

on ground terms.

PROOF. It suffices to consider the case that EXPANSION is applied (for the other cases,
we use Lemma B.2). Suppose that s →H′\H t. Using that, by quasi-reductivity and
termination, every ground term reduces to a ground constructor term, it follows from
Lemma B.1 that there exist ground constructor terms s′, t′ such that s→∗

R s′ (→R · ↔E ′)
t′ ←∗

R t, and hence

s
(→R · →∗

R∪H′ · ←→‖ E ′ · ←∗
R∪H′

)
t. �

LEMMA B.4. Suppose that (E,H, flag) �ri · · · �ri (E ′,H′, flag′). Then

(1) ←→‖ E ⊆ (→∗
R∪H′ · ←→‖ E ′ · ←∗

R∪H′) on ground terms;
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(2) if →R∪H ⊆(→R · →∗
R∪H · ←→‖ E · ←∗

R∪H) on ground terms, then

→R∪H′ ⊆ (→R · →∗
R∪H′ · ←→‖ E ′ · ←∗

R∪H′
)

on ground terms; and
(3) if R ∪H is terminating, then so is R ∪H′.

PROOF. In the following, we consider relations limited to ground terms only. We prove
the statements by induction on the number of �ri-steps, where steps in the premise
of a COMPLETENESS step are also counted. The base case is evident, so suppose that
(E,H, flag) �ri (E1,H1, flag1) �∗

ri (E ′,H′, flag′):

(1) If the first step uses inference rule COMPLETENESS, then (E,H, flag) �∗
ri

(E1,H1, INCOMPLETE) in fewer steps, so by the induction hypothesis,

←→‖ E ⊆ (→∗
R∪H1

· ←→‖ E1 · ←∗
R∪H1

)
.

If the first step uses another inference rule, this same property follows from
Lemma B.2. By the induction hypothesis, we have

←→‖ E1 ⊆
(→∗

R∪H′ · ←→‖ E ′ · ←∗
R∪H′

)
.

It follows from H1 ⊆ H′ that

←→‖ E ⊆ (→∗
R∪H′ · ←→‖ E1 · ←∗

R∪H′
)
.

By replacing ←→‖ E1 with (→∗
R∪H′ · ←→‖ E ′ · ←∗

R∪H′), we thus obtain

←→‖ E ⊆ (→∗
R∪H′ · →∗

R∪H′ · ←→‖ E ′ · ←∗
R∪H′ ·· ←∗

R∪H′
)
.

(2) Assume that →R∪H ⊆(→R · →∗
R∪H · ←→‖ E · ←∗

R∪H). By the induction hypothesis (in
case of COMPLETENESS) or Lemma B.3 (otherwise),

→R∪H1 ⊆
(→R · →∗

R∪H1
· ←→‖ E1 · ←∗

R∪H1

)
.

We complete by the induction hypothesis on (E1,H1, flag1) �∗
ri (E ′,H′, flag′).

(3) Trivial with the induction hypothesis, with the first step using either the induc-
tion hypothesis again (in case of COMPLETENESS), the definition of EXPANSION, or the
observation that other inference rules do not alter H.

Thus, we obtain Lemma 4.33 or, equivalently, Lemma B.5, as the first part of
Theorem 4.4.

LEMMA B.5. If (E,∅, flag) �ri · · · �ri (∅,H, flag′), then every equation in E is an
inductive theorem of R.

PROOF. It is clear that →R ⊆ →R∪H. It follows from Lemma B.4 that

—↔E ⊆ ←→‖ E ⊆ →∗
R∪H · ←∗

R∪H on ground terms,
—→R∪H ⊆ →R · →∗

R∪H · ←∗
R∪H on ground terms, and

—R ∪H is terminating.

By Lemma 4.32 (as equality is included in ↔∗
R), we find that ↔∗

R =↔∗
R∪H, and hence

↔E ⊆ ↔∗
R, on ground terms. We complete with Lemma 4.31.

Moving on to disproving, we need two auxiliary lemmas.

LEMMA B.6. If R is confluent and (E,H, COMPLETE) �ri ⊥, then E contains an equation
s ≈ t [ϕ] that is not an inductive theorem.

PROOF. By confluence and termination together, we can speak of the normal form
u↓R of any term u; if u is ground, then by quasi-reductivity its normal form is a ground
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constructor term. A property of confluence is that if w ↔∗
R q, then w↓R= q↓R. Thus, it

suffices to prove that for some s ≈ t [ϕ] ∈ E there is a ground constructor substitution
γ that respects this equation such that sγ and tγ have distinct normal forms.

The only inference rule that could be used to obtain (E,H, COMPLETE) �ri ⊥ is
DISPROVE, so E = E ′ ∪ {s � t [ϕ]} and one of the following holds:

(1) s, t ∈ Terms(�theory,V) with ϕ ∧ s 
= t satisfiable. In other words, there is a substitu-
tion γ mapping all variables in the equation to values, such that ϕγ is valid and sγ
and tγ reduce to different values by →calc. We are done since all values are normal
forms.

(2) s = f (s1, . . . , sn) and t = g(t1, . . . , tm) with f and g different constructors, and ϕ is
satisfiable, so there is a substitution δ mapping all variables in ϕ to values, such
that ϕδ is valid. Let γ be an extension of δ that additionally maps all other variables
in s, t to ground terms (by assumption, ground instances of all variables exist). Then
ϕγ is still valid, and sγ and tγ are ground terms with sγ →∗

R (sγ )↓R= f (("sγ )↓R) 
=
g(("tγ )↓R) = (tγ )↓R←∗

R tγ .
(3) s : ι is a variable not occurring in ϕ, ϕ is satisfiable, there are at least two different

constructors f, g with output sort ι, and either t is a variable distinct from s or t has
a constructor symbol at the root. By satisfiability of ϕ, a substitution δ exists whose
domain does not contain s, with ϕδ valid. If t is a variable, let γ be an extension of δ
mapping s to some ground term rooted by f and t to a ground term rooted by g (by
assumption, ground instances always exist). If t = f (−→t ), then let γ be an extension
of δ mapping s to some ground term rooted by g and mapping all other variables in
t to ground terms as well. Either way, ϕγ is valid and (sγ )↓R 
= (tγ )↓R.

LEMMA B.7. Suppose that →R∪H is terminating and that →R∪H ⊆ →R · →∗
R∪H ·

←→‖ E · ←∗
R∪H. If, moreover, R is confluent, (E,H, COMPLETE) �ri (E ′,H′, COMPLETE), and

↔E ∪ ↔H ⊆ ↔∗
R on ground terms, then ↔E ′ ∪ ↔H′ ⊆ ↔∗

R on ground terms.

PROOF. Assume that all conditions are satisfied; we consider the inference rule used
to derive (E,H, COMPLETE) �ri (E ′,H′, COMPLETE).

First, suppose that the rule used was COMPLETENESS, so (E,H, COMPLETE) �∗
ri

(E ′,H′, INCOMPLETE) and E ′ ⊆ E . As we have assumed that ↔E ∪ ↔H ⊆ ↔∗
R, certainly

↔E ′ ⊆ ↔E ⊆ ↔∗
R. As for ↔H′ , Lemma B.4 gives us that →R∪H′ ⊆ →R · →∗

R∪H′ ·
←→‖ E ′ · ←∗

R∪H′ , so (using again that ↔E ′ ⊆ ↔R and that ←→‖ E ′ ⊆ ↔∗
E ′) we can apply

Lemma 4.32 and termination of →R∪H′ to obtain ↔H′ ⊆ ↔R∪H′ ⊆ ↔∗
R.

If a different rule was applied, then each element in H′ either also belongs to H or
(in the case of EXPANSION) corresponds to an equation in E . Thus, ↔H′ ⊆ ↔E∪H⊆↔∗

R.
So let s ≈ t [ϕ] ∈ E ′ \ E ; we must see that ↔{s≈t [ϕ]} ⊆ ↔∗

R on ground terms. By
Lemma 4.31, it suffices if for all ground constructor substitutions γ that respect this
equation, sγ ↔∗

R tγ . We fix γ and use a case analysis on the applied inference rule:

—(SIMPLIFICATION). There is s′ � t′ [ϕ′] ∈ E such that s′ ≈ t′ [ϕ′] →R∪H s ≈ t [ϕ] at position
1· p. By Theorem 2.20, we can find δ that respects ϕ′ such that s′δ →R∪H sγ at position
p and t′δ = tγ . As →R ∪ →H ⊆ ↔∗

R by the assumption, sγ ↔∗
R s′δ ↔E t′δ = tγ , which

suffices because ↔E ⊆ ↔∗
R.

—(DELETION). No equations are added in this case.
—(EXPANSION). There is s′ � t′ [ϕ′] ∈ E such that s ≈ t [ϕ] ∈ Expd(s′ ≈ t′ [ϕ′], p) for some

p. By Lemma B.1(2), we have sγ (←R · ↔E ) tγ , which suffices because ↔E ⊆ ↔∗
R.

—(EQ-DELETION) s � t [ϕ′] ∈ E , where ϕ = ϕ′ ∧ ¬(s1 = t1 ∧ · · · ∧ sn = tn), and s =
C[s1, . . . , sn], t = C[t1, . . . , tn] for some C,

−→s ,
−→t . Since any substitution that respects

ϕ also respects ϕ′, we must have sγ ↔E tγ , so sγ ↔∗
R tγ .

—(DISPROVE) A reduction with this rule does not have the required form.
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—(CONSTRUCTOR) There is f (. . . , s, . . .) ≈ f (. . . , t, . . .) [ϕ] ∈ E , and by assumption
f (. . . , s, . . .)γ ↔∗

R f (. . . , t, . . .)γ . By confluence, this means that f (. . . , sγ, . . .) ↓R=
f (. . . , tγ, . . .)↓R, which implies that (sγ )↓R= (tγ )↓R.

—(POSTULATE, GENERALIZATION) A reduction with these rules does not have the form
required by the lemma (as the COMPLETE flag is removed).

This leads to the second part of Theorem 4.4, which largely corresponds to Lemma 4.34.

LEMMA B.8. If R is confluent and (E,∅, COMPLETE) �ri · · · �ri ⊥, then there is some
equation in E that is not an inductive theorem of R.

PROOF. If (E,∅, COMPLETE) = (E1,H1, flag1) �ri · · · �ri (En,Hn, flagn) �ri ⊥, then
we easily see that flagi = COMPLETE for all i. By Lemma B.6, En contains an equation
s ≈ t [ϕ] that is not an inductive theorem. Then ↔En 
⊆ ↔∗

R on ground terms. By
Lemma B.7, Lemma B.4, and induction on n− i, this means that ↔E ∪ ↔∅ 
⊆ ↔∗

R on
ground terms, so by Lemma 4.31, not all e ∈ E are inductive theorems.

PROOF OF THEOREM 4.4. Immediately by Lemmas B.5 and B.8.

C. SIMPLE SUM

To demonstrate the difference in power between our technique and earlier work,
even when not considering advanced data structures that were not supported
in Nakabayashi et al. [2010] or Falke and Kapur [2012], we have included an ex-
ample that can be handled with the technique in this article (and is automatically
proved by Ctrl), but not with Nakabayashi et al. [2010] or Falke and Kapur [2012] (the
latter of which is not surprising, as it does not use any lemma generation at all).

Example C.1. In the programming course in Nagoya, students in the first lecture
were asked to implement a function sum that computes the summation from 0 to a given
nonnegative integer x. The teacher’s reference implementation was the following.

int sum(int x) {
int z = 0;
for (int i = 1; i <= x; i++) {

z += i;
}
return z;

}

Some of the students solved (or tried to solve) this in the following clever way instead.

int sum1(int x) {
return x * (x + 1) / 2;

}

int sum2(int x) {
return x * (x - 1) / 2;

}

To stay close to the transformation from Nakabayashi et al. [2010] (which does not use
the return and error symbols), we consider the following translation.

sum(x) → u(x, 1, 0)
u(x, i, z) → u(x, i + 1, z + i) [i ≤ x]
u(x, i, z) → z [i > x]
sum1(x) → x ∗ (x + 1) div 2
sum2(x) → x ∗ (x − 1) div 2
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Our implementation succeeds in proving that sum(n) ≈ sum1(n) [n ≥ 0] is an in-
ductive theorem and that sum(n) ≈ sum2(n) [n ≥ 0] is not. We also succeed on the
translation using the methods in the current work. On the other hand, the method
in Nakabayashi et al. [2010] fails to prove or disprove these claims.

D. SOME EXAMPLES WE CANNOT HANDLE

To demonstrate the kind of problems that Ctrl cannot yet handle, we compare a recursive
definition sum of the function n $→ ∑n

i=1 i to three iterative implementations.

int sum(n) {
if (n < 0) return 0;
return n + sum(n-1);

}

int sum1(n) {
int i = 0, j = 0, sum = 0;
for (; i <= n; i++,j++) sum += j;
return len;

}

int sum2(int n){
int i,sum=0;
for (i=n;i>=0;i--)
sum=sum+i;

return sum;
}

int sum3(n) {
int ret = 0;
for (int i = 0; i <= n; i++)
for (int j = 0; j < i; j++)

ret++;
return ret;

}

Equivalence between sum and each of sum1, sum2, and sum3 fails for the three
main reasons discussed in Section 6.2. For sum1, generalizing the initialization vari-
ables loses the information that always i = j. For sum2, our main generalization
method (Section 5.1) does not apply because we do not recognize i = n as an ini-
tialization. For sum3, our strategy fails because the two loop counters are generalized
together.
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regression verification. In Proceedings of the 2014 ASE Conference (ASE’14). 349–360.
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