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Abstract. Modern SMT solvers use a special DPLL(T) variant of the
simplex algorithm to solve satisfiability problems in linear real arith-
metic. Termination is guaranteed by Bland’s pivot selection rule, but it
is not immediately obvious that such a rule is required. For the tradi-
tional simplex method non-termination is well-understood, but the cy-
cling examples from the literature do not immediately carry over to the
DPLL(T) variant. We present two SMT encodings of the problem of
finding cycles, using linear and nonlinear real arithmetic.

1 Introduction

The simplex algorithm (Dantzig 1947) is the most popular method for solving
linear programs, despite its worst-case exponential complexity. Termination of
the simplex algorithm is guaranteed by pivot selection strategies, like Bland’s
rule [6].

Dutertre and de Moura [9] proposed an adaptation of the simplex method to
decide quantifier-free linear arithmetic (QF LRA) that works well in a DPLL(T)
setting and which is used in SMT solvers like Yices [8] and Z3 [5]. The correctness
of the decision procedure follows from termination of the algorithm [10, Theo-
rem 1], which relies on Bland’s pivot selection rule. The algorithm is covered
in the textbook [14] by Kroening and Strichman, where it is called the general
simplex algorithm. We prefer the name DPLL(T) simplex algorithm, because the
algorithm does not, in fact, generalize the simplex method. Teaching a course on
decision procedures using this book (as well as [7]) led to the question whether
Bland’s pivot selection rule is essential for termination. This paper reports on
our quest to answer this question.

The literature on the simplex method contains several cycling examples, e.g.
[2,4,13,20], but these typically do no carry over to the DPLL(T) setting without
further ado because they start from a feasible solution and the cycling behavior
is triggered by the objective function, which is absent in the DPLL(T) simplex
method.

We describe two new approaches to automatically find cycling examples.
The first approach targets the DPLL(T) simplex method. A sequence of pivot-
ing steps is fixed such that the induced tableau cycles. This is followed by the
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use of an SMT solver for linear real arithmetic to find bounds on the variables
and an initial assignment for the variables such that the pivoting steps are valid.
This approach works well and is able to find small cycles which are useful for
didactic purposes. In the second approach the complete search is encoded into
nonlinear real arithmetic, both for the DPLL(T) simplex method and the stan-
dard simplex method with Dantzig’s pivoting rule. The resulting SMT problems
in quantifier-free nonlinear real arithmetic are nontrivial and could serve as in-
teresting benchmarks for SMT solvers. The code we produced while preparing
this paper is available online.1

The remainder of the paper is organized as follows. In the next section we
briefly recall the DPLL(T) simplex algorithm. In Section 3 we give two examples
showing that the algorithm may cycle if Bland’s pivot selection rule is violated.
The first one is found by our program. The second one originates from [2] and
relies on the fact that the constant vector in the linear program is zero and hence
the objective function of the dual linear program is constant, which ensures that
it cannot affect the cyclic behavior. In Section 4 we explain how to construct
cycles using an SMT solver for linear real arithmetic to find bounds on the
variables and the initial assignment, after the initial tableau and the sequence
of pivoting steps is fixed. Encoding the whole search for cycles as a satisfiability
problem requires solving nonlinear real arithmetic constraints. This is described
in Section 5 for the DPLL(T) simplex method as well as the original simplex
method. In Section 6 we comment on related work. In particular, we analyzed the
examples from the survey paper by Avis et al. [1], where we observed violations
of Dantzig’s pivot selection rule and a few typographical errors. We conclude in
Section 7.

2 DPLL(T) Simplex Algorithm

The DPLL(T) simplex algorithm is a constraint solving method for linear arith-
metic over real (or rational) numbers x1, . . . , xn. The unknowns x1, . . . , xn are
divided into basic variables B and nonbasic variables N that are related as fol-
lows:

xi =
∑
j∈N

aijxj (1)

for all i ∈ B. Here {1, . . . , n} = B ] N and aij ∈ R for all i ∈ B and j ∈ N .
The coefficients aij form a |B| × |N | matrix which is called the tableau of the
problem. In addition, every variable xi with 1 6 i 6 n is equipped with upper
and lower bounds ui and li:

−∞ 6 li 6 xi 6 ui 6 +∞ (2)

The infinities signal the absence of a corresponding bound. Throughout the
algorithm, an assignment for the variables is maintained such that (1) is satisfied
and (2) holds for every i ∈ N . If (2) holds also for every i ∈ B then the algorithm

1 http://cl-informatik.uibk.ac.at/research/simplex/
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returns the current, satisfying, assignment. Otherwise i ∈ B is selected such
that (2) is violated. Next a suitable j ∈ N is selected such that xi and xj can be
swapped in a pivoting operation. If there is no suitable j ∈ N then the algorithm
terminates and reports that the constraint problem is unsatisfiable. The index
j ∈ N is suitable if one of the following mutually exclusive conditions is satisfied:

(L+) xi < li, aij > 0, and xj < uj ,
(L−) xi < li, aij < 0, and lj < xj ,
(U+) ui < xi, aij > 0, and lj < xj ,
(U−) ui < xi, aij < 0, and xj < uj .

Once j ∈ N is selected, a pivoting step is performed: B′ = B ∪ {j} − {i},
N ′ = N ∪ {i} − {j}, and the coefficients in (1) are updated such that

xi′ =
∑

j′∈N ′

ai′j′xj′ (3)

holds for all i′ ∈ B′. This amounts to substituting

xj =
1

aij

xi −
∑

j′∈N−{j}

aij′xj′


into the previous tableau. Next the value of xj is changed to li in cases (L+) or
(L−) and to ui in cases (U+) or (U−). This is followed by a recomputation of
the values of the new basic variables such that (3) remains true.

Example 1. Consider the tableau

x4

x5

( x1 x2 x3

2 2 −1

−1 1 3

)
with bounds

x1 > 0 x2 > 0 x3 > 0 x4 > 3 x5 6 −2

and assignment x1 = x2 = x3 = x4 = x5 = 0. Both x4 and x5 violate their
respective bounds. We can pivot x4 with x1 or x2, but not with x3; in order to
increase the value of x4 we have to decrease the value of x3 (due to the negative
coefficient −1) but x3 is at its lower bound. So the nonbasic variable x3 is not
suitable for the basic variable x4 because x4 < l4, a43 < 0, but condition (L−)
above is violated. Likewise, x5 can be pivoted with x1, but not with x2 or x3.
So there are three different options for a pivoting step: (x4, x1), (x4, x2), and
(x5, x2).

In the simplex method, the selection of the pair (xi, xj) with i ∈ B and j ∈ N
is determined by a pivot selection rule and critical for ensuring termination of
the method. Different pivoting rules have been proposed in the literature (e.g.
[6,11,12,16]). Termination of the DPLL(T) simplex algorithm has been estab-
lished in [10] for Bland’s rule [6], which selects the smallest i ∈ B such that xi

violates its bounds and smallest suitable j ∈ N .



Example 2. In the preceding example, the pair (x4, x1) is selected by Bland’s
rule, resulting in the new tableau

x1

x5

( x4 x2 x3

1
2 −1 1

2

− 1
2 2 5

2

)

and the assignment x1 = 3
2 , x2 = x3 = 0, x4 = 3, x5 = − 3

2 .

3 Two Cycles

We give two examples where the DPLL(T) simplex algorithm may loop if one
does not impose any constraints on pivots beyond suitability. The first one is
obtained by the method that we describe in the next section.

Example 3. We use four variables, x1 to x4, with the following constraints:

x3 = x1 + 2x2 −1 6 x1 6 0 −5 6 x3 6 −4

x4 = 2x1 + x2 −4 6 x2 6 0 −7 6 x4 6 1

The resulting cycle is given in Figure 1, with the pivoting element indicated
in each tableau. Note that after the first four steps (which are given in the
left column), the tableaux repeat, but the assignments are different. In fact, any
nonbasic variable that is at its lower bound will be at its upper bound fours steps
later, and vice versa. Figure 2 displays the trajectory of the (x1, x2) coordinates
of the eight assignments, along with the lines corresponding to the lower and
upper bounds of each variable. Every assignment lies at the intersection of two
of these lines, because in each step of the cycle, the two nonbasic variables are at
one of their bounds. Each pair of subsequent assignments lie on one of those lines,
determined by the nonbasic variable that is not pivoted in the corresponding
pivoting step. It is noteworthy that the trajectory alternates between left and
right turns, a behavior already observed by Beale [4]. The second step violates
Bland’s pivot selection rule as the basic variable x1, which precedes the selected
basic variable x4, also violates its bounds. The nonbasic variable x2 is suitable
for pivoting with x1, and the resulting pivoting step produces the tableau

x3

x1

(x2 x4

1
2 −

1
2

3
2 −

1
2

)

and assignment x1 = −1, x2 = − 3
2 , x3 = −4, and x4 = − 7

2 , which satisfies the
constraints. A simpler satisfying assignment is x1 = −1, x2 = −2, x3 = −5, and
x4 = −4.

Note that the selection of nonbasic variables follows Bland’s rule when using
the (natural) variable ordering x1 < x2 < x3 < x4. If one instead considers the
variable ordering x4 < x1 < x2 < x3, then the selection of basic variables follows



Bland’s rule. However, the third pivoting step, which pivots the basic variable
x1 with the nonbasic variable x3, should pivot x1 with x4 instead, because x4

precedes x3 in this variable ordering. Consequently, both parts of Bland’s pivot
selection rule are required in order to ensure termination.

x3

x4

( x1 x2

1 2

2 1

) x1 x2 x3 x4

0 0 0 0
x3

x4

( x1 x2

1 2

2 1

) x1 x2 x3 x4

−1 −4 −9 −6

x1

x4

( x3 x2

1 −2

2 −3

) x1 x2 x3 x4

−4 0 −4 −8
x1

x4

( x3 x2

1 −2

2 −3

) x1 x2 x3 x4

3 −4 −5 2

x1

x2

( x3 x4

− 1
3

2
3

2
3
− 1

3

) x1 x2 x3 x4

− 10
3
− 1

3
−4 −7

x1

x2

( x3 x4

− 1
3

2
3

2
3
− 1

3

) x1 x2 x3 x4

7
3
− 11

3
−5 1

x3

x2

( x1 x4

−3 2

−2 1

) x1 x2 x3 x4

−1 −5−11−7
x3

x2

( x1 x4

−3 2

−2 1

) x1 x2 x3 x4

0 1 2 1

Fig. 1. The cycle of length 8 in Example 3.

The second example is an adaptation of an example attributed to H.W. Kuhn
in [2].

Example 4. The linear program in [2, Example 2] (without the third row) amounts
to:

x4 = −2x1 + 1
3x2 − 2 x6 = x1 − 1

3x2 + 1 max u = 0x1 + 0x2

x5 = −9x1 + x2 − 3 x7 = 9x1 − x2 + 12 xi > 0

Using the transformation x3 := x4 + 2, x4 := x5 + 3, x5 := x6− 1, x6 := x7− 12
we obtain the following constraints:

x3 = −2x1 + 1
3x2 x5 = x1 − 1

3x2 x1 > 0 x3 > 2 x5 > −1

x4 = −9x1 + x2 x6 = 9x1 − x2 x2 > 0 x4 > 3 x6 > −12

With these constraints, a cycle of length 6 is obtained. However, some of the
beauty of the original example is lost, where after just two pivoting steps, the
tableau becomes identical to the initial tableau under a cyclic shift of the vari-
ables.

In order to restore this symmetry, we have to assign lower bounds such that
all odd numbered variables have the same lower bound, and all even numbered
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Fig. 2. Trajectory of the assignments (x1, x2) in Example 3.

variables as well. A suitable choice is

x3 = −2x1 + 1
3x2 x5 = x1 − 1

3x2 x1, x3, x5 > 1
3

x4 = −9x1 + x2 x6 = 9x1 − x2 x2, x4, x6 > −3

The first two steps of the corresponding cycle of length 6 are given in Figure 3,
after which a cyclic shift of the variables is obtained.

4 Constructing Cycles using Linear Real Arithmetic

Our first approach to finding cycles in the DPLL(T) simplex method works by
fixing the initial tableau and a sequence of pivoting steps, and then setting up
an SMT problem to find bounds on the variables and an initial assignment such
that the pivoting steps cycle. If the resulting SMT problem is satisfiable then we
have found a cycle; otherwise we try again with a different initial tableau. The
procedure is outlined in Figure 4.

Our goal is to obtain a cycle with simple pivoting steps, that is, we want
the tableau entries corresponding to the pivoting steps to be simple.2 In or-
der to control these entries we take a detour via full tableaux. The full tableau

2 We use max(|p|, |q|) as a measure of simplicity of a rational number p/q; the smaller
the measure the simpler the number.



x3

x4

x5

x6


x1 x2

−2 1
3

−9 1

1 − 1
3

9 −2


x1 x2 x3

1
3
−3− 5

3

x4 x5 x6

−6 4
3

9

x1

x2

x5

x6


x3 x4

1 − 1
3

9 −2

−2 1
3

−9 1


x1 x2 x3

4
3

9 1
3

x4 x5 x6

−3− 5
3
−6

x3

x2

x5

x6


x1 x4

−2 − 1
3

−9 −2

1 1
3

9 1


x1 x2 x3

1
3
−2 1

3

x4 x5 x6

−3− 2
3

0

...

Fig. 3. One third of a cycle of length 6 in Example 4.

1: fix sequence of pivoting steps
2: repeat
3: guess initial tableau
4: generate linear real arithmetic SMT problem for bounds and initial assignment
5: until SMT problem is satisfiable with a cycle of desired simplicity
6: print cycle based on model generated by SMT solver

Fig. 4. Constructing cycles using linear real arithmetic

corresponding to

xi =
∑
j∈N

aijxj

for i ∈ B is the |B|×n matrix with entries aij where aij for j ∈ B is defined as −1
if i = j and 0 otherwise. That is, the full tableau is obtained from the (shortened)
tableau by adjoining a negated identity matrix in the columns corresponding to
the basic variables.

Full tableaux allow an elegant description of pivoting steps: From the tableau
A, where the basic variable xi being pivoted corresponds to a column equal to
a negated unit vector −ek (we use ek to denote the unit vector of length |N |
whose k-th entry equals 1), we use row operations to move to the tableau RA,
where R differs from the identity matrix in the i-th column. The matrix R is
chosen such that the column corresponding to the variable entering the basis in
RA equals −ek.

Example 5. The full tableau corresponding to the initial tableau in Example 3
is

x3

x4

( x1 x2 x3 x4

1 2 −1 0

2 1 0 −1

)



The first pivoting step corresponds to subtracting 2 times the first row from the
second row and multiplying the first row by −1 in the full tableau, i.e.,(

−1 0
−2 1

)(
1 2 −1 0
2 1 0 −1

)
=

(
−1 −2 1 0
0 −3 2 −1

)
Now if we assume that there is a cycle with initial full tableau A and pivoting

steps given by R1 to Rn, then from

RnRn−1 · · ·R1A = A

we may conclude that RnRn−1 · · ·R1 = I by focusing on the variables that
are initially basic. Conversely, given RnRn−1 · · ·R1 = I with Ri of the shape
described above, we can construct a corresponding initial tableau under the
additional assumption that the variable entering the basis in the j-th pivoting
step is xj . In that case, the j-th column a•j of A satisfies

RjRj−1 · · ·R1a•j = −ek

where k is the index of the column of Rj that differs from the identity matrix.
Consequently,

a•j = RnRn−1 · · ·R1a•j = −RnRn−1 · · ·Rj+1ek

This gives us the desired control over the pivoting elements, whose inverse can
be found on the diagonals of the Ri in the non-unit columns.

Example 6. The following four matrices satisfy R4R3R2R1 = I:

R1 =

(
−1 0
−2 1

)
R2 =

(
1 − 2

3
0 1

3

)
R3 =

(
3 0
2 1

)
R4 =

(
1 −2
0 −1

)
We have

−R4R3R2e1 =

(
1
2

)
−R4R3e2 =

(
2
1

)
−R4e1 =

(
−1
0

)
−e2 =

(
0
−1

)
and the resulting full tableau (

1 2 −1 0
2 1 0 −1

)
is the one underlying Example 3.

For the SMT encoding, we generate variables for the lower and upper bounds
li and ui and the assignments xri after each round r (using r = 0 for the initial
assignment). For each round, we assert that the assignment satisfies the initial
tableau, that the nonbasic variables that remain nonbasic do not change their
value, that the pivoting step is suitable, and that the new nonbasic variable is
assigned its lower bound in cases (L+) and (L−) of the suitability conditions



or its upper bound in cases (U+) and (U−). Finally we assert that the final
assignment equals the initial one.

We automated the above process for the case of two constraints, with pivoting
steps alternating between the first and the second row. All but two of the matrices
Ri are generated randomly, picking coefficients from the set of simple numbers
{p/q | |p|, |q| < 4}. The final two matrices are computed from the constraint
RnRn−1 . . . R1 = I: Denoting the unknown coefficients of R2 and R1 by a, b, c,
and d, the constraint can be written as

(RnRn−1 . . . R3)−1 = R2R1 =

(
1 a
0 b

)(
c 0
d 1

)
=

(
c + ad a
bd b

)
From this we can read off a, b, d, and c, in that order, provided that b 6= 0.

As a final refinement, we let the number of rounds be 2n instead of n. This
means that we perform the sequence of pivoting steps twice. This is useful be-
cause the assignment of the nonbasic variables may alternate between lower and
upper bounds. Indeed exactly this happens in Example 3. The resulting set of
constraints is passed to an SMT solver (in our case, Yices [8]).

We rely on the SMT solver to produce simple numbers for the assignments,
which, as evidenced by Example 3, works well enough. In order to obtain this
simple cycle, the termination condition in Figure 4 takes simplicity into account.
The individual SMT problems are very simple; generating a problem and solving
it with Yices takes well under 0.01 seconds on a Core i7-4600U (2.1 GHz) CPU,
with most of the time spent in the OS rather than doing productive work. For
Example 3 we filtered out unsatisfiable problems, and discarded all answers that
contain numbers greater than 11; an average run succeeded after about 2000
iterations and took under 15 seconds to complete on the mentioned hardware.

5 Constructing Cycles using Nonlinear Real Arithmetic

The approach outlined in Section 4 is slightly unsatisfactory, because it involves
guessing. We also tried using support for nonlinear real arithmetic (NRA) to
delegate this task to the SMT solver. We tried this for both the DPLL(T) simplex
method and the standard simplex method using Dantzig’s pivot selection rule.

5.1 DPLL(T) Simplex

For the DPLL(T) simplex method, we fix a sequence of pivoting steps. Here we
include the information which of the bounds the basic variable being pivoted
violates. Then we introduce variables for the entries of the initial tableau, the
lower and upper bounds, and the assignments after each round. As in Section 4,
we assert that each assignment satisfies the initial tableau, and that the ba-
sic variable chosen in each step violates its selected bound. In order to ensure
suitability, we encode that the nonbasic variable changes in the right direction;



formally, if xj denotes the value before the pivoting step and x′j the value after
the pivoting step, we assert that

(xj < uj ∧ xj < x′j) ∨ (xj > lj ∧ xj > x′j)

This way we avoid having to compute the entries of the intermediate tableaux.
With this approach we obtain the following examples using Yices (version 2.5.2)
and Z3 (version 4.5.0):3

Example 7. The DPLL(T) simplex method cycles with the constraints

x3 = x1 + 2x2 − 5
8 6 x1 6 − 9

16 −4 6 x2 6 1

x4 = −x1 − 1
2x2 − 9

2 6 x3 6 −4 0 6 x4 6 4

and initial assignment x1 = − 5
8 , x2 = −4, x3 = − 69

8 , and x4 = 21
8 . This example

was obtained using Yices. Z3 produces the following cycling problem:

x3 = x1 + 8x2
1
2 6 x1 6 2 1

8 6 x2 6 2

x4 = −x1 − x2 6 6 x3 6 13 − 17
4 6 x4 6 1

8

with initial assignment x1 = 1
2 , x2 = 1

8 , x3 = 3
2 , and x4 = − 5

8 .

The numbers obtained this way are not nearly as nice as those obtained by
the approach based on linear real arithmetic. We tried tweaking the result by
fixing some of the bounds or tableau entries, but found that it’s hard to steer
Yices and Z3 towards nice solutions.

5.2 Standard Simplex

This section is concerned with the standard simplex method, which is used for
solving linear optimization problems of the shape

minimize
∑
j∈N

cjxj

subject to xi +
∑
j∈N

aijxj = bi for i ∈ B

xi > 0 for i ∈ N ∪B

where we again distinguish between basic variables xi (i ∈ B) and nonbasic
variables xj (j ∈ N). The simplex method maintains a tableau consisting of the
coefficients aij , bi, and cj for i ∈ B and j ∈ N satisfying the condition bi > 0 for
i ∈ B, which ensures that the assignment xj = 0 for j ∈ N and xi = bi for i ∈ B
satisfies the constraints. If no cj (j ∈ N) is negative then the optimum has been
reached; otherwise, we select a nonbasic variable xj corresponding to a negative

3 While CVC4 [3] (snapshot version 2017-06-14) also has support for NRA, it cannot
produce models, making it unfit for our purposes.



cj , and look for a basic variable xi such that aij is positive. (If there is no such
basic variable then the problem is unbounded.) These two constraints determine
the suitable pivoting pairs. To pivot xi and xj , we use the substitution

xj =
1

aij

bi − xi −
∑

j′∈N−{j}

aij′xj′


in the given tableau and the objective function. There are several pivot selec-
tion rules for the standard simplex method. One is Bland’s rule, which ensures
termination; it picks the smallest (nonbasic) variable index among the negative
values cj , and the smallest index among the basic variables that are suitable for
pivoting with the selected nonbasic variable.

Here we focus on Dantzig’s traditional pivoting rule, which tries to reduce the
value of the objective function as quickly as possible. This is the oldest pivoting
rule, and it is of interest to us because it fails to ensure termination. To this end,
the nonbasic variable xj is selected such that the value cj is as small as possible
(ties are broken by variable index). The basic variable xi is selected such that
bi
aij

is minimized. Again, ties are broken in favor of smaller variable indices.

For the standard simplex method, we first tried a very naive encoding in an
attempt to find cycles of length 6. However, the trick from Section 5.1, to express
all constraints in terms of the initial tableau, does not work here, because pivot
selection depends on the objective function (which has to be expressed in terms
of the nonbasic variables) and the pivoting elements in the tableau. Therefore,
as a first attempt, we introduced variables for all tableau entries for each rounds
in the assumed cycle, which were defined in terms of the pivoting element and
the preceding tableau. As a simplification, which is inspired by Avis et al. [1],
we assume that bi = 0 for i ∈ B, so the minimization of bi

aij
has no effect.

This turned out to be too much for Yices and Z3, perhaps because of the
large number of functions and variables (for 6 pivoting steps and 6 variables in
the tableau, the encoding requires 98 real variables for coefficients and tableau
entries) and we did not obtain any cycling tableau from this encoding.

In the end we adopted an approach by Zörnig [20], which avoids divisions
and requires fewer variables (26 instead of 98 for a cycle of length 6 with 6
variables). In this approach, all constraints are expressed in terms of the initial
tableau using subdeterminants. We demonstrate this by an example, where we
try to find a cycling tableau with two constraints and six variables x1, . . . , x6

where the basic variables follow the cycle

x5, x6 → x1, x6 → x1, x2 → x3, x2 → x3, x4 → x5, x4 → x5, x6 → · · ·

We can express the initial tableau by

Ax =

a11 a12 a13 a14 1 0
a21 a22 a23 a24 0 1
c1 c2 c3 c4 0 0

x =

0
0
z





where x = (x1, x2, x3, x4, x5, x6)T , z is the value of the objective function, and
we have already set bi = 0 for i ∈ {1, 2}. In order to obtain the tableau with
basic variables xi, xj , we have to perform row operations that result in the cor-
responding columns to become unit vectors; this can be expressed as

A′x =

a1i a1j 0
a2i a2j 0
ci cj 1

−1a11 a12 a13 a14 1 0
a21 a22 a23 a24 0 1
c1 c2 c3 c4 0 0

x =

0
0
z


Following Zörnig, let Dij and Dijk be defined as

Dij =

∣∣∣∣a1i a1ja2i a2j

∣∣∣∣ Dijk =

∣∣∣∣∣∣
a1i a1j a1k
a2i a2j a2k
ci cj ck

∣∣∣∣∣∣
Using what is essentially Cramer’s rule, the k-th column of the tableau A′ equalsa′1k

a′2k
c′k

 =
1

Dij

Dkj

Dik

Dijk


Now, for the pivoting step from xi, xj to xk, xj to be valid, the following con-
straints need to be satisfied:

– a′1,k > 0: Dij and Dkj have equal signs, and Dij 6= 0

– c′k < 0: Dijk and Dij have opposite signs

– c′k is minimal, and ties are broken by smaller variable index: if Dij > 0
(Dij < 0), then Dijk′ > Dijk (Dijk′ < Dijk) for k′ < k and Dijk′ > Dijk

(Dijk′ 6 Dijk) for k′ > k.

– no variable with smaller index can enter the basis: if j < k then a′2,k < 0,
i.e., Dij and Dik have opposite signs.

Analogous conditions can be derived for pivoting steps from xi, xj to xi, xk. In
fact by the first constraint, we will always have Dij > 0, because D56 = 1 > 0 in
the initial tableau. Using this encoding the following example is obtained using
Yices; Z3 did not produce an answer within 600 seconds.

Example 8. The following optimization problem cycles when using the standard
simplex method with Dantzig’s pivot selection rule:

minimize −6x1 + 46x2 + 7x3 + 97
32x4

subject to −x5 = 1
2x1 − 4x2 − 3

4x3 − 25
64x4

−x6 = 4x2 + x3 + 1
2x4

x1, . . . , x6 > 0



With some manual tweaking (by fixing some of the values of the tableau in the
SMT encoding), we obtain the following, nicer optimization problem:

minimize − 3
4x1 + 4x2 + x3 + 5

13x4

subject to −x5 = 1
3x1 − 2x2 − 2

3x3 − 1
3x4

−x6 = 2x2 + x3 + 6
13x4

x1, . . . , x6 > 0

The cycle is given in Figure 5.

−x5

−x6

min:


x1 x2 x3 x4

1
3
−2 − 2

3
− 1

3

0 2 1 6
13

− 3
4

4 1 5
13

 −x3

−x2


x5 x6 x1 x4

3 3 1 5
13

− 3
2
−1 − 1

2
1
26

3 1 1
4
− 2

13



−x1

−x6


x5 x2 x3 x4

3 −6 −2 −1

0 2 1 6
13

9
4
− 1

2
− 1

2
− 19

52

 −x3

−x4


x5 x6 x1 x2

18 13 6 −10

−39−26−13 26

−3 −3 − 7
4

4



−x1

−x2


x5 x6 x3 x4

3 3 1 5
13

0 1
2

1
2

3
13

9
4

1
4
− 1

4
− 1

4

 −x5

−x4


x3 x6 x1 x2

1
18

13
18

1
3
− 5

9
13
6

13
6

0 13
3

1
6
− 5

6
− 3

4
7
3


Fig. 5. The cycle of length 6 in Example 8.

In contrast to the encoding in Section 4, the SMT encodings for this section
were produced manually. This is made feasible by the fact that the SMT-LIB
format supports function definitions. For example, we defined an abbreviation
for the determinant of a 3× 3 matrix:

( def ine− fun det3
( ( c11 Real ) ( c12 Real ) ( c13 Real )
( c21 Real ) ( c22 Real ) ( c23 Real )
( c31 Real ) ( c32 Real ) ( c33 Real ) )

Real
(− (+ (∗ c11 c22 c33 ) (∗ c12 c23 c31 ) (∗ c13 c21 c32 ) )

(+ (∗ c11 c23 c32 ) (∗ c12 c21 c33 ) (∗ c13 c22 c31 ) ) ) )

6 Related Work

Perhaps the closest related work is Zörnig’s paper [20], which explores the idea
of employing a computer program for finding cycles in the standard simplex



method. Zörnig uses LINGO (a commercial program for nonlinear optimization)
for this purpose. His work goes into a different direction from ours. Whereas we
are mainly interested in the DPLL(T) simplex method, Zörnig explores several
pivot selection rules and also synthesizes a cycle of odd length. The latter requires
working with more than 2 constraints, cf. [20, Equation (5.6)].

There is a rich body of literature about loops in the standard simplex method,
starting with Hoffmann [13] and Beale [4]. A survey of cycles with visualizations
of the trajectories was produced by Avis et al. [1]. As far as we know, all of these
examples have been found manually. As part of this work, we reconstructed the
cycles presented in the latter paper. Below we make a few observations.

– The example attributed to Beale does not appear in [4], where instead the
following cycling tableau is given:

minimize − 3
4x1 + 20x2 − 1

2x3 + 6x4

subject to 1
4x1 − 8x2 − x3 + 9x4 + x5 = 0
1
2x1 − 12x2 − 1

2x3 + 3x4 + x6 = 0

– There are sign errors in the objective functions of Beale’s example (+150x2

should be −150x2) and Marshall and Suurballe’s example [15] (which should
read z = 0 + x3 − 7x4 − 1x5 − 2x6).

– The examples by Sierksma [17], Yudin and Gol’shtein [19], and Solow [18]
violate Dantzig’s pivot selection rule; in the last case, only the tie-breaking
rule for the basic variable is violated. Solow’s cycle is similar to Kuhn’s in
that it is based on two pivoting steps that result in a cyclic shift of the
variables. After four steps, the first tableau of Figure 6 is reached. Then x1

is pivoted with x5. In the sixth step, x2 is pivoted with x6, but by Dantzig’s
rule we should select x1 as the new basic variable instead of x6.

−x5

−x6

min:


x1 x2 x3 x4

2 1 −3 −1

−7 −3 7 2

−2 −2 8 2

 −x1

−x2


x5 x6 x3 x4

−3 −1 2 1

7 2 −7 −3

8 2 −2 −2



−x1

−x6


x5 x2 x3 x4

1
2

1
2
− 3

2
− 1

2
7
2

1
2
− 7

2
− 3

2

1 −1 5 1

 ...

Fig. 6. One third of Solow’s cycle of length 6 [18]



7 Conclusion

In this paper we have presented a new approach for finding cycles in the simplex
method, both for the traditional method and, for the first time, for the DPLL(T)
variant which is used in SMT solvers to solve quantifier-free linear arithmetic
constraint problems.

Any cycle in the simplex method induces a cycle in the dual simplex method
by switching to the dual optimization problem. The absence of an objective
function means that this observation does not immediately carry over to the
DPLL(T) simplex method. However, if a cycling tableau has shape xB +AxN =
0, which is the case for all examples collected by Avis et al. [1], then dualization
produces a constant objective function, and in this case, the cycle can be repro-
duced in the DPLL(T) simplex method. We have seen this in Example 4. It is
noteworthy that this approach cannot produce Example 3, which relies on the
fact that every variable comes with two constraints. In fact, Beale [4] observed
that any cycle in the standard simplex method with two constraints requires
at least 6 steps, and correspondingly, 6 variables, because each bound xi > 0
produces one of the potential lines the trajectory can move along. Our 4 variable
example works because for each variable, we get a pair of two parallel lines that
can be used on the trajectory. Beale’s first observation remains valid; indeed our
cycle length 8 is greater than 6.

While working on Zörnig’s encoding for the standard simplex we noticed that
sometimes small changes (like switching from a strict inequality to a nonstrict
one) resulted in Yices taking a longer time than we were willing to wait; we did
not study this phenomenon systematically, but this suggests that these encodings
are interesting benchmarks for nonlinear real arithmetic.

Acknowledgements. We thank the reviewers for their constructive feedback.
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