
Normalisation by Random Descent∗

Vincent van Oostrom1 and Yoshihito Toyama2

1 Department of Computer Science, University of Innsbruck, Innsbruck, Austria
Vincent.van-Oostrom@uibk.ac.at

2 RIEC, Tohoku University, Sendai, Japan
toyama@riec.tohoku.ac.jp

Abstract
We present abstract hyper-normalisation results for strategies. These results are then applied to
term rewriting systems, both first and higher-order. For example, we show hyper-normalisation
of the left–outer strategy for, what we call, left–outer pattern rewrite systems, a class comprising
both Combinatory Logic and the λβ-calculus but also systems with critical pairs. Our results
apply to strategies that need not be deterministic but do have Newman’s random descent prop-
erty: all reductions to normal form have the same length, with Huet and Lévy’s external strategy
being an example. Technically, we base our development on supplementing the usual notion of
commutation diagram with a notion of order, expressing that the measure of its right leg does
not exceed that of its left leg, where measure is an abstraction of the usual notion of length. We
give an exact characterisation of such global commutation diagrams, for pairs of reductions, by
means of local ones, for pairs of steps, we dub Dyck diagrams.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases strategy, hyper-normalisation, commutation, random descent

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.32

1 Introduction

The (hyper-)normalisation of the leftmost–outermost strategy is a fundamental result in
Combinatory Logic and the λ-calculus, cf. [3, 7]. For the special case of the λ-calculus, the
simple idea underlying the present paper is that normalisation of the leftmost–outermost
strategy is due to it being both deterministic, there is at most one leftmost–outermost
step from any given λ-term, and compatible with β, in the sense that if M Ð▸β N then
repeatedly performing the leftmost–outermost strategy on both M and N results either in a
common reduct or in infinite reductions from both. Compatibility guarantees (Section 5)
that each term β-convertible to some normal form is also convertible to that normal form
by leftmost–outermost steps. Determinism guarantees that if there is such a conversion to
normal form, then there exists a leftmost–outermost reduction from the term to the normal
form, and so all leftmost–outermost reductions from that term terminate. A method for
proving hyper-normalisation is obtained from this by strengthening compatibility with an
order constraint expressing that in the above the leftmost–outermost reduction from M be at
least as long as that from N . Ordered compatibility guarantees that β-steps never increase
the distance, i.e. the length of the leftmost–outermost reduction of a term to its normal

∗ The research for this paper was initiated during a visit in November 2013 funded by RIEC, Tohoku
University, of the first author to the second author.

© Vincent van Oostrom and Yoshihito Toyama;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Normalisation by Random Descent

form, from which hyper-normalisation follows as leftmost–outermost steps do decrease that
distance. We present an abstract account of this idea based on the following observations.

The first observation (Section 4) is that determinism can be relaxed to Newman’s random
descent property, all reductions to normal form have the same length [13, 20, 21, 16]. This
vastly broadens the scope of the method. In addition to deterministic strategies such as
leftmost–outermost, it covers, e.g., interaction net strategies, linear β-reduction, and Huet and
Lévy’s external strategy [8], allowing to contract redexes that are outermost until eliminated
(by contracting the redex itself or some overlapping redex [19]). Technically, whereas for
deterministic systems the notion of distance is well-defined because given an object there is a
unique reduction to its normal form, it is still well-defined for random descent systems since
although reductions to normal form then need no longer be unique they have a unique length.

The second observation (Section 3) is that all reductions from an object to normal form
having the same length is equivalent to the order constraint that for each pair of reductions
from the object to normal form, the first is at least as long as the second. Working towards
deciding it, we characterise this property of peaks of reductions by means of a property of
local peaks (of steps). More precisely, we show it necessary and sufficient that such local
peaks be completable by means of a Dyck-conversion, a conversion in which the number
of forward steps never (for any prefix) exceeds the number of backward steps. Technically,
we establish the above in a commutation setting where the reductions being ordered may
be reductions in two distinct rewrite systems. In Section 6 we turn this local criterion into
a critical pair criterion for a concrete class of higher-order term rewrite systems, dubbed
left–outer Dyck, comprising both Combinatory Logic and the λβ-calculus.

The third observation is that we may abstract the notion of length in the random descent
property into a notion of measure, allowing steps having different measures to coexist. This
covers, for example, systems having ‘macro’ steps abbreviating several ‘micro’ steps. We
build this into our setup right from the start (Section 2), by introducing derivation and
conversion monoids which allow to measure reductions respectively conversions.

For terminating systems, the classical division of work for proving confluence is to first
localise the confluence property for abstract rewrite systems (Newman’s Lemma), and then
using that establish confluence for term rewrite systems by means of a critical pair criterion
(Huet’s Critical Pair Lemma). We structure our paper accordingly, first localising random
descent to the local Dyck property (Sections 3, 4) for abstract rewrite systems, and then
using that to establish a critical pair criterion, the left–outer Dyck property, for establishing
hyper-normalisation of the left–outer strategy for term rewrite systems (Sections 5, 6).

We employ the untyped λ-calculus with β- and/or η-reduction [2] as a running example,
marking the examples where en passant new results are obtained by a double dagger (‡).

Contribution Apart from unifying our earlier results [20, 21, 16], with a clean separation
into results for abstract and term rewriting, the main contributions of this paper are the
notions of measured rewrite system, ordered commutation, compatibility and Dyck diagrams.

2 Preliminaries

We assume basic knowledge of term rewriting and the λ-calculus [1, 2, 19], and use notation
from [19]. We employ abstract rewrite systems (ARSs) and strategies for them as defined
in [19, Chapters 8 and 9]; cf. also [16]. In particular, steps are first-class citizens of abstract

V. van Oostrom and Y. Toyama 32:3

rewrite systems1 and a strategy for a rewrite system is a sub-rewrite system on the same set
of objects, with the same set of normal forms.2 Throughout we assume

Ð▸, →, Ð▸, _ are rewrite systems on the same set of objects, unless stated otherwise.

A strategy → for the rewrite system Ð▸ is (Ð▸-)normalising if → is terminating on objects that
are Ð▸-normalising, i.e. if for all a with aÐ▸∗ b for some Ð▸-normal form b, a is →-terminating.
The strategy → is Ð▸-hyper-normalising if →/Ð▸, i.e. Ð▸∗ ⋅ → ⋅ Ð▸

∗, is Ð▸-normalising.

I Example 1. For the λβ-calculus, selecting an outermost redex for contraction yields
a strategy (since any term not in β-normal form contains some outermost redex) that is
non-deterministic, the outermost strategy. Starting from the outermost strategy, selecting the
leftmost redex (in the tree ordering, cf. Definition 27) for rewriting yields a strategy for it that
is deterministic. Composing both yields a strategy for β-reduction that is deterministic again,
the leftmost–outermost strategy. The leftmost strategy starting from β-reduction, is also
well-defined but non-deterministic. The leftmost–outermost strategy is hyper-normalising [3],
but the leftmost and outermost strategies are not even normalising, cf. (λx.xΩ)(λxy.z)Ω.

For convenience we recapitulate notational conventions and their mnemonic values.
I Notation 2. We employ:
Ð▸ arrow notation to denote an ARS having steps as first-class citizens;
→ part of notation Ð▸ to express that → is a Ð▸-strategy, i.e. part of Ð▸;
← converse of notation → to expresses that ← is converse of →; and
◂_Ð union of notations ◂Ð and _ to express ◂_Ð is union of ◂Ð and _.

We use sub/superscripts to express restricting/extending the corresponding notion.
At the core of this paper are the following commutation versions for pairs of rewrite systems
of standard notions for single rewrite systems (PN is the obvious ‘peak’ version of NF).

I Definition 3. We say the normal form property (NF) holds if a ◂_Ð ∗ b with a in _-normal
form implies a ∗

◂Ð b, the peak normal form property (PN) holds if a ∗
◂Ð ⋅_∗ b with a in

_-normal form implies a ∗
◂Ð b, the Church–Rosser property (CR) holds if a ◂_Ð ∗ b implies

a _∗
⋅
∗
◂Ð b, and commutation (CO) holds if a ∗

◂Ð ⋅_∗ b implies a _∗
⋅
∗
◂Ð b.

CR is also known as e.g. factorisation, postponement, preponement, and separation, cf. [4].
Instantiating both Ð▸ and _ to → yields the usual notions NF, PN, CR and CO (then called
confluence). That NF ⇐⇒ PN ⇐Ô CR ⇐⇒ CO is folklore, cf. [4]. In order to be able to
express that one rewrite system is ‘better’ than another, we enrich these notions/diagrams in
two ways: we equip steps with a measure (with respect to which conversions are compared)
and we allow for infinite reductions (defining all such to be ‘worse’ than finite ones).

I Definition 4. LetM be a monoid (M,+,�). We call Ð▸ anM-measured rewrite system
if it comes equipped with a map from Ð▸-steps to M − {�}. The (derivation) measure of
a sequence of Ð▸-steps is the sum of the measures of its steps, from left to right. The
(conversion) measure of a sequence of ◂Ð- and Ð▸-steps is a pair having as first component
the sum of the measures of its ◂Ð-steps, from right to left, and as second component the
sum of the measures of its Ð▸-steps, from left to right. M is a derivation monoid if it comes
equipped with a well-founded partial order ≤ such that � is the least element (� ≤m for all m)

1 Only for systems having at most one step between any pair of objects do we speak of rewrite relations.
2 Sub-rewrite systems that do change the set of normal forms, e.g. call-by-value for the λβ-calculus, are
not strategies (they result in different calculi).

FSCD 2016

32:4 Normalisation by Random Descent

fa

b

c

d

334 12

4 2

1

g g′ g′′ g′′′

h

1 1

1 1

1

1
2

e

Figure 1 Measured rewrite systems on monoid of strings of digits ordered by embedding. Here
→ is used to denote steps in belonging to both _ and Ð▸, with the same measure.

and + is strictly monotonic in both arguments (if m < n then m+ k < n+ k and k +m < k +n,
for all m,n, k). A derivation monoid is cancellative if m + k ≥ n + k entails m ≥ n for all
m,n, k. A conversion monoid is a commutative derivation monoid.

Excluding � as measure of steps will ensure that by prefixing/suffixing a step to a reduction
its measure strictly increases.We use subscripts to indicate measures; in Fig. 1 digit-strings.

I Example 5. In the measured rewrite system Ð▸ that is the union of Ð▸ and _ in Fig. 1,
we have a 1234◂_Ð ∗

31 e as witnessed by the conversion a 34◂Ð b _3 c 12◂Ð d _1 e, with the first
component 1234 of the measure obtained by concatenating the measures 12 and 34 of the
◂Ð-steps, and the second component 31 by the measures 3 and 1 of the _-steps. In general,
strings with concatenation and empty string ordered by embedding constitute a cancellative
but non-commutative derivation monoid. Assuming commutativity yields the cancellative
conversion monoid of multisets with multiset sum and empty multiset. More generally,
equipping a string/multiset monoid with the order generated by the union of embedding with
some simply terminating string/multiset rewrite system yields a derivation/conversion monoid
which need not be cancellative; consider the orders generated by ab→ ac/[a, b] → [a, c].

I Example 6. Measuring all steps of a rewrite system by 1 in the conversion monoid of the
natural numbers with addition and zero equipped with less–than–or-equal, the measure µ of
a reduction Ð▸∗µ corresponds to its length, and for n◂ÐÐ▸∗m the integer m−n corresponds to the
difference of the conversion, the number of Ð▸-steps minus the number of ◂Ð-steps [20, 21].

Next, we consider ordering [16, Definition 5] and pasting [17, Examples 4,9] diagrams.

I Definition 7. A conversion is ordered ifm ≥ n for its measure (m,n), and cyclic if its source
and target are the same. Shift equivalence is generated by identifying a cyclic conversion C ⋅D
with D ⋅C. A (conversion) diagram is a pair C,D of conversions with the same sources and
targets. Its induced conversion is C−1

⋅D, inducing notions of measure and shift equivalence
on diagrams, cf. [24]. Pasting diagrams shift equivalent to C,D and D,E (on D) gives C,E.

Occurrences of D, determined by picking an object on the cyclic conversion (the source of D)
and a length (of D), may be used to disambiguate pasting. For commutative monoids shift
equivalent diagrams have the same measure. A derivation diagram comprises two reductions.

I Example 8. In Fig. 1, we have, e.g., two diagrams bÐ▸34 a, b _3 cÐ▸4 a and dÐ▸12 c, d _1
e Ð▸2 c having underlying conversions a 34◂Ð b _3 c Ð▸4 a respectively c 12◂Ð d _1 e Ð▸2 c.
The former is shift equivalent to the diagram c 3^ bÐ▸34 a 4◂Ð c, c the latter to c, c 12◂Ð d _1
e Ð▸2 c, and pasting them on c yields c 3^ b Ð▸34 a 4◂Ð c, c 12◂Ð d _1 e Ð▸2 c. Whereas the
first of the original diagrams is an ordered derivation diagram (both the ‘counterclockwise’
and ‘clockwise’ measures of the 1st are 34) its shift equivalent is not (34 /≥ 43), and the result
of pasting is neither shift equivalent to a derivation diagram nor to an ordered diagram.

V. van Oostrom and Y. Toyama 32:5

n2 +m3

n1 n3

m1 m3

n3 +m1 ≥ n1 +m3 Ô⇒
≥

≥
≥m1

n1

n3 m3

m1

n1

n3 m3

m2Ô⇒

n1
n2

m2
m1

n3

m3

n2 +m1 ≥
n1 +m2

n3 +m2 ≥

Figure 2 Preservation of order (‘counterclockwise’ ≥ ‘clockwise) by pasting on n2◂ÐÐ▸
∗

m2 .

Pasting derivation diagrams on reductions requires associativity of +, for conversion diagrams
it also requires commutativity, and for pasting on conversions also cancellation is needed:

I Lemma 9. Pasting preserves order for cancellative conversion monoids (Fig. 2 left);
Pasting on a reduction (m2 or n2 is � in Fig. 2) preserves order for conversion monoids;
Pasting ordered derivation diagrams on a reduction with the source of one and target of
the other, gives a diagram shift equivalent to an ordered derivation diagram (Fig. 2 right).

Proof. Let conversions Ci have measure (ni,mi) in the pasted diagrams C1,C2 and C2,C3.
In the first two items, orderedness yields n2 +m1 ≥ n1 +m2 and n3 +m2 ≥ n2 +m3.

Combining both yields n2 +m1 + n3 +m2 ≥ n1 +m2 + n2 +m3 from which we conclude to
n3 +m1 ≥ n1 +m3 by commutativity and cancelling m2 + n2;
If w.l.o.g. n2 = �, the assumptions yield n3+m1 ≥ n3+n1+m2 ≥ n1+m3 by commutativity;
If w.l.o.g. the reduction has the same target as the original 1st diagram and the same
source as the 2nd (see Fig. 2 right), then orderedness of those original derivation diagrams
yields m1 ≥ n1 +m2 and m2 + n3 ≥m3, so m1 + n3 ≥ n1 +m2 + n3 ≥ n1 +m3. J

I Definition 10. The rewrite system _∞ [4] has the same objects as _ and a step from
a to b for each infinite _-rewrite sequence from a and for any b. Given a monoid M,
the monoid M⊺ is obtained by adjoining a fresh element ⊺ to the carrier and defining
⊺ + ⊺ = ⊺ +m =m + ⊺ = ⊺ for all m ∈M . Given aM-measured rewrite system _, mapping
_∞-steps to ⊺ gives rise to anM⊺-measured rewrite system _ ∪_∞, and similarly for a
pair Ð▸,_ (see Definition 4).
Although _∞ is not common in rewriting yet, it is in relational program semantics [4]. The
extension fromM toM⊺ preserves commutativity, and cancelling elements ofM. (Although
not needed here, note the first item of Lemma 9 needs m2 or n2 to be finite to go through).
Two rewrite systems particularly important for this paper are (_∪_∞

)
∗ and (◂Ð∪_∪_∞

)
∗

which we will refer to as extended reduction (_⊛) and conversion (◂_Ð⊛), respectively. Beware
that locations of superscipts matter, e.g. ^∞ would be distinct from the converse of _∞.

I Example 11. In the measured rewrite system of Fig. 1 f 2◂_Ð⊛
⊺ b since f 2◂Ð g _∞

⊺ b as g
admits an infinite _-reduction g _ g′ _ We do not have b Ð̂▸⊛ f .

We may assume _∞ to occur only, if at all, at the end of an extended reduction or conversion
because _⊛

= _∗
∪_∞

= _∗
⋅ (_∞

)
= and ◂_Ð⊛

= ◂_Ð ∗
⋅ (_∞

)
=, with superscript = denoting

reflexive closure. This process does not increase the first component of the measure and
leaves the second unchanged. To differentiate between elements ofM andM⊺, we henceforth
use m,n, k, . . . to range over the former and µ, ν, κ, . . . to range over the latter. We call
the former finite as can be vindicated by setting infinite sums of non-�-elements to ⊺ and
noting that infinite measures are not affected by (un)folding _∞: if a _∞

⊺ b is witnessed by
a _m a′ _m′ a

′′ _m′′ . . . then its measure is m +m′
+m′

+ . . . = ⊺, and so is the measure of
a _m a′ _∞

⊺ b because m+⊺ = ⊺. Thus, a reduction is infinite if and only if the corresponding
extended reduction has measure ⊺ with respect to the length measure (Example 6).

FSCD 2016

32:6 Normalisation by Random Descent

local Dyck

⊛ ∗

∗ ⊛ ∗ ⊛

≥

ordered Church–Rosser

⇐⇒

Lemma 14

∗ ⊛

⊛ ∗

≥ ⇐⇒

ordered commutation

Lemma 18
∗⊛

≥ ⇐⇒

ordered local commutation

Theorem 19
⊛ ∗ ⊛ ∗

≥

Figure 3 Localising ordered Church–Rosser, restricting the ∀, widening the ∃, to local Dyck.

3 Ordered commutation and Dyck diagrams

We introduce a property, ordered Church–Rosser, sufficient for the measure of the Ð▸-
reductions from a given object to be an upper bound on the measures of its _-reductions.
This will be used in Sections 5–6 to show normalisation of the latter via that of the former.
Here we work towards deciding the property, localising it to the local Dyck property, Fig. 3.

Throughout, we assume Ð▸,_ are measured rewrite systems for the same derivation
monoid.

I Definition 12. We say the ordered normal form property (ONF) holds if a n◂_Ð⊛
µ b with a

in _-normal form implies a ∗
n′◂Ð b, the ordered peak normal form property (OPN) holds if

a ∗
n◂Ð ⋅_⊛

µ b with a in _-normal form implies a ∗
n′◂Ð b, the ordered Church–Rosser property

(OCR) holds if a n◂_Ð⊛
µ b implies a _∗

µ′ ⋅
∗
n′◂Ð b, and ordered commutation (OCO) holds if

a ∗
n◂Ð ⋅_⊛

µ b implies a _⊛
µ′ ⋅

∗
n′◂Ð b, with the order constraint n+µ′ ≥ µ+n′ (µ′ = � by default).

In words, a commutation diagram is ordered if the measure of its left leg is as large as that
of its right leg. Note that this corresponds exactly to orderedness (see Definition 7) of the
corresponding derivation diagram for derivation monoids. Similarly, for OCR the constraint
corresponds to orderedness of the corresponding conversion diagram for conversion monoids.
Remark that if OCR/OCO and a ◂_Ð⊛ b/ a ∗

◂Ð ⋅_⊛ b, then if a is _-terminating so is
b and the corresponding OCR,OCO diagram is finite. Lemma 9 vindicates pasting such
diagrams. That OCO need not imply commutation or confluence, follows by considering non
_-terminating such a; OCO holds in Example 13, but commutation not for f i◂Ð g _1 g

′.3

I Example 13. In Fig. 1, OCO and OPN are easily seen to hold by considering the three
‘interesting’ local peaks a 34◂Ð b _3 c, c 12◂Ð d _1 e and f i◂Ð g _1 g

′, that are completed
into ordered commutation diagrams by respectively a 4◂Ð c, c 2◂Ð e and f _∞

⊺ g′.
Composing the first two of these local peaks (on c) yields a conversion a 1234◂_Ð ∗

31 e that
can (only) be completed into a commutation diagram by a ∗

24◂Ð e, which does not satisfy the
order constraint as 1234 /≥ 3124, showing neither OCR nor ONF holds, cf. Example 8.

The four notions relate to each other as in the unordered (finite) case.

I Lemma 14. ONF ⇐⇒ OPN ⇐Ô OCR ⇐⇒ OCO, for conversion monoids.

Proof. All implications hold by definition except for OCO Ô⇒ OCR and OPN Ô⇒ ONF.
These are shown by induction on the number of peaks in a conversion, pasting diagrams as in
the unordered case [4]. Since the diagrams are conversion diagrams, a conversion monoid is
needed (cf. Example 13) to let order be preserved by pasting on reductions (Lemma 9). J

3 The converse also fails as witnessed by b0 _ b1 _ . . . and a ◂Ð bi for all i.

V. van Oostrom and Y. Toyama 32:7

Note that the four notions are asymmetric in that they consider infinite _-reductions but
only finite Ð▸-reductions. However, this sufficies for bounding _-reductions by Ð▸-reductions:

I Proposition 15. If OPN and Ð▸,_ have the same normal forms, then for any peak
a ⊛
ν◂Ð ⋅_⊛

µ b of maximal reductions, ν ≥ µ and if the left leg is finite so is the right leg and
a = b.

Proof. If the left leg of the peak has infinite length, then ν is ⊺ and we conclude trivially.
Otherwise, the peak has shape a ∗

n◂Ð ⋅_⊛
µ b for some n with a in normal form. By OPN for

it, there exists a ∗
m′◂Ð b such that n ≥ µ +m′. As n is finite, so is µ, so the right leg of the

peak is finite and by maximality must end in a normal form and a = b. J

In particular, if Ð▸,_ are strategies for the same rewrite system, as is, e.g., the case for the
systems in Fig. 1, normalisation of the former entails normalisation of the latter.4

Having shown their usefulness, we turn to localising the properties. Localisation of a ∀∃-
property aims at finding an equivalent property that restricts the domain of the ∀-quantifier
and widens that of the ∃-quantifier, to enable or ease deciding it (automatically). The classical
example is localisation of the Church–Rosser property (∀conversions ∃valley) by restricting
first to peaks, then further to local peaks [13] and finally by widening to conversions below
the source [22], for terminating rewrite systems. Here, as we already have OCR ⇐⇒ OCO,
we restrict OCO to ordered local commutation and widen that to the local Dyck property.

I Definition 16. Ordered local commutation arises from OCO by restricting both legs of the
peak to reductions of length 1. A diagram comprising a local peak a n◂Ð ⋅_m b and extended
conversion a n′◂_Ð⊛

µ′ b is a Dyck diagram if n + µ′ ≥m + n′ and the Dyck-condition holds: for
every prefix (of which there are finitely many) a n′′◂_Ð⊛

m′′ c of the conversion n+m′′
> n′′. We

say the systems are locally Dyck if each such peak can be completed into a Dyck diagram.

Our naming is based on that for the length measure the number of backward (◂Ð) steps in
the conversion then never exceeds the number of forward (_) steps, as in the Dyck language.

I Example 17. Let for some N , the abstract rewrite system Ð▸ be given by bi Ð▸ bi+1 ◂Ð ai Ð▸

ci+1 ◂Ð ci for all 1 ≤ i ≤ N and bN+1 Ð▸ cN+1, and _ be the Ð▸-strategy comprising all Ð▸-steps
except those from ai to bi+1, both with respect to the length measure. The only interesting
local peaks are bi+1 ◂Ð ai _ ci+1 which can be completed into a Dyck diagram; for i < N by
bi+1 _ bi+2 ◂Ð ai+1 _ ci+2 ◂Ð ci+1 (the conditions for its 5 prefixes are respectively 1 > 0, 2 > 0,
2 > 1, 3 > 1 and 3 > 2) and for i = N by bN+1 _ cN+1. For the system, this takes a number
of conversion (back-and-forth) steps linear in N , whereas naïvely completing into ordered
commutation diagrams requires a quadratic number of reduction steps, cf. [17, Example 8].
Hence, using the following, the length of Ð▸-reductions bounds those of _-reductions.

I Lemma 18. Ordered commutation iff ordered local commutation.

Proof. The only–if-direction is trivial. For the if-direction, it suffices to consider peaks
a ∗
n̂◂Ð ⋅_⊛

µ̂ b such that a is _-terminating as otherwise we conclude by a _∞
⊺ b. We show

such a peak can be completed by a _⊛
µ′ ⋅

∗
n′◂Ð b with n̂ + µ′ ≥ µ̂ + n′ into an OCO diagram,

finite by the Remark above Example 13, by induction on (a, n̂) ordered by the leg order

4 For such strategies the proposition shows that OPN is sufficient for _ being universally better than
Ð▸, in the sense of [16], and hence [16] that _ is normalising, minimal (if _ ⊆ Ð▸) and Ð▸ is perpetual,
maximal (if Ð▸ ⊆_). OPN is not necessary for it: b ◂Ð a _ c.

FSCD 2016

32:8 Normalisation by Random Descent

local Dyck

m1 µ

n1

local OCO

IH
µ′1

n
a

µ′′1

IH

κ

n′

n′1

k k′

n1

m1 µ

n
a

IH
`

π

`′

π′

π1

Figure 4 Proofs of Lemma 18 (left) and Theorem 19 (right).

>●, the lexicographic product of _+ and >. If either leg of the peak is empty, it is trivial.
Otherwise, it has shape a ∗

n◂Ð a1 n1◂Ð ⋅_m1 b1 _⊛
µ b with n̂ = n1 + n and m̂ =m1 + µ; Fig. 4.

J Ordered local commutation applied to a1 n1◂Ð ⋅_m1 b1 yields a1 _⊛
µ′1
c1

∗
n′1
◂Ð b1 with

n1 +µ
′
1 ≥m1 +n

′
1. Consider the peak a ∗

n◂Ð a1 _⊛
µ′1
c1. The induction hypothesis applies to it

as n̂ = n1 +n > n, giving a _⊛
µ′′1
a′ ∗k◂Ð c1 with n+µ′′1 ≥ µ′1 + k. Vertically pasting this diagram

to the one for the local peak yields a diagram satisfying n1 +n+µ
′′
1 ≥ n1 +µ

′
1 +k ≥m1 +n

′
1 +k,

i.e. that is ordered. Abbreviating n′1 + k to k′ it has a valley a _⊛
µ′′1
a′ ∗

k′◂Ð b1. K
Now consider the peak a′ ∗

k′◂Ð b1 _⊛
µ b. The induction hypothesis applies to it as either

a _∗
µ′′1
a′ is not empty, or it is empty and then a = a′, µ′′1 is �, and instantiating the inequality

above yields n1 +n ≥m1 + k
′
> k′. Hence we obtain a valley a′ _⊛

κ ⋅
∗
n′◂Ð b with k′ +κ ≥ µ+n′.

Setting µ′ to µ′′1 + κ we conclude by horizontal diagram pasting, yielding the order constraint
n1 + n + µ

′
= n1 + n + µ

′′
1 + κ ≥m1 + k

′
+ κ ≥m1 + µ + n

′. J

I Theorem 19. Ordered commutation iff locally Dyck, for cancellative conversion monoids.

Proof. For the only–if-direction it suffices to remark that in an ordered local commutation
diagram _-steps precede ◂Ð-steps, so that orderedness entails the Dyck-condition. For the
if-direction, we proceed exactly as in the proof of Lemma 18 but using the local Dyck property
instead of ordered local commutation. That is, we replace the part between J and K there by:

The local Dyck property applied to a1 n1◂Ð ⋅_m1 b1 yields a1
∗
n′1
◂_Ð⊛

µ′1
b1 such that

n1 + µ
′
1 ≥ m1 + n

′
1 and satisfying the Dyck-condition: for every prefix a1

∗
`◂_Ð

⊛
π c of the

conversion, n1 + π > `. We show by a sub-induction on the length of the prefix, that there
exists a valley a _⊛

π′ d
∗
`′◂Ð c completing a ∗

n◂Ð a1
∗
`◂_Ð

⊛
π c into an ordered diagram, i.e. such

that ` + n + π′ ≥ π + `′. The case of the empty prefix being trivial, assume the property holds
for a given prefix up to c, and distinguish cases on the next step of the prefix.

If c `1◂Ð c1, then we simply affix it: a ∗
n◂Ð a1

∗
`◂_Ð

⊛
π c `1◂Ð c1 is completed by the valley

a _⊛
π′ d

∗
`′◂Ð c `1◂Ð c1 into an ordered diagram: `1 + ` + n + π

′
≥ `1 + π + `

′.
If c _π1 c1 or c _∞

π1
c1, then consider the peak between it and d ∗

`′◂Ð c, see Fig. 4. That
the main induction applies to it follows (by a decrease in the 1st component) in case π′ is
not � and otherwise (by a decrease in the 2nd component) by combining orderedness with
the Dyck condition: n1 + ` + n ≥ n1 + π + `

′
> ` + `′ hence n1 + n > `′ by cancelling `. Thus

we obtain a valley d _⊛
π′1
d1

∗
`′◂Ð c1 completing the peak to an ordered diagram. (By the

Remark above Example 13, this shows c _∞
π1
c1 is in fact impossible.) Pasting it to the one

of the IH yields an ordered diagram with valley a _⊛
π′ d _⊛

π′1
d1

∗
`′◂Ð c1, as desired.

Let a _⊛
µ′′1
a′ ∗

k′◂Ð b1 be the valley thus obtained for the whole of a1
∗
n′1
◂_Ð⊛

µ′1
b1. By the

induction hypothesis it satisfies the order constraint n′1 + n + µ′′1 ≥ µ′1 + k
′. Combining it with

V. van Oostrom and Y. Toyama 32:9

the order constraint n1 + µ
′
1 ≥m1 + n

′
1 of the local Dyck diagram, adding the respective sides

and cancelling n′1 +µ′1 gives n1 +n+µ
′′
1 ≥m1 + k

′, showing that the valley completes the peak
a ∗
n◂Ð a1 n1◂Ð ⋅_m1 b1 into an ordered commutation diagram. J

For non-cancellative conversion monoids the if-direction may fail. The theorem allows one to
localise showing that a strategy Ð▸ bounds another strategy _, by checking all local peaks
between both to be completable into Dyck diagrams. We give 2 typical examples, cf. [16].

I Example 20 (‡). For the λ-calculus with η-reduction Ð▸ (see Example 40 for the rewrite
rule), consider the innermost strategy _, and, based on the idea that checking applicability
of the η-rule involves checking absence of the bound variable from the body, measure a step
by the size of its body. By orthogonality, linearity and preservation of innermost redexes, a
local peak N n◂ÐM _m P either is trivial (N = P) or it can be completed by a valley of
shape N _m′ Q n′◂Ð P . If the redexes are disjoint, then m′

=m and n′ = n, so the diagram
is Dyck. Otherwise, the latter is in the body of the former and we conclude to n+m′

≥m+n′

again because m′
= m and n′ = n − 2 (an @ and λ have disappeared). Thus _ is optimal,

giving a lower bound on the (size) measure of η-reduction.

I Example 21 (‡). For the λ-calculus with β-reduction, let Ð▸ be the leftmost–outermost
strategy, _ be the needed strategy [3], and consider a (non-trivial) local peak N ◂ÐM _ P .
By orthogonality and projection of leftmost–outermost steps over other steps N →∗

β Q β← P

with the former a development of the residuals of M _ P . Factorising the former into needed
steps followed by non-needed steps, and observing that the latter is a leftmost–outermost
step again N _+ N ′

→
∗
β Q ◂Ð P with the first non-empty by definition of neededness. By

repeatedly contracting a leftmost–outermost redex starting from N ′ and performing its
projection on Q until (if this happens at all) the terms reached by both are the same, yields
a _-reduction from N ′ (using leftmost–outermost redexes are needed) and a Ð▸-reduction
from Q of the same (possibly infinite) length. Therefore, N _≥1 N

′ _⊛
µ Q

′ ⊛
µ◂Ð Q 1◂Ð P , i.e.

a Dyck diagram (note that if µ is ∞, then N ′ _⊛
∞ Q). Thus Ð▸ is pessimal, giving an upper

bound on the (length) measure of needed β-reduction (but not on non-needed; cf. (λx.y)Ω).

4 Ordered confluence and random descent

We show that instantiating both Ð▸,_ to the same rewrite system →, and assuming it to be
measured by a conversion monoid, all conditions of the previous section are equivalent, and
sufficient to conclude that → bounds itself. We show that the bounding system (Ð▸) being the
same as the system being bound (_) allows to replace the order constraint in the ordered
normal form property by equality, yielding Newman’s random descent property expressing
that “if an end-form exists it is reached by random descent” [13, 20, 21, 16]. We localise it
to the local Dyck property and give several examples.

I Definition 22. → has random descent (RD) [16] if a n↔⊛
µ b with a in normal form, implies

a ∗
n′← b with n = µ + n′. Peak random descent (PR) is obtained by restricting to a ∗

n← ⋅→
⊛
µ b.

RD and PR being more strict versions of NF respectively PN, they have similar properties.
In particular, RD Ô⇒ PR, and if a ∗

← b with a in normalform and either RD or PR holds,
then b is terminating. Note the n′ in the definition only depends on b and is unique since
applying either property to a ∗

n′← b →∗
n′′ a

′ for normal forms a, a′ gives a = a′ and n′ = n′′.
This justifies defining the distance d(b) of such an object b convertible to normal form to be
that n′, setting d(b) to ∞ for objects not convertible to normal form.

FSCD 2016

32:10 Normalisation by Random Descent

I Example 23. β-reduction does not have the random descent property for the length
measure as witnessed e.g. by (λxz.zxx)((λx.x)y) which allows reductions to normal form
λz.zyy of lengths both 2 and 3. The restriction of β to the leftmost–outermost strategy does
have RD because it is deterministic. The restriction to linear β-redexes, i.e. such that the
bound variable occurs exactly once in the body, has RD because redex-patterns cannot be
replicated.5 On its own, η-reduction has RD as it is linear and orthogonal.
I Lemma 24. ONF ⇐⇒ OPN ⇐⇒ OCR ⇐⇒ OCO ⇐⇒ PR ⇐⇒ RD, all are equivalent
to ordered local confluence, and for cancellative monoids to the local Dyck property.
Proof. By Lemma 14 and the above, to conclude to the implications on the first line, it
suffices to show ONF Ô⇒ RD and OCO ⇐Ô PR. For the former, suppose a n↔⊛

µ b with a
in normal form. By ONF, a ∗

n′← b with n ≥ µ + n′, so µ is finite. By ONF for a ∗
n′← b µ↔

∗
n a,

also µ + n′ ≥ n. For the latter, consider a peak a ∗
n← ⋅→

⊛
µ b. If a allows an infinite reduction,

we conclude. Otherwise, c ∗
m′← a for some normal form c. By PR for c ∗

m′← a ∗
n← ⋅→

⊛
µ b, we

obtain a ∗
n′← b with n+m′

= µ+n′. The second line follows by Lemma 18 and Theorem 19. J

As in the previous section, the implication from a peak-property to its conversion-property
fails for derivation monoids (Example 13), and the lemma allows to localise random descent.
The examples here and in the previous section are illustrative both of localisation and of
the flexibility offered by measuring by length, size of subterm or pattern, rule, Many
possibilities come to mind with as extreme case measuring a reduction by ‘itself’, say as the
string or multiset of its steps. Our final example uses the left–outer order on positions.
I Example 25. The single rule term rewrite system f(x,x) Ð▸ f(x, f(x, a)) has random
descent (for the length measure) because there are no critical peaks and the rule is variable
preserving in that all variables appear the same number of times in both the left- and
right-hand sides. The latter condition guarantees that in the so-called variable-overlap case
of the critical pair lemma, both legs of the resulting diagram have exactly the same length.
I Example 26. The term rewrite system given by

f(x,x) Ð▸1 f(x, g(x)) f(x,x) Ð▸2 f(x,h(x)) g(x) Ð▸1 h(x) c Ð▸1 g(c)

has random descent with respect to the indicated rule measures (Definition 44, [17, Sect. 4.2]).
As in Example 25 the rules are variable preserving, but now there is the critical peak (and
its symmetric version) f(x, g(x)) ←1 f(x,x) →2 f(x,h(x)) which however is completable by
the step f(x, g(x)) →1 f(x,h(x)) into a Dyck diagram where both legs have measure 2.
I Definition 27. On positions in terms, the left relation is defined by p ⋅ i ⋅q ≺l p ⋅ j ⋅q

′ and the
outer (or prefix) relation by p ≺o p ⋅ i ⋅ q, for arbitrary positions p, q, q′ and natural numbers
i < j. The left–outer relation is defined by ≺lo = ≺l ∪ ≺o.
The relations ≺o, ≺l and ≺lo are strict orders, ≺o and ≺l are disjoint, and ⪯lo is total.
I Example 28 (‡). The spine positions of a λ-term M are, if it has shape λx⃗.yM⃗ then the
displayed positions and the spine positions of the Mi prefixed by their position in M , and
otherwise its head spine positions. The head spine positions of terms x, λx.M1, M1M2 are all
positions ⪯lo-related to the position of M1 and all head spine positions of M1 prefixed by its
position inM . A spine redex-pattern is a redex-pattern at spine position. Always contracting
such we call a spine strategy, which is justified by the fact that any term not in β(η)-normal
form has at least one spine β(η)-redex-pattern.6 That the spine strategy has random descent

5 This is not a strategy for β-reduction in λ-calculus as e.g. (λxz.zxx)y is a normal form for it.
6 A λ-term not in η-normal form need not contain a spine η-redex-pattern, e.g. (λx.x)λy.zy.

V. van Oostrom and Y. Toyama 32:11

for β-reduction [3, Proposition 4.21] follows from that the β-rule does not overlap with itself,
and that contracting a spine β-redex-pattern leaves a unique descendant (residual) of any
non-overlapping spine position (redex-pattern). As the η-rule does not overlap with itself
and is variable preserving, descendants are unique after η-steps and η-reduction has random
descent. Since the (two) critical peaks between the β- and η-rules are trivial, they are locally
Dyck, from which it follows that the spine strategy has random descent for βη-reduction.

The underlying intuition, generalising that for externality [8], is that the spine is a prefix of
a term that persists linearly (contrary to externality, it may involve change, but only ‘linear
change’). It applies to some other term rewrite systems, e.g. Combinatory Logic as well. We
conclude by an easy result allowing to infer RD for strategies.

I Lemma 29. If Ð▸ has random descent then so does any strategy → for it.

I Example 30. Since the spine strategy has random descent for βη-reduction (see above),
so does the left–outer (see, the text above, Definition 41) strategy.

5 Compatibility

We present a method to establish hyper-normalisation of strategies for abstract rewrite
systems, based on a diagram we (inspired by Staples’ notion of compatible refinement, cf. [19,
Exercise 1.3.9]) dub compatibility governing the interaction between the strategy and the
system, and show it can be made flexible by well-foundedly indexing steps giving rise to
the notion of decreasing compatibility. As an application, one may immediately conclude
normalisation of the needed strategy for λβη, cf. [9, Chapter IV] and [3], from that of the
spine strategy (Example 38), using that the former is bounded by the latter (Example 21).
Our methods rely on the strategy having the random descent property, for an arbitrary
cancellative conversion monoid, as introduced above.

We assume → is a strategy having random descent for the rewrite system Ð▸.

I Definition 31. → is (ordered) compatible with Ð▸, if aÐ▸ b entails a n↔⊛
µ b (with µ ≥ n).

I Example 32 (‡). Spine reduction is compatible with backward β(η)-steps and ordered
compatible with forward such steps. We provide a proof of this later, via decreasing
compatibility, but the intuition for that it holds is that, given a β(η)-step M Ð▸ N one may
contract an arbitrary spine redex in M . In case this →-step yields N then we are done.
Otherwise, one may contract ‘the same’ spine redex in N , project M Ð▸ N over both, and
repeat the process until the first case applies. We also conclude when this process proceeds
indefinitely, as then we have constructed infinite →-reductions from M and N .

I Lemma 33. → is (ordered) compatible with Ð▸ iff it is (ordered) compatible with Ð▸∗.

Proof. The if-direction is trivial by Ð▸ being contained in Ð▸∗ and the only–if-direction
follows by an easy induction on the length of Ð▸∗-reductions (using commutativity). J

I Theorem 34. If → is a random descent Ð▸-strategy compatible with ◂Ð, it is Ð▸-normalising.
If, moreover, → is ordered compatible with Ð▸, it is Ð▸-hyper-normalising and Ð▸ has NF.

Proof. Suppose → is a random descent Ð▸-strategy that is compatible with ◂Ð, and aÐ▸∗ b
with b in Ð▸-normal form. Lemma 33 yields that → is compatible with ◂Ð

∗, which applied to
b ◂Ð∗ a entails b n↔⊛

µ a. By random descent a is →-terminating.
Suppose, moreover, → is ordered compatible with Ð▸, and a is Ð▸-normalising. To prove

→/Ð▸-reduction terminates on a, it suffices to show that for aÐ▸ a′ we have d(a) ≥ d(a′) and
if in fact a→ a′ then d(a) > d(a′). Distinguish cases on whether or not aÐ▸ a′ is a →-step.

FSCD 2016

32:12 Normalisation by Random Descent

distance
=

=

⋎

⊛ ⊛=

≥

Figure 5 Decreasing compatibility (without condition, left) and its instance of Corollary 37.

If a→m a′, then by RD for b←∗
d(a) a→m a′, b←∗

d(a′) a
′ with d(a) =m + d(a′) > d(a′).

If aÐ▸ a′ then by → being ordered compatible with Ð▸, we have a n↔⊛
µ a

′ with µ ≥ n. By
RD for b←∗

d(a) a n↔
⊛
µ a

′, then b←∗
d(a′) a

′ with n + d(a) = µ + d(a′) (so µ is finite). Hence
d(a) ≥ d(a′) since in any cancellative derivation monoid if n + k =m + ` and m ≥ n, then
n + k =m + ` ≥ n + ` so by cancellation k ≥ ` (without cancellation this property need not
hold; let ≥ be generated by the multiset rule [a, b] → [a, a] and consider [a, b, a]).

Finally, we conclude to NF of Ð▸ since the assumptions yield → is compatible with ◂ÐÐ▸ hence
with ◂ÐÐ▸

∗ by Lemma 33, and since → is a Ð▸-strategy. J

By introducing a well-founded order on steps, as a parameter to the definition of compatibility,
we increase its flexibility, cf. [20, Corollary 3.7], [21, Corollary 3]. The intuition captured is
that Ð▸-steps go ‘at least as much forward (µ) as backward (n)’ with respect to →, recursively.

I Definition 35. We say → is (ordered) decreasingly compatible with Ð▸, if for some well-
founded order ≺ on the steps of Ð▸, for all Ð▸-steps φ, it holds Ð▸φ ⊆ n↔

⊛
µ ⋅ Ð▸

=
φ(µ=n) ⋅ n′↔

⊛
µ′

with µ ≥ n (and µ + µ′ ≥ n′ + n), where φ(true) denotes ⋎φ, the set of steps ≺-related to φ,
and φ(false) denotes the set of all steps.

I Proposition 36. If → is a random descent strategy for Ð▸, then → is (ordered) compatible
with Ð▸ iff it is (ordered) decreasingly compatible with Ð▸.

Proof. For the only–if-direction, set ≺ to the empty relation and µ,n both to �. For the
if-direction, let → have random descent and be (ordered) decreasingly compatible with Ð▸.
We show for →-terminating a, that if a Ð▸φ b then a k↔⊛

λ b (with λ ≥ k), by well-founded
induction on the pair (d(a), φ) ordered by the lexicographic product of > and ≻, using ‘vertical
pasting’ (cf. Fig. 5). We load the induction hypothesis to show that λ is finite. J

We present a simple, easily applicable sufficient criterion. (Note that it is weaker than
Theorem 34 as it requires more, than needed, for objects not convertible to normal form.)

I Corollary 37. If → is a random descent strategy with respect to the length measure, for
Ð▸ and ≺ a well-founded order ≺ on the steps of Ð▸ such that for all Ð▸-steps φ, it holds
Ð▸φ ⊆ (→ ⋅ Ð▸

=
⋎φ) ∪ (→ ⋅ Ð▸

=
⋅ ←), then → is hyper-normalising and Ð▸ has NF.

Proof. By Theorem 34 and Proposition 36, instantiating measures to 0/1. J

I Example 38 (‡). To prove that the spine strategy → is hyper-normalising for β(η) in the
λ-calculus, it suffices to show the assumptions of Corollary 37 are satisfied when setting Ð▸ to
(nonempty) β(η)-multisteps, taking as well-founded order ≺ on them the development order,
generated by ordering a multistep above each of its residuals after contracting anyone of its
redex-patterns. This is a well-founded order by the finite developments theorem (see [2]).
Let φ ∶M ○ÐÐ▸ N be a nonempty β(η)-multistep and ψ ∶M →M ′ a spine step.

V. van Oostrom and Y. Toyama 32:13

If the respective (sets of) redex-patterns of φ and ψ do not have overlap, then we may
compute the residual of each after the other with common reduct, say, N ′. As spine redex-
patterns are (uniquely) preserved after taking residuals, we have ψ/φ ∶N → N ′. Observing
that the ‘other’ residual φ/ψ either is empty (covered by reflexivity) or a nonempty multistep,
we conclude to the ‘right case’ of Corollary 37.

If the redex-pattern of ψ has overlap with some redex-pattern, say φ1, in φ, then we may
develop φ as M Ð▸φ1 M

′
○ÐÐ▸φ/φ1 N . We conclude to the ‘left case’ of Corollary 37 as φ/φ1

is either empty or ≺-smaller than φ.

6 Hyper-normalisation for left–outer Dyck systems

We turn the reasoning in Example 38 into a critical pair criterion for a general class of term
rewrite systems comprising both combinatory logic and the λβ-calculus. We dub the criterion
left–outer Dyck, as it will entail (by Theorem 19) that all critical peaks can be completed into
Dyck diagrams by means of critically left–outer steps, i.e. by left–outer steps that are closed
under substitutions and (left–outer) contexts. The latter have RD so the criterion guarantees
(by Theorem 34) hyper-normalisation for the left–outer strategy, cf. [21, Section 9].

We formalise our results in the setting of higher-order term rewrite systems where terms
are simply typed λ-terms modulo αβη-equality over simply typed (variables and) function
symbols [23], using η-long β-normal forms as unique representatives of αβη-equivalence
classes of terms. To obtain decidability of criticality of left–outer steps, we focus on Nipkow’s
higher-order pattern rewrite systems [10], restricted to systems that are left-normal and local.

I Definition 39. A term is a pattern [12] if the free variables in it have sequences of pairwise
distinct bound variables as arguments. A pattern is

linear if each free variable that occurs in it, occurs in it exactly once;
fully-extended [6] if each free variable occurring in it has as arguments a sequence
comprising the variables bound above it;
local [15, Footnote 1] if it is both linear and fully-extended;
left-normal [14, 9] if each free position in it only ≺lo-relates (see Definition 27) to other
such, with positions in subterms having a free variable as head being free.

These notions extend to rewrite rules and systems via their left-hand side(s).

I Example 40. The higher-order rewrite rules corresponding to β- and η-reduction are:

@(λx.M(x))N Ð▸ M(N) λx.@Mx Ð▸ M

where λ and @ (henceforth left implicit) are appropriately typed function symbols, usually
called abs respectively app [10, 19]. The left-hand sides (λx.M(x))N,λx.Mx are patterns:
the free variables M and N only have sequences of pairwise distinct bound variables, x and
the empty sequence (twice), as arguments. The former, (λx.M(x))N , is both local and
left-normal: linear as its free variables M,N both occur once in it, fully-extended since M
has the variable x bound above it as argument and N has no arguments, and left-normal as
the free position 1 ⋅ 2 ⋅ 2 ⋅ 1 (of M(x)) only ≺lo-relates to 2 (the position of N). The latter,
λx.Mx, is neither local nor left-normal. It is linear but not fully-extended since M does not
have the variable x bound above it among its (empty) list of arguments, and not left-normal
as the free position 2 ⋅ 1 ⋅ 1 ⋅ 2 (of M) ≺lo-relates to 2 ⋅ 1 ⋅ 2 (the position of x, not free). That is,
the β-rule on its own constitutes a left-normal and local higher-order pattern rewrite system,
but not so (locality falters) combined with the η-rule.

FSCD 2016

32:14 Normalisation by Random Descent

On first-order terms locality coincides with linearity. Throughout we use Ð▸ and ○ÐÐ▸ to
denote the one-step respectively (nonempty) multistep [19] abstract rewrite system underlying
a local and left-normal higher-order pattern rewrite system. We focus on left–outer rewriting,
denoted by →, i.e. the restriction of Ð▸ to contracting redexes at ≺lo-more positions:

I Definition 41. For ≺ a strict order on positions, a position q of a redex-pattern is ≺-more
if there is overlap between the redex-pattern and each redex-pattern at a position p ≺ q, and
≺-most if there is no redex-pattern at a position p ≺ q.

That → indeed is a strategy for Ð▸ holds since any term not in normal form contains a
leftmost–outermost redex, i.e. a redex at ≺lo-most position. A left–outer redex need not be
leftmost–outermost, e.g. when overlapped from above by a redex that is leftmost–outermost.
Locality allows to characterise (critically) left–outer steps via (critically) left–outer contexts.

I Definition 42. A context is left–outer if it is single-hole and there is no redex-pattern
at a position that ≺lo-relates to the position of the hole, cf. [21, Definition 17];
A context C is critically left–outer if for every substitution σ and left–outer context D,
the context D[Cσ] is left–outer. A step in such a context is a critically left-outer step.

Any critically left–outer context, in particular the empty context ◻, is left–outer. The context
f(x,◻) is left–outer, but not critically so if f(a, y) Ð▸ . . ., since instantiating x by a turns it
into a non-left–outer context. Similarly, f(◻) is not critically left–outer if g(f(x)) Ð▸
I Proposition 43. q is left–outer in C[`σ]q, for ` a left-hand side, iff C is left–outer;

q ⋅ p is left–outer in D[(C[`σ]p)
τ
]q, if D is left–outer and C is critically left–outer;

A context is critically left–outer iff it is a single-hole context such that each symbol at a
position that ≺lo-relates to the position of the hole, is not a free variable and cannot be
overlapped with a redex-pattern.

Proof. This follows from that if a term contains a redex at position p, then changing it,
e.g. replacing a subterm by a hole or vice versa, at any position p ≺lo q not overlapping
the redex-pattern, does not change redexhood, by locality.
Using substitutions are homomorphic, D[(C[`σ]p)

τ
]q =D[Cτ [(`σ)τ]p]q =D[Cτ [`σ;τ

]p]q.
By the assumption that D is left–outer and C is critically left–outer, D[Cτ] is left–outer.
Combining both, we conclude by the previous item.
By locality and left-normality. J

In the first-order case the proposition yields a decision procedure for whether or not a
rewrite step is critically left–outer, since testing for the presence of variables in terms and
unification of (parts of) left-hand sides of rules with terms/contexts are both effective. In
the higher-order case this is not immediate in general: although (parts of) left-hand sides of
rules are assumed to be patterns, the term/context may be arbitrary, a non-pattern. We use
→# to denote the restriction of the left–outer strategy → to critically left–outer steps.

I Definition 44. A rewrite system Ð▸ is left–outer Dyck if each critical peak7 can be
completed into a Dyck diagram by a conversion ↔⊛ comprising →#-steps only, for a given
rule measure. Here a rule measure is a measure only depending on the rule applied.

The λβ-calculus and Combinatory Logic are left–outer Dyck, in the absence of critical pairs.
An ARS is locally Dyck iff its associated TRS is left–outer Dyck (measures are rule measures).
Closure under contexts and substitutions makes rule measures suited for critical pair criteria.

7 We employ a symmetric notion of critical peak arising from the, usually asymmetrically defined, notion
of critical pair, by allowing either step of the peak to be the/a root step of the pair.

V. van Oostrom and Y. Toyama 32:15

I Lemma 45. If Ð▸ is left–outer Dyck, then → is locally Dyck.

Proof. Consider a local peak of left–outer steps t← ⋅→ s. By totality of ⪯lo, the positions of
the respective contracted redexes are either identical or one is ≺lo-related to the other. In
either case the redex-patterns must have overlap, giving rise to a critical peak t′ ← ⋅→ s′ of
steps that are again left–outer such that the peak is encompassed via, say, left–outer context
C and substitution σ, i.e. such that t = C[t′σ] ← ⋅ → C[s′σ] = s. By the assumption that the
system is left–outer Dyck, for the given rule measure, the critical peak can be completed into
a Dyck diagram by a →#-conversion from t′ to s′. By definition and by rule measures only
depending on the rule applied, encompassing the conversion into the (left–outer) context C
and substitution σ, yields a →-Dyck-conversion from t = C[t′σ] to C[s′σ] = s, as desired. J

I Corollary 46. If Ð▸ is left–outer Dyck, then → has random descent.

Proof. By Lemmata 24 and 45. J

I Example 47. The left-normal, local term rewrite system with rules

a Ð▸ b f(x) Ð▸ g(x) h(f(b)) Ð▸ c c Ð▸ d h(g(b)) Ð▸ d

is left–outer Dyck, hence the left–outer strategy has random descent. The only interesting
critical peaks are between the second and third rules, h(g(b)) ◂Ð h(f(b)) Ð▸ c. The peak is
non-trivial but shown to be root balanced joinable [21] by h(g(b)) →# d←# c.

I Example 48. The left-normal, local term rewrite system with rules

a Ð▸ g(a) f(a) Ð▸ f(c) g(x) Ð▸ d c Ð▸ d

is left–outer Dyck, hence the left–outer strategy has random descent. Only overlap between
the first and the second rule (and the other way around) gives rise to an interesting critical
peak f(g(a)) ◂Ð f(a) Ð▸ f(c). The peak is completable into a Dyck diagram but is not root
balanced joinable: the redex-patterns contracted in the joining valley f(g(a)) →# f(d) ←#
f(c) occur in the critically left–outer but non-empty, context f(◻).

Left-normality and locality can be viewed as syntactic conditions guaranteeing that left–outer
redexes are external [8], they descend [19] uniquely until overlapped by the contracted redex:
I Proposition 49. Left–outer steps descend along non-overlapping multisteps.

Proof. Locality guarantees that being a redex or not only depends on its pattern, not on
its variables being instantiated appropriately. This prevents creating a redex above the
left–outer redex by steps below or parallel to its redex-pattern, just by changing instantiation
of its variables. Left-normality guarantees that no redex-pattern can be created above a
left–outer redex by means of contracting a redex parallel to (to the right of) it. J

I Remark. Non-fully-extendness of the η-rule causes that a left–outer redex u may descend to
a non-left–outer redex along a non-left–outer step in λβη, e.g. in λx.u((λy.z)x)xÐ▸ λx.uzx.

I Theorem 50. If a rewrite system is left–outer Dyck, then it has the normal form property,
and the left–outer strategy is hyper-normalising for it.

Proof. By assumption and Corollary 46 the left–outer strategy → has random descent. To
conclude that the rewrite system Ð▸ has the normal form property and → is hyper-normalising
for it, it suffices to show that the same hold for the the (nonempty) multistep rewrite system

FSCD 2016

32:16 Normalisation by Random Descent

○ÐÐ▸ because Ð▸ ⊆ ○ÐÐ▸ ⊆ Ð▸
∗. To that end, it suffices by Theorem 34 to show that → is

ordered compatible with the rewrite system Ð▸ and compatible with its converse ◂Ð, which
in turn follow by Proposition 36 from that → is ordered decreasingly compatible with ○ÐÐ▸,
and decreasingly compatible with its converse, which we both show simultaneously by well-
foundedly ordering multisteps by the development order (see Example 38), considering an
arbitrary nonempty multistep W ∶ t ○ÐÐ▸ s. By → being a strategy there is a left–outer step
from t, say u ∶ t→m t′. We distinguish cases on whether or not u overlaps some step in W .

If u overlaps no step in W , then both are orthogonal and we may compute their mutual
residuals W /u ∶ t′ ○ÐÐ▸ s′ and u/W ∶ s ○ÐÐ▸ s′. By Proposition 49, left–outer redex-patterns
are (uniquely) preserved after taking residuals, so u/W ∶ s →m s′ by rule measures only
depending on the rule. Thence ○ÐÐ▸W ⊆ →m ⋅ ○ÐÐ▸

=
⋅ m←, from which the conditions for

(ordered) decreasing compatibility of → with (the converse of) ○◂ÐÐW follow.
If the redex-pattern of u has overlap with some redex-pattern, say w, in W , then we may

develop W as w ∶ tÐ▸ t′′ followed by W ′
∶ t′′ ○ÐÐ▸ s with W ′

=W /w. Since the redex-patterns
u,w yielding the peak t′ ← ⋅Ð▸ t′′ have overlap in its source t, the peak encompasses some
critical peak r′ ← ⋅Ð▸ r′′, say via context C and substitution σ. The context C is left–outer
as a prefix of the left–outer context in which u occurs. By the assumption that Ð▸ is left–
outer Dyck, the peak and its symmetric version can be completed into Dyck diagrams by
→#-conversions from r′ to r′′ and vice versa, respectively. Encompassing these again by
the left–outer context C and substitution σ yields, by the steps in the conversions being
critically left–outer and by rule measures only depending on the rule applied, Dyck diagrams
for →-conversions from t′ to t′′ and vice versa. By the former, ○ÐÐ▸W ⊆ →m ⋅ n↔

⊛
µ ⋅ ○ÐÐ▸ with

m + µ > n from which we conclude to ordered decreasing compatibility of → with ○ÐÐ▸W . By
the latter, ○◂ÐÐW ⊆ ○◂ÐÐW ′ ⋅↔

⊛ from which we conclude to decreasing compatibility of → with
○◂ÐÐW , as W is larger than W ′ in the development order. J

I Example 51. The rewrite systems of Examples 47 and 48, λβ- and CL-reduction are
left-normal, local and locally Dyck, so the left–outer strategy is hyper-normalising for each.

I Example 52. Consider the local, left-normal first-order term rewrite system given by rules

zeros Ð▸1 0 ∶ zeros hd(x ∶ y) Ð▸1 x hd(zeros) Ð▸2 0

with measures as indicated. Its critical peak 0 2◂Ð hd(zeros) Ð▸1 hd(0 ∶ zeros) is completed by
0 1◂Ð hd(0 ∶ zeros) into a Dyck diagram, so the left–outer strategy is hyper-normalising.

7 Conclusion

We have generalised (hyper-)normalisation results from [20, 21] using the random descent
property from [16]. Our development is based on a clean separation between the abstract
and term rewrite results. At the abstract level we have introduced novel methods to compare
strategies, by Dyck diagrams, and to prove their (hyper-)normalisation, by compatibility. At
the term level, we have introduced a class of higher-order term rewrite systems, left–outer
Dyck systems, comprising λβ and CL.

Theorem 50 generalises [7, Theorem 25] on which their further developments are based.
The generalisation is proper in that our results are restricted neither to deterministic strategies
nor to first-order term rewrite systems, while sharing the advantage of being completely local
(even more so). We expect it to be possible to incorporate several techniques from their work,

V. van Oostrom and Y. Toyama 32:17

in particular basic normalisation and factorisation,8 into our approach. The approach to
normalisation due to [11] is mostly incomporable to ours. On the one hand, that approach
is based on square permutations (a special case of random descent) and on having finite
‘permutation equivalence’ classes (not needed in our approach). On the other hand, there
normalisation for notions of result other than normal forms (think of head-normal forms)
are considered. We intend to apply approach to hyper-normalisation to, e.g., λ-calculi with
explicit substitutions or the necessary strategy [18], and compare our results to those of [5].

Acknowledgements. We thank B. Felgenhauer, J. Nagele, the attendants of the TCS
seminar (Amsterdam) and the Master Seminar (Innsbruck), and the FSCD reviewers for
feedback.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
2 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies

in Logic and the Foundations of Mathematics. North-Holland, 2nd revised edition, 1984.
3 H.P. Barendregt, J.R.K. Kennaway, J.W. Klop, and M.R. Sleep. Needed reduction and

spine strategies for the lambda calculus. Information & Computation, 75(3):191–231, 1987.
doi:10.1016/0890-5401(87)90001-0.

4 N. Dershowitz. On lazy commutation. In Languages: From Formal to Natural, volume
5533 of Lecture Notes in Computer Science, pages 59–82. Springer, 2009. doi:10.1007/
978-3-642-01748-3_5.

5 J.R.W. Glauert, R. Kennaway, and Z. Khasidashvili. Stable results and relative normaliz-
ation. Journal of Logic and Computation, 10(3):323–348, 2000. doi:10.1093/logcom/10.
3.323.

6 M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. In Proceedings
of the 7th International Conference on Rewriting Techniques and Applications, volume
1103 of Lecture Notes in Computer Science, pages 138–152. Springer, 1996. doi:10.1007/
3-540-61464-8_48.

7 N. Hirokawa, A. Middeldorp, and G. Moser. Leftmost outermost revisited. In Proceedings
of the 26th International Conference on Rewriting Techniques and Applications, volume 36
of Leibniz International Proceedings in Informatics, pages 209–222, 2015. doi:10.4230/
LIPIcs.RTA.2015.209.

8 Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting systems, I. In
Computational Logic: Essays in Honor of Alan Robinson. The MIT Press, 1991. url:http:
//pauillac.inria.fr/~levy/pubs/81robinson1.pdf (accessed 27-4-2016).

9 J.W. Klop. Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit
Utrecht, 1980. url:http://janwillemklop.nl/Jan_Willem_Klop/Bibliography_files/
9.PhDthesis-total.pdf (accessed 27-4-2016).

10 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192(1):3–29, 1998. doi:10.1016/S0304-3975(97)00143-6.

11 P.-A. Melliès. A stability theorem in rewriting theory. In Proceedings of the 13th Annual
IEEE Symposium on Logic in Computer Science, pages 287–298. IEEE Computer Society
Press, 1998. doi:10.1109/LICS.1998.705665.

8 But note that for a rewrite system Ð▸ given by a Ð▸ b Ð▸ c, a′ Ð▸ b′ Ð▸ c′, a Ð▸ a′, b Ð▸ b′ and c Ð▸ c′,
and a strategy → obtained by omitting the step from a to b, factorisation fails, for aÐ▸ b→ c, but our
methods, in particular Theorem 50, do apply.

FSCD 2016

http://dx.doi.org/10.1016/0890-5401(87)90001-0
http://dx.doi.org/10.1007/978-3-642-01748-3_5
http://dx.doi.org/10.1007/978-3-642-01748-3_5
http://dx.doi.org/10.1093/logcom/10.3.323
http://dx.doi.org/10.1093/logcom/10.3.323
http://dx.doi.org/10.1007/3-540-61464-8_48
http://dx.doi.org/10.1007/3-540-61464-8_48
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.209
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.209
http://pauillac.inria.fr/~levy/pubs/81robinson1.pdf
http://pauillac.inria.fr/~levy/pubs/81robinson1.pdf
http://janwillemklop.nl/Jan_Willem_Klop/Bibliography_files/9.PhDthesis-total.pdf
http://janwillemklop.nl/Jan_Willem_Klop/Bibliography_files/9.PhDthesis-total.pdf
http://dx.doi.org/10.1016/S0304-3975(97)00143-6
http://dx.doi.org/10.1109/LICS.1998.705665

32:18 Normalisation by Random Descent

12 D. Miller. Unification of simply typed lambda-terms as logic programming. In Proceedings
of the 8th International Conference on Logic Programming, pages 253–281. The MIT Press,
1991. url:http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp91.pdf
(accessed 27-4-2016).

13 M. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Mathematics, 43(2):223–243, 1942. doi:10.2307/1968867.

14 M.J. O’Donnell. Computing in Systems Described by Equations, volume 58 of Lecture Notes
in Computer Science. Springer, 1977. doi:10.1007/3-540-08531-9.

15 V. van Oostrom. Finite family developments. In Proceedings of the 7th International
Conference on Rewriting Techniques and Applications, volume 1232 of Lecture Notes in
Computer Science, pages 308–322. Springer, 1997. doi:10.1007/3-540-62950-5_80.

16 V. van Oostrom. Random descent. In Proceedings of the 18th International Conference on
Rewriting Techniques and Applications, volume 4533 of Lecture Notes in Computer Science,
pages 314–328. Springer, 2007. doi:10.1007/978-3-540-73449-9_24.

17 V. van Oostrom. Confluence by decreasing diagrams – converted. In Proceedings of the
19th International Conference on Rewriting Techniques and Applications, volume 5117
of Lecture Notes in Computer Science, pages 306–320. Springer, 2008. doi:10.1007/
978-3-540-70590-1_21.

18 R.C. Sekar and I.V. Ramakrishnan. Programming in equational logic: Beyond strong
sequentiality. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science, pages 230–241. IEEE Computer Society Press, 1990. doi:10.1109/LICS.1990.
113749.

19 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

20 Y. Toyama. Strong sequentiality of left-linear overlapping term rewriting systems. In
Proceedings of the 7th Annual IEEE Symposium on Logic in Computer Science, pages 274–
284. IEEE Computer Society Press, 1992. doi:10.1109/LICS.1992.185540.

21 Y. Toyama. Reduction strategies for left–linear term rewriting systems. In Processes, Terms
and Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop on the
Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer Science, pages
198–223. Springer, 2005. doi:10.1007/11601548_13.

22 F. Winkler and B. Buchberger. A criterion for eliminating unnecessary reductions in the
Knuth–Bendix algorithm. In Proceedings of the Colloquium on Algebra, Combinatorics and
Logic in Computer Science, Volume II, volume 42 of Colloquia Mathematica Societatis J.
Bolyai, pages 849–869, 1986.

23 D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1993.

24 H. Zantema, B. König, and H.J.S. Bruggink. Termination of cycle rewriting. In Proceed-
ings of the 25th International Conference on Rewriting Techniques and Applicationsand the
12th International Conference on Typed Lambda Calculi and Applications, Lecture Notes in
Computer Science, pages 476–490. Springer, 2014. doi:10.1007/978-3-319-08918-8_33.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp91.pdf
http://dx.doi.org/10.2307/1968867
http://dx.doi.org/10.1007/3-540-08531-9
http://dx.doi.org/10.1007/3-540-62950-5_80
http://dx.doi.org/10.1007/978-3-540-73449-9_24
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.1109/LICS.1990.113749
http://dx.doi.org/10.1109/LICS.1990.113749
http://dx.doi.org/10.1109/LICS.1992.185540
http://dx.doi.org/10.1007/11601548_13
http://dx.doi.org/10.1007/978-3-319-08918-8_33

	Introduction
	Preliminaries
	Ordered commutation and Dyck diagrams
	Ordered confluence and random descent
	Compatibility
	Hyper-normalisation for left–outer Dyck systems
	Conclusion

