
Gödel’s functional interpretation and the concept of learning

Thomas Powell
University of Innsbruck

thomas.powell@uibk.ac.at

Abstract
In this article we study Gödel’s functional interpretation from the
perspective of learning. We define the notion of a learning algo-
rithm, and show that intuitive realizers of the functional interpreta-
tion of both induction and various comprehension schemas can be
given in terms of these algorithms. In the case of arithmetical com-
prehension, we clarify how our learning realizers compare to those
obtained traditionally using bar recursion, demonstrating that bar
recursive interpretations of comprehension correspond to ‘forget-
ful’ learning algorithms. The main purpose of this work is to gain
a deeper insight into the semantics of programs extracted using the
functional interpretation. However, in doing so we also aim to bet-
ter understand how it relates to other interpretations of classical
logic for which the notion of learning is inbuilt, such as Hilbert’s
epsilon calculus or the more recent learning-based realizability in-
terpretations of Aschieri and Berardi.

Keywords functional interpretation, program extraction, learning,
bar recursion.

1. Introduction
Gödel’s functional (or Dialectica) interpretation has a rich and var-
ied history. Originally used to establish relative consistency proofs
for classical arithmetic and analysis [9, 17], it has not only become
a powerful tool in proof theory [4], but has inspired research in ar-
eas as disparate as category theory [7] and classical game theory
[8], and perhaps most importantly it lies at the heart of the proof
mining program [10] in which it has been used to extract quantita-
tive information from proofs in many areas of mathematics, ranging
from numerical analysis to combinatorics to ergodic theory.

While the functional interpretation plays a central role in math-
ematical logic and its applications in computer science and math-
ematics, its action on classical proofs can still be extremely diffi-
cult to understand: Because extracted programs are unwound recur-
sively over the logical structure of proofs, for anything other than
the simplest proof these programs are typically giant lambda terms
whose underlying operational meaning as a program is obscured
under a complex layer of syntax.

The last few decades have seen an increased interest in under-
standing the semantics of classical reasoning, and one extremely
fruitful approach to this has been to utilise a semantics based on
the notion of learning. This concept dates all the way back to

[Copyright notice will appear here once ’preprint’ option is removed.]

Hilbert and his epsilon calculus, but more modern instances include
the game theoretic interpretations of Coquand [6], Avigad’s update
procedures [3] and notably the large body of work on learning-
based realizability interpretations due to Aschieri and Berardi (see
[1, 2]). At the core of all these works is the following basic idea:

(a) Non-computable objects should be interpreted by finitary ap-
proximations to these objects.

(b) These finitary approximations can be computed using some
kind of learning algorithm.

The purpose of the article is to demonstrate that this idea is capable
of providing us with a great deal of insight into Gödel’s functional
interpretation, and in particular the semantics of programs it ex-
tracts. We do this by showing that the functional interpretations of
key non-constructive principles are realized by intuitive learning al-
gorithms that compute finitary approximations of these principles.
These learning algorithms can then be used instead of the usual re-
alizers written in terms of Gödel’s primitive recursor or Spector’s
bar recursor, with the intended result that the behaviour of extracted
programs will be much more visible from their syntax, and will
come equipped with a natural semantics based on learning.

We begin with some ground work, providing a brief outline of
the functional interpretation and then defining what we mean by a
learning algorithm. We then move on to treat the functional inter-
pretation of classical arithmetic by focusing on a general, transfinite
least element principle, whose functional interpretation we realize
in a concise and natural way as the limit of a learning algorithm.
The main novelty of the paper, however, is our study of compre-
hension principles. We move on to define an abstract operation on
learning algorithms which extends pointwise algorithms to sequen-
tial ones, and demonstrate that this extension operation realizes the
functional interpretation of variants of arithmetical comprehension.
We then link this to the traditional bar recursive solution, and reveal
the perhaps surprising fact that bar recursive realizers of arithmeti-
cal comprehension implicitly build quite intuitive approximations
to comprehension functionals that are limits of ‘forgetful’ learning
algorithms.

Throughout the paper we draw on a wide range of sources. A
connection between the functional interpretation and learning was
already implicitly observed in the pioneering work of Spector and
Kreisel of the 1960s (see e.g. [17]), and as such we hope that this
work forms a thread which makes this connection more explicit and
links it to modern approaches to program extraction. More impor-
tantly, in studying the operational semantics of extracted programs,
we take another step on the way to gaining a better understanding of
the computational meaning of non-constructive theorems in mathe-
matics. In particular we believe that the recent work on program
extraction in subsystems of analysis, for example the functional
interpretation of Ramsey’s theorem [11, 15], will benefit directly
from our study of comprehension principles in the second half of
the paper.

1 2016/5/10

2. Gödel’s functional interpretation
We begin by outlining some background theory. We assume that
the reader has a basic knowledge of Gödel’s functional interpreta-
tion and systems of primitive recursive functionals in finite type.
However, we give a brief overview of these concepts here, with the
hope that a more general audience can follow the main ideas.

The finite types are defined inductively as follows: B and N are
base types, and if X and Y are finite types then so are the product
type X × Y , function type X → Y and finite sequence type X∗.
We collect together here some important notational conventions.

Notation 2.1. We write x : X or xX when x has type X . 0X is
the zero object of type X . We denote the length of a list by |s|, and
the concatenation of finite sequences s, t : X∗ by s ∗ t. If x : X we
write s∗x for s∗〈x〉. last(s) denotes the last element of a list, or just
0 if s is the empty list 〈〉. For a sequence α : XN, [α](n) denotes
its initial segment of length n. Conversely, for s : X∗, ŝ : XN

denotes the extension of s with some canonical objects 0 : X . For
f : XN → Y , we sometimes write f̂ : X∗ → Y for f̂(s) := f(ŝ).
Given a function f : X → Y × Z, we write f = (f0, f1) where
f0 : X → Y and f1 : X → Z are its projections.

By E-HAω we mean the theory of extensional Heyting arith-
metic in all finite types (here with explicit sequence types), while
WE-HAω denotes its weakly-extensional variant, and E-PAω ,
WE-PAω the classical versions of these theories. For full details
of these systems see e.g. [10]. In addition to the usual axioms
and rules of arithmetic, these theories contain constants which al-
low the definition of primitive recursive functionals of arbitrary
type. Quantifier-free formulas P of arithmetic are decidable, which
means they can be represented by characteristic functions tP . We
use a slight abuse of notation and conflate P and tP , treating
quantifier-free predicates themselves as boolean valued functions.

For a detailed introduction to Gödel’s functional interpretation
the reader is directed to [4, 10], as we give only the main defini-
tion here. The basic functional interpretation of intuitionistic logic,
which we denote the D-interpretation, is a translation which maps
each formulaA in the language of WE-HAω to a quantifier-free for-
mula |A|xy where x and y are (possibly empty) tuples of variables
(for simplicity encoded as a single variable here). It is defined over
the logical structure of A as follows:

|A| :≡ A for A atomic
|A ∧B|x,uy,v :≡ |A|xy ∧ |B|uv
|A ∨B|b,x,uy,v :≡ |A|xy ∨b |B|uv
|A→ B|U,Yx,v :≡ |A|xY xv → |B|Uxv
|∃zA(z)|x,uv :≡ |A(x)|uv
|∀xA(x)|Ux,v :≡ |A(x)|Uxv ,

(1)

where

P ∨b Q :≡ (b = > → P) ∧ (b = ⊥ → Q).

The basic idea is that A ↔ ∃x∀y|A|xy over classical logic, but
whenever A is provable we can extract an explicit witnessing
term t satisfying ∀y|A|ty from its proof. In order to interpret
classical logic, one first uses a negative translation N to embed
the classical theory into an intuitionistic one, and then applies
the D-interpretation. We label this combined translation the ND-
interpretation. The following result is standard.

Theorem 2.2 (Functional interpretation of Peano arithmetic). Let
∆ be a set of purely universal sentences, QF-AC denote the axiom
of choice for quantifier-free formulas and A(x) be a formula in the
language of WE-PAω with only x free. Then

WE-PAω+QF-AC+∆ ` A(x)⇒ E-HAω+∆ ` ∀y|A(x)N|t(x)
y

where A(x)N denotes the negative translation of A(x), and t is a
closed term of WE-HAω which can be formally extracted from the
proof of A(x).

Theorem 2.2 can, and has been, extended to a wide range of
richer theories by exploiting the modular nature of the functional
interpretation. If we want to extend the interpretation to incorpo-
rate some additional axiom Γ, then it is sufficient to produce a
functional F which witnesses ∃x∀y|ΓN|xy . We can also replace an
existing realizer of a principle with a new one, so that programs
extracted from proofs which use this principle as a lemma are con-
structed using the new realizer instead.

Because this article is more concerned with algorithms which
realize the ND-interpretation of classical principles rather than
the functional interpretation itself, we do not go into any more
details here. Although in later sections we will need to provide
the ND-interpretation of certain principles, we will not give the
detailed steps used to compute it. For example, we do not apply
any particular version of the negative translation formally, rather in
each case we just state a negative translated version of the principle
in question which can be directly realized by the D-interpretation.
However, we do endeavour to highlight the intuitive meaning of
the interpretation throughout. As such, it will be useful at this
stage to outline how the ND-interpretation deals with certain simple
formulas.

First, Π2-formulas A :≡ ∀x∃yP (x, y) with P quantifier-free,
are typically negative translated as ∀x¬¬∃yP (x, y). However,
because the D-interpretation admits Markov’s principle, in prac-
tice we can omit this double negation and interpret A directly
as ∃f∀xP (x, f(x)). This allows realizers of Π2-formulas to be
extracted even from classical proofs. On the other hand, for Π3-
formulas B :≡ ∀x∃y∀zQ(x, y, z) it is in general impossible to
find a computable function f satisfying ∀x, zQ(x, f(x), z). For-
mulas of this form can be negative translated into intuitionistic
logic as ∀x¬¬∃y∀zQ(x, y, z), whose D-interpretation before the
final Skolemisation is

(∗) ∀x, ξ∃yQ(x, y, ξ(y))

and whose full interpretation is thus ∃F∀x, ξQ(x, Fxξ, ξ(Fxξ)).
One can view this semantically as follows: while in general we
cannot compute a y satisfying ∀zQ(x, y, z), the ND-interpretation
asks for an approximation to the non-computable object y which
satisfies Q(x, y, ξ(y)), where ξ is some arbitrary functional, which
in this sense calibrates how ‘strong’ we want the approximation
to be. In what follows, we often express the ND-interpretation in
the form (∗) before the final step in order the minimise syntax, in
which case we call it the partial functional interpretation.

3. Learning algorithms
Having given a fairly normal overview of the first main subject of
the article, we now move on to a much more non-standard treatment
of the second key concept – learning. We define below precisely
what we mean by a learning algorithm, and while our definition
is related to those found in e.g. [2, 3], here it is more general and
tailored to our specific situation.
Definition 3.1 (Learning algorithm). A learning algorithm L of
types X,Y, Z is a tuple (Good, δ, ξ,⊕), where

• Good is a decidable predicate onX , treated as a boolean-valued
functional X → B;

• δ : X → Z and ξ : X → Y are functionals;
• ⊕ : X×Y → X is a functional which we view as an operation

and write in infix notation as x⊕ y.

Definition 3.2 (Learning procedures and limits). For any point
x : X the learning algorithm L triggers a learning procedure L[x],

2 2016/5/10

which is the sequence (xi) recursively defined by

x0 := x and xi+1 :=

{
xi if Good(xi)

xi ⊕ ξ(xi) if ¬Good(xi).

We say that a learning procedure terminates if there exists some xk
satisfying Good(xk), in which case we say that xk is a limit point
and δ(xk) the limit of the learning procedure, writing

lim L[x] := δ(xk).

Note that this is well-defined when it exists since any xk satisfying
Good(xk) must be equal to the first such point in the learning
procedure.

The components of learning algorithms are intended to have the
following intuitive meaning:

• Good is a predicate which decides whether or not an element of
X is ‘good’ in some specific context which will vary throughout
the paper;

• The operation
xi 7→ xi ⊕ ξ(xi)

is an instance of learning, namely it takes xi and updates it with
some additional piece of information ξ(xi);

• δ is simply a function which, assuming it is eventually provided
with a good xk : X returns a final value δ(xk) : Z.

A learning procedure starting at x0 is an attempt at finding a good
element of X , guided by ξ. At each stage in the procedure either
xi is good, in which case we have reached a limit point and return
δ(xi), or xi is bad and we respond by updating it with some new
piece of information ξ(xi) in the hope that xi+1 = xi ⊕ ξ(xi) is
good.

Underneath the mathematical syntax, a learning algorithm L is
essentially nothing more than a simple while loop (Algorithm 1),
with L[x] just a trace of the variable y given some initial value x,

Algorithm 1 Computing lim L[x]

1: input y = x
2: while ¬Good(y)
3: y → y ⊕ ξ(y)
4: return δ(y)

and lim L[x] the output of the program when it terminates. We
will utilise this informal association of a learning procedure with a
imperative program throughout the paper.
Example 3.3. Take an arbitrary pair of functions f, g : N → N.
Then there is some integer n such that

f(n) ≤ f(g(n)). (2)

This follows by classical logic by defining n to be a least element
of the set (N,≺) ordered by x ≺ y :≡ f(x) < f(y). However,
n can also be computed as the limit of a learning procedure. Let
L := (Good, ι, g,⊕) forGood(x) :≡ f(x) ≤ f(g(x)), x⊕y = y
and ι the identity function. Then for any x, L[x] terminates and
n := lim L[x] satisfies (2).

To see this, let (xi) = L[x]. Then as long as f(xi) > f(g(xi))
we have xi+1 = xi ⊕ g(xi) = g(xi) and thus L[x] is just the
sequence

x, g(x), g(2)(x), . . . , g(k)(x), g(k)(x), g(k)(x), . . .

where k is the first point satisfying f(g(k)(x)) ≤ f(g(k+1)(x)).
Thus n = lim L[x] = g(k)(x) works.

In this example, we computed the minimal element n by first
making some arbitrary guess x. Either this was good with f(x) ≤

f(g(x)), or we were able to learn from the failure of x and update
x 7→ g(x) with x � g(x). In this way, by well-foundedness of
≺ we eventually arrived at a good guess xk = g(k)(x) for n. The
simple example illustrates a fundamental idea already stated in the
introduction, namely:

Learning algorithms compute approximations to non-computable
objects which arise from classical reasoning.

Our purpose is to show that the functional interpretation interpreta-
tion of key classical principles can be directly realized by typed
learning procedures in the sense of Definition 3.1. In this way
we gain some insight into the algorithmic behaviour of extracted
programs, which can often become obscured beneath the com-
plex forms of higher-type recursion traditionally associated with
the functional interpretation. However, before we go on, we want
to be able to ensure that learning procedures and their limits can be
defined within a standard calculus of recursive functionals.
Definition 3.4. The learning algorithm L := (Good, δ, ξ,⊕) re-
duces with respect to some binary relation≺ onX , if for any x : X ,
¬Good(x) implies x⊕ξ(x) ≺ x. In particular, if≺ is well-founded
then lim L[x] exists for any x.

Lemma 3.5. Let ∆ be a (possibly empty) extension of E-HAω such
that E-HAω + ∆ allows the definition of functionals by recursion
over ≺. If L reduces with respect to ≺, then lim L[x] exists for all
x provably in E-HAω + ∆, and the functional λx.lim L[x] can be
defined as a term of E-HAω + ∆.

Proof. Define the term lL : X → X∗ via recursion over ≺ as

lL(x) =

{
〈x〉 if Good(x)

〈x〉 ∗ lL(x⊕ ξ(x)) otherwise.

Then lL(x) is an initial segment of L[x] up to its limit point and
λx.lim L[x] is defined by λx.δ(last(lL(x))).

Before we go into technical details in the next section, it will
be helpful to state a simple, abstract result which underpins much
of what follows. Let App(x) be some arbitrary predicate on X , the
intended meaning being that x is an approximation of some non-
constructive object, and let ∃zP (z) be some target formula that we
want to realize. Suppose that we have

∀x

{
App(x)→ Good(x)→ ∃zP (z)

App(x)→ ¬Good(x)→ ∃yApp(x⊕ y),
(3)

which can be read as: if x is an approximation which is sufficiently
good then we can infer our goal ∃zP (z), and if it fails to be suffi-
ciently good, then from this information we can learn an additional
piece of information y such that x⊕ y is a better approximation of
x. Then ∃zP (z) can be realized by a learning procedure.

Theorem 3.6. Suppose that (3) is realized by δ : X → Z and
ξ : X → Y i.e.

∀x

{
App(x)→ Good(x)→ P (δ(x))

App(x)→ ¬Good(x)→ App(x⊕ ξ(x))

and that the learning algorithm L := (Good, δ, ξ,⊕) reduces with
respect to some well-founded ordering ≺. Then the formula

∀x(App(x)→ ∃zP (z))

is realized by the functional

λx.lim L[x]

Proof. Take some x satisfying App(x) and assume that L[x] is
given by x0, . . . , xk, xk, . . . where xk is its limit point. Then

3 2016/5/10

App(x0) holds by definition, and since ∀i < k¬Good(xi) and
thus App(xi) → App(xi ⊕ ξ(xi)) → App(xi+1) we have
App(xk) by induction. Thus from Good(xk) we obtain P (δ(xk))
i.e. P (lim L[x]).

4. The functional interpretation of the minimum
principle

The first main contribution of the paper is to demonstrate that
learning procedures as defined in the previous section give a very
natural realizer of the ND-interpretation of a generalisation of the
well-known minimum principle on N. Let ≺ be a well-founded,
decidable relation on X , and ⊕ : X × Y → X a binary operation.
Given some predicate A on X , the minimum principle MinA,≺,⊕
is defined by

MinA,≺,⊕ : ∃x̄Ax̄ → ∃x(Ax ∧ ∀y(x⊕ y ≺ x→ ¬Ax⊕y)).

Note that the usual minimum principle on N is just an instance of
Min for ≺=< and x ⊕ y = y. However, our formulation above
is not only more general but syntactically richer, and allows us
to work over more interesting co-inductive data structures such
as extensions of finite lists (as illustrated in Section 4.2), thereby
leading to the possibility of being able to extract more natural and
efficient programs from proofs which are based on such structures.

This section is inspired by the work of Schwichtenberg [16],
who shows that the functional interpretation of well-founded in-
duction can be realized by well-founded recursion. In fact, a real-
izer for well-founded induction also follows directly from our re-
sult, since induction just the contrapositive of the minimum prin-
ciple and its functional interpretation is the same. Although com-
pletely equivalent to induction from this point of view, we prefer
to work with the minimum principle since it fits more visually into
our framework, in which our main realizer can be viewed directly
as a program which builds an approximation to a minimal element
through learning. Apart from this reformulation, the key differences
between here and [16] are syntactic, namely the presence of the
operator ⊕ and our construction of the realizer as the limit of a
learning procedure rather than a via a well-founded recursor.

4.1 Interpreting MinA,≺,⊕ for quantifier-free A
We begin by interpreting the special case of the minimum princi-
ple for quantifier-free, and hence decidable A. Not only is this case
interesting in its own right, but it will help motivate the general in-
terpretation in Section 4.3. Even for quantifier-free A, it is impos-
sible to give a general computable witness for the D-interpretation
of Min, since the existence of a minimal element requires classical
reasoning. Therefore in order to interpret the principle we must first
apply a negative translation. As remarked earlier, we do not for-
mally apply the negative translation. Rather, we simply observe that
MinA,≺,⊕ is classically equivalent to the following double negated
form:

∃x̄Ax̄ → ¬¬∃x(Ax ∧ ∀y(x⊕ y ≺ x→ ¬Ax⊕y)). (4)

which can be formally obtained from any standard double negation
translation using intuitionistic logic plus at semi-intuitionistic laws
like Markov’s principle that admit a direct D-interpretation. Thus in
contrast to MinA,≺,⊕ we are able to realize the D-interpretation of
(4). The reader could now just directly apply the defining equations
(1) to the negated formula (4) in order to obtain its functional
interpretation, although we provide below a sequence of informal
steps in order to make the interpretation slightly more intuitive.

Let us first focus on the conclusion of MinA,≺,⊕, which is
partially (i.e. with the final Skolemisation step ∀ξ∃x → ∃Φ∀ξ

omitted) interpreted via the following intuitive steps

¬¬∃x(Ax ∧ ∀y(x⊕ y ≺ x→ ¬Ax⊕y))

;¬¬∃x∀y(Ax ∧ (x⊕ y ≺ x→ ¬Ax⊕y))

;∀ξX→Y ∃x(Ax ∧ (x⊕ ξ(x) ≺ x→ ¬Ax⊕ξ(x))︸ ︷︷ ︸
PA
ξ

(x)

).

Thus MinNA,≺,⊕ is partially interpreted via

∃x̄Ax̄ → ∀ξ∃xPAξ (x)

;∀x̄, ξ∃x(Ax̄ → PAξ (x))

for PAξ (x) defined as above. The full interpretation of (4) is there-
fore

∃ΦX→(X→Y)→X∀x̄, ξ(Ax̄ → PAξ (Φx̄ξ)).

Whereas the minimum principle states that if Ax̄ holds for some x̄
then there is some minimal element x satisfying Ax, in line with
our comments in Section 2 the ND-interpretation states that from
any x̄ satisfying Ax̄, we can compute an approximately minimal
element x relative to an arbitrary functional ξ : X → Y . Now
let us try to produce a realizer Φ which does this. First, define the
predicates Goodξ(x) and Appx̄(x) by

• GoodAξ (x) :≡Min(A, ξ, x), and

• AppAx̄ (x) :≡ Ax̄ → Ax.

where

Min(A, ξ, x) :≡ x⊕ ξ(x) ≺ x→ ¬Ax⊕ξ(x)

Then it is easy to show

∀x

{
(Ax̄ → Ax)→Min(A, ξ, x)→ (Ax̄ → PAξ (x))

(Ax̄ → Ax)→ ¬Min(A, ξ, x)→ (Ax̄ → Ax⊕ξ(x))

and hence by Theorem 3.6 we have

∀x((Ax̄ → Ax)→ Ax̄ → PAξ (lim LAξ [x]))

for LAξ :≡ (Min(A, ξ,−), ι, ξ,⊕) (for ι the identity function).
Note that ¬Min(A, ξ, x) → x ⊕ ξ(x) ≺ x and thus LAξ reduces
with respect to ≺. Obviously Ax̄ → Ax̄ holds and thus we have

Ax̄ → Pξ(lim LAξ [x̄]).

Theorem 4.1 (Functional interpretation of MinA,≺,⊕ for quanti-
fier-free A). The ND-interpretation of MinA,≺,⊕ given (in partial
form) by

∀x̄, ξ∃x(Ax̄ → PAξ (x))

is realized by the functional

λx̄, ξ . lim LAξ [x̄]

for LAξ :≡ (Min(A, ξ,−), ι, ξ,⊕).

Remark 4.2. Note that by Lemma 3.5 this realizer is definable
in any extension of E-HAω which admits ≺-recursion, and so in
particular if there is a measure µ : X → N such that x ≺ x′ ↔
µ(x) <N µ(y) then it is definable in E-HAω , coinciding with the
standard result that the ND-interpretation of the minimum principle
for <N can be realized by a primitive recursive functional.

The main advantage of Theorem 4.1 is that it not only provides a
realizer of a general induction principle, but the algorithmic mean-
ing of the realizer can be clearly understood from its syntax. The
approximately minimal object x is constructed by a learning pro-
cedure, which starts at a point x̄ for which we know Ax̄ holds,
and at each stage xi test whether or not xi is approximately mini-
mal with respect to ξ. If it is then we are done and xi is our limit,

4 2016/5/10

and if not then we have discovered some strictly smaller element
xi+1 := xi⊕ξ(xi) satisfyingAxi⊕ξ(xi), and we can continue. We
can take advantage of this intuitive reading in order to understand
the behaviour of programs extracted from proofs that use Min as a
lemma, as we will now illustrate.

4.2 A worked example: The Euclidean algorithm
In [16] Schwichtenberg uses well-founded recursion to extract a
program from a classical proof of the statement that a common
divisor of any pair of natural numbers can be expressed a linear
combination of the two, and highlights the fact that this program
is closely related to the Euclidean algorithm. We follow this exam-
ple and use our learning-based realizer of Min to extract a program
along the same lines, although the proof we use exploits our formu-
lation of the minimum principle and is based on a slightly different
well-founded ordering to that in [16].

Theorem 4.3. Given any two natural numbers a ≥ b > 0 there
exist integers n,m such that am+ bn | a, b.

Proof. Define the measure µ : N2 → N by µ~x := ~x · (a, b) =
x1a+ x2b, and the ordering ≺ on (N2)∗ by

〈~x〉 ≺ 〈〉 and µ~x < µ~y ⇒ s ∗ ~y ∗ ~x ≺ s ∗ ~y.

where (N2)∗ denotes the type of finite sequences of vectors and
s ∗ ~x = 〈s0, . . . , sk−1, ~x〉 the concatenation of s with a single
vector ~x. It is clear that≺ is well-founded, and moreover that t ≺ s
iff t = s ∗ ~x for some ~x. Let rem(n,m) denote the remainder of
n when divided by m, and e0, e1 = 〈1, 0〉, 〈0, 1〉 be the usual unit
vectors. Now, define the decidable predicate A on (N2)∗ by

As :≡ |s| ≥ 2∧

{
i = 0, 1⇒ si = ei
i ≥ 2⇒ µsi > 0 ∧ µsi = rem(µsi−2, µsi−1)

where |s| denotes the length of s (cf. Notation 2.1). Then A〈e0,e1〉
trivially holds, and thus by MinA,≺,∗ there is some minimal s
satisfying As i.e.

∃s(As ∧ ∀~x(s ∗ ~x ≺ s→ ¬As∗~x)).

Denote l = |s| and suppose that r = rem(µsl−2, µsl−1). Define
~r := sl−2 − quot(µsl−2, µsl−1)sl−1, where quot(n,m) denotes
the quotient of n and m. This is just a vector representation of r,
so that µ~r = r. By As this is all well defined and we must have
µ~r < µsl−1 and hence s ∗ ~r ≺ s.

But by minimality of s this means that ¬As∗~r , which is only
possible if µ~r = r = 0 and hence µsl−1 | µsl−2, and thus by in-
duction along swe must have more generally ∀i < s(µsl−1 | µsi),
and in particular for i = 0, 1 we have µsl−1 | µe0, µe1 i.e.
µsl−1 | a, b. Therefore we can set 〈m,n〉 = sl−1.

We now (quite informally), extract a program from this classical
proof. There are two main components: namely an instance of
Min and then the construction of m,n from a minimal s. The
implication

∃sAs ∧ ∀~x(s ∗ ~x ≺ s→ ¬As∗~x)→ ∃n,m(am+ bn | a, b)
requires realizing terms ξ and δ satisfying

∀s((As ∧ (s ∗ ξ(s) ≺ s→ ¬As∗ξ(s)))→ δ(s) · (a, b) | a, b)
which can be read off from the proof as

ξ(s) := sl−2 − quot(µsl−2, µsl−1)sl−1 and δ(s) := last(s)

for l = |s|. Now, observe that µ, A, ξ and δ are all implic-
itly parametrised by a, b, which we now add as subscripts. Since
(Aa,b)〈e0,e1〉 holds for arbitrary a, b, by Theorem 4.1 we have

∀a, b(h(a, b) · (a, b) | a, b)

for h := λa, b . last(lim LAa,b[〈e0, e1〉]) and

La,b :≡ (Min(Aa,b, ξa,b,−), ι, ξa,b, ∗).

But expanding definitions we can show (although for the sake of
space we do not give details here) that for any s satisfying (Aa,b)s
we have

Min(Aa,b, ξa,b, s)⇔ rem(µa,bsl−2, µa,bsl−1) = 0.

Therefore, written out analogously to Algorithm 1, our realizer es-
sentially performs the procedure given by Algorithm 2, which is

Algorithm 2 ∀a, b∃m,n(am+ bn | a, b)
1: input a, b
2: s = 〈e0, e1〉
3: while rem(µa,bsl−2, µa,bsl−1) > 0
4: ~r → sl−2 − quot(µa,bsl−2, µa,bsl−1)sl−1

5: s→ s ∗ ~r
6: return last(s)

nothing more than the Euclidean algorithm in vector form. This ex-
ample is not only of interest in that a program extracted using our
general learning realizer produces an inherently intuitive and effi-
cient program, but also from the reverse perspective that Euclid’s
algorithm can be derived formally from a general computational in-
terpretation of the minimum principle. It would be interesting in the
future to formalize the extraction using learning realizers properly,
along the lines of [16].

4.3 Interpreting MinA,≺,⊕ for general A
We now define a learning-based realizer for the ND-interpretation
of our minimum principle for arbitrary formulas A. This section
follows the basic outline of Section 4.1, but is naturally somewhat
more complex.

First, as before, we realize the D-interpretation of the following
negative-translated version of MinA,≺,⊕:

∃x̄, ā∀c|ANx̄ |āc
→ ¬¬∃x, a(∀c|ANx |ac ∧ ∀y, b(x⊕ y ≺ x→ ¬∀c|ANx⊕y|bc))

where ∃a∀c|ANx |ac is the functional interpretation of the negative
translation of Ax. Observe that setting Bx,a :≡ ∀c|ANx |ac and
defining (x, a)⊕′ (y, b) := (x⊕y, b) and (z, b) ≺′ (x, a) := z ≺′
x (note that≺′ is well-founded whenever≺ is), by encoding (x, a)
as one variable x this can be reduced to the minimum principle for
the universal formula ∀c|Bx|c i.e. it is sufficient to interpret

∃x̄∀c|Bx̄|c → ¬¬∃x(∀c|Bx|c∧∀y(x⊕y ≺ x→ ¬∀c|Bx⊕y|c)).

We can now follow the steps of Section 4.1 closely. We first con-
sider the D-interpretation of the conclusion, which we obtain as
follows:
¬¬∃x(∀c|Bx|c ∧ ∀y(x⊕ y ≺ x→ ¬∀c|Bx⊕y|c))

;¬¬∃x(∀c|Bx|c ∧ ∃g∀y(x⊕ y ≺ x→ ¬|Bx⊕y|gy))

;¬¬∃x, g∀c, y(|Bx|c ∧ (x⊕ y ≺ x→ ¬|Bx⊕y|gy))

;∀ξ∃x, g(|Bx|ξ0xg ∧ (x⊕ ξ1xg ≺ x→ ¬|Bx⊕ξ1xg|g(ξ1xg))︸ ︷︷ ︸
PB
ξ

(x,g)

)

where the functional ξ combines the output variables c, y and ξ0, ξ1
are its components. Therefore analogously to the decidable case,
the minimum principle is partially interpreted as

∃x̄∀c|Bx̄|c → ∀ξ∃x, gPBξ (x, g)

;∀x̄, ξ∃c, x, g(|Bx̄|c → PBξ (x, g))

5 2016/5/10

and the full interpretation is

∃Φ∀x̄, ξ(|Bx̄|Φ0x̄ξ → PBξ (Φ1x̄ξ,Φ2x̄ξ)).

Whereas for the decidable case we were able to put this directly
into the form where it could be solved using Theorem 3.6, for the
general case we need a trick, which is to deal with the functional
part g of PBξ (x, g) first. For any x define the functional gξ0x by
≺-recursion on x by

gξ0x := λy . if x⊕ y ≺ x then ξ0(x⊕ y, gξ0x⊕y), else 0.

Now define

• GoodBξ (x) :≡Min∗(B, ξ, x), and

• AppBx̄,ξ0(x) :≡ |Bx̄|
ξ0x̄g

ξ0
x̄

→ |Bx|
ξ0xg

ξ0
x

.

where

Min∗(B, ξ, x) :≡ x⊕ ξ1xgξ0x ≺ x→ ¬|Bx⊕ξ1xgξ0x |gξ0x (ξ1xg
ξ0
x)
.

Lemma 4.4. Define the functionals δx̄,ξ and ξ̃ by

δx̄,ξ(x) := (ξ0x̄g
ξ0
x̄ , x, g

ξ0
x) and ξ̃(x) := ξ1xg

ξ0
x .

and the predicate Q(z) by

Q(z) :≡ |Bx̄|z0 → PBξ (z1, z2).

Then for Appx̄,ξ defined as above, we have

∀x

{
AppBx̄,ξ0(x)→Min∗(B, ξ, x)→ Q(δx̄,ξ(x))

AppBx̄,ξ0(x)→ ¬Min∗(B, ξ, x)→ AppBx̄,ξ0(x⊕ ξ̃(x))

Proof. The first line just follows directly from expanding the def-
initions. For the second part, ¬Min(B, ξ, x) implies both x ⊕
ξ1xg

ξ0
x = x ⊕ ξ̃(x) ≺ x and |Bx⊕ξ̃(x)|gξ0x (ξ̃(x))

. But, using

x⊕ ξ̃(x) ≺ x, we have

gξ0x (ξ̃(x)) = ξ0(x⊕ ξ̃(x), gξ0
x⊕ξ̃(x)

)

by the defining equation of gξ0 , and hence

|Bx⊕ξ̃(x)|ξ0(x⊕ξ̃(x),g
ξ

x⊕ξ̃(x)
)
,

from which AppBx̄,ξ0(x⊕ ξ̃(x)) trivially follows.

Theorem 4.5 (Functional interpretation of the minimum principle).
The formula

∀x̄, ξ∃c, x, g(|Bx̄|c → PBξ (x, g))

is satisfied by the functional

λx̄, ξ . lim LBx̄,ξ[x̄]

for LBx̄,ξ := (Min∗(B, ξ,−), δx̄,ξ, ξ̃,⊕), where δx̄,ξ and ξ̃ as
defined as in Lemma 4.4.

Proof. By Lemma 4.4 and Theorem 3.6 we have

∀x(AppBx̄,ξ0(x)→ Q(lim LBx̄,ξ[x])),

and since AppBx̄,ξ0(x̄) trivially holds, the result follows by defini-
tion of Q.

5. Learning algorithms on infinite sequences
We now come to the main part of the paper, in which we define
a simple operation on countable sequences of learning algorithms
that combines them into a single learning algorithm on infinite se-
quences. This operation allows us to build approximations to choice

functions and thereby give a computational interpretation to math-
ematical analysis, as we will prove in Section 6 below. In Section
7 we then compare these learning-based realizers to those obtained
using Spector’s bar recursion. However, we begin by simply defin-
ing our operation and providing an informal argument that the re-
sulting learning procedures are well-founded in continuous models.
Definition 5.1. Suppose that α : XN and (n, x) : N × X . Then
α[n 7→ x] : XN denotes the function β defined by β(m) = α(m)
for m 6= n and β(n) = x.
Definition 5.2. Let X and Y be arbitrary types, and suppose that
we have a sequence of decidable predicatesGoodn(ξ, x) on (X →
Y) ×X together with a sequence of binary operations ⊕n : X ×
Y → X . Define the decidable predicateGood∞(E,α) on (XN →
N×Y)×XN and the binary operation⊕∞ : XN×(N×Y)→ XN

by

(a) Good∞(E,α) := GoodE0α(λx.E1(α[E0α 7→ x]), α(E0α));
(b) α⊕∞ (n, y) := α[n 7→ αn⊕n y].

The idea behind these constructions is the following: for any
n : N, ξ : X → Y and δ : X → Z, we can construct a ‘pointwise’
learning algorithm

Lnξ,δ := (Goodn(ξ,−), δ, ξ,⊕n)

of type X,Y, Z, while for any E : XN → N × Y and D :
XN → Z′ we can combine these algorithms into a ‘global’ learning
algorithm

L∞E,D := (Good∞(E,−), D,E,⊕∞)

of type XN,N × Y,Z′. The usefulness of this construction will
become clear in the next section, but first we want to justify that
it produces learning procedures that terminate in some reasonable
setting.

Lemma 5.3. Suppose that for any ξ, Lnξ,δ reduces with respect to
the ordering ≺n, in other words

∀n, ξ, x(¬Goodn(ξ, x)→ x⊕n ξ(x) ≺n x). (5)

Then for any E, L∞E,D reduces with respect to the ordering ≺E0
∞

defined by

β ≺F∞ α := ∃x(β = α[Fα 7→ x] ∧ x ≺Fα α(Fα)),

for F : XN → N a parameter. In other words

∀E,α(¬Good∞(E,α)→ α⊕∞ E(α) ≺E0
∞ α).

Proof. By definition we have

¬Good∞(E,α)→ ¬GoodE0α(ξ, α(E0α))

for ξ := λx.E1(α[E0α 7→ x]), and setting n = E0α and
x = α(E0α) in (5) this implies that

α(E0α)⊕E0α ξ(α(E0α)) ≺E0α α(E0α).

But since ξ(α(E0α)) = E1(α[E0α 7→ α(E0α)]) = E1α it
follows that

α(E0α)⊕E0α E1α ≺E0α α(E0α),

and since α ⊕∞ Eα = α[E0α 7→ α(E0α) ⊕E0α E1α] we must
have α⊕∞ Eα ≺E0

∞ α.

At this point we need to take a little care, since even if the ≺n
are provably well-founded in E-HAω , it is not too difficult to define
a set-theoretic functional F : XN → N for which ≺F∞ is not well-
founded. For example, we can take X = (N, <) and Fα to be the
least n such that α(n) > 0 and 0 otherwise. Then

1, 1, 1, . . . �F∞ 0, 1, 1, . . . �F∞ 0, 0, 1, . . . �F∞ . . .

6 2016/5/10

However, we can overcome this problem by requiring F to be con-
tinuous, so that in particular the computation of Fα only depends
on finitely many values of α i.e.

∃N∀β(∀n < N(αn = βn)→ Fα = Fβ). (6)

This continuity principle is satisfied, for example, by all F of type
XN → N in the standard Kleene-Kreisel type structure Cω of
continuous functionals [12].

To see that ≺F∞ is well-founded in this case, suppose for con-
tradiction that there is some infinite descending chain (αi) which
satisfies αi+1 ≺F∞ αi for all i i.e.

αi+1 = αi[Fαi 7→ xi] and xi ≺Fαi αi(Fαi)
for some sequence of elements (xi). For any fixed n, we have
αi+1(n) �n αi(n) for all i, and since ≺n is well-founded the
sequence (αi(n))i∈N eventually stabilizes, so we can define a limit
function α̃ by

α̃(n) := αin(n) for in such that αi(n) = αin(n) for all i ≥ in.
Let N be the point of continuity we obtain from (6) applied to
α̃, and let I := maxn≤Fα̃,N{in}. Then for all n < N we have
I ≥ in and thus αI(n) = αin(n) = α̃(n), which by (6) implies
that FαI = Fα̃. But then αI+1(Fα̃) = xI ≺Fα̃ αI(Fα̃), which
contradicts the fact that αI+1(Fα̃) = αI(Fα̃) = αiFα̃(Fα̃).

Following Lemma 4.4, we can define realizers of the form
λx.lim L∞E [α] in any extension of E-HAω with a recursion op-
erator over ≺F∞, such as

Φφ,F (α) := φ(λx . Φφ,F (α[Fα 7→ x]) if x ≺Fα α(Fα) else 0).

This is essentially a variant of the open recursion operator stud-
ied by Berger in [5]. By adapting the well-foundedness argument
above, one can then show that Φ defines a total continuous func-
tional and therefore is satisfied in the model Cω , analogously to [5,
Section 5]. However, we omit any details here. In the next section
we will simply show that realizers for the ND-interpretation of clas-
sical analysis can be given as limits of learning procedures of the
form L∞, and our goal here was simply to convince the reader that
these limits make sense in standard continuous models of higher-
type functionals.

6. The functional interpretation of classical
analysis

We now demonstrate that our construction on learning algorithms
gives a very natural way of building approximations to choice func-
tions. The running example we use to illustrate this is arithmetical
comprehension for Σ1-formulas i.e.

Σ1-CA : ∃gN→B∀n(gn = > ↔ ∃xPn(x))

where Pn(x) is quantifier-free, although our construction allows us
to interpret a much more general class of principles.

As we recount in the next section, following Spector [17], the
traditional way of realizing the ND interpretation of Σ1-CA is to
realize the D-interpretation of the stronger double negation shift

DNS : ∀n¬¬An → ¬¬∀nAn
using an extension of the primitive recursive functionals with bar
recursion. In this section we take a more intuitive approach that
bears a lot in common with Hilbert’s epsilon elimination procedure
and the recent work on learning realizability of Aschieri et al. [2].
Rather than giving an interpretation to the DNS as a whole, we
show that our operation on learning algorithms interprets a certain
rule form of the DNS: namely that whenever its premise can be re-
alized by a countable collection of learning algorithms Ln, its con-
clusion can be realized by L∞. Although less general than Spec-
tor’s approach, we still obtain a realizer of the ND-interpretation of

Σ1-CA (a principle already strong enough to formalise a large por-
tion of mathematical analysis) as a very simple instance ofL∞, and
our realizers enjoy the advantage that their algorithmic behaviour
can be directly understood in terms of a simple while-loop.

Theorem 6.1. Suppose that ∃xX∀yY |An|xy is the D-interpretation
ofAn, andAppn is some arbitrary sequence of predicates such that

∀n, ξX→Y , x

{
Appn(x)→ Goodn(ξ, x)→ |An|xξ(x)

Appn(x)→ ¬Goodn(ξ, x)→ Appn(x⊕n ξ(x))

(7)
holds. Then the formula

∀x̄, n, ξ∃x(Appn(x̄)→ |An|xξ(x)) (8)

is realized by the functional

λx̄, n, ξ . lim Lnξ [x̄]

for Lnξ := (Goodn(ξ,−), ι, ξ,⊕n), assuming Lnξ reduces with
respect to some well-founded ordering, and the formula

∀ᾱ, ωX
N→N, φX

N→Y ∃α(∀nAppn(ᾱn)→ |Aωα|α(ωα)
φα) (9)

is realized by the functional

λᾱ, ω, φ . lim L∞(ω,φ)[ᾱ]

with L∞(ω,φ) := (Good∞((ω, φ),−), ι, (ω, φ),⊕∞) as in Defini-
tion 5.2, assuming L∞(ω,φ) reduces w.r.t. some well-founded order-
ing. In particular, for any sequence (xn) satisfying ∀nAppn(xn),
the D-interpretation of ∀n¬¬∃x∀y|An|xy is realized by

λn, ξ . lim Lnξ [xn]

and the D-interpretation of ¬¬∀n∃x∀y|An|xy is realized by

λω, φ . lim L∞(ω,φ)[λn.xn].

Proof. The realizer of (8) follows directly by (7) and Theorem 3.6.
In order to verify the realizer of (9), we prove{
App∞(α)→ Good∞((ω, φ), α)→ |Aωα|α(ωα)

φα

App∞(α)→ ¬Good∞((ω, φ), α)→ App∞(α⊕∞ (ω, φ)(α))

for all ω, φ, α, where App∞(α) :≡ ∀nAppn(αn), in which case
correctness follows from Theorem 3.6.

First, note that by Definition 5.2 we have

Good∞((ω, φ), α)↔ Goodωα(ξ, α(ωα))

for ξ := λx.φ(α[ωα 7→ x]). Therefore if Good∞((ω, φ), α)
holds, then sinceApp∞(α)→ Appωα(α(ωα)) then by (7) we ob-
tain |Aωα|α(ωα)

ξ(α(ωα)), and since ξ(α(ωα)) = φα this is equivalent to

|Aωα|α(ωα)
φα . On the other hand, if ¬Good∞((ω, φ), α) then by (7)

we obtainAppωα(α(ωα)⊕ωα ξ(α(ωα))) i.e.Appωα(α(ωα)⊕ωα
φα), which along with the assumption App∞(α) proves that
App∞(α⊕∞ (ω, φ)(α)), and we’re done.

6.1 Interpreting Σ1-CA
We now show how the ND interpretation of Σ0

1-CA can be obtained
as a simple consequence Theorem 6.1. By a quick calculation
using equations (1) we can show that the ND-interpretation of
Σ0

1-CA is equivalent to that of ¬¬∃αN→B×X∀n, y(Pn(α1n)∨α0n

¬Pn(y)), where α0 represents the comprehension function g and
α1 a sequence such that α1n realizes ∃xPn(x) whenever α0n =
>. This in turn is identical to the D-interpretation of ¬¬∀nAn for
An :≡ ∃x, b∀y(Pn(x) ∨b ¬Pn(y)), so we can apply Theorem 6.1
directly.

Lemma 6.2. Define

7 2016/5/10

(a) Appn(b, x) :≡ (b = > → Pn(x));
(b) Goodn(ξ, b, x) :≡ (b = ⊥ → ¬Pn(ξbx)) and
(c) (b, x)⊕n y := (>, y).

Then the D-interpretation of

∀n¬¬∃b, x∀y(Pn(x) ∨b ¬Pn(y))

which is
∀n, ξ∃b, x(Pn(x) ∨b ¬Pn(ξbx))

is realized by the learning procedure

λn, ξ . lim Lnξ [(⊥,0)]

for Lnξ := (Goodn(ξ,−), ι, ξ,⊕n), while the D-interpretation of

¬¬∀n∃b, x∀y(Pn(x) ∨b ¬Pn(y))

and hence Σ1-CA, which is

∀ω, φ∃α(Pωα(α1(ωα)) ∨α0(ωα) ¬Pωα(φα))

is realized by the learning procedure

λω, φ . lim L∞(ω,φ)[λn.(⊥,0)]

for L∞(ω,φ) := (Good∞((ω, φ),−), ι, (ω, φ),⊕∞).

Proof. By Theorem 6.1 it suffices to show that (7) holds, which
after unwinding the definitions is completely trivial. Bearing in
mind that Appn(⊥,0) also holds for any n, the result follows.

As a consequence of expressing it in terms of a learning al-
gorithm, the underlying procedural behaviour of our realizer for
Σ1-CA is much easier to understand. In informal terms, it produces
a functional α of type N→ B×X which we can imagine as encod-
ing a partial function of type N → X , where the first component
α0n : B informs us if n is in the domain of α, while the second
α1n : X contains the actual value. Thus the initial element of the
procedure λn.(⊥,0) just encodes the empty partial function ∅, and
unfolding all the definitions the test predicate Good∞((ω, φ), α)
can be expressed as ωα /∈ domain(α) → ¬Pωα(φα). Therefore
the underlying learning procedure is equivalent to the simple while-
loop sketched in Algorithm 3. We start with an empty approxima-

Algorithm 3 ∀ω, φ∃α(Pωα(α1(ωα)) ∨α0(ωα) ¬Pωα(φα))

1: input ω, φ
2: α = ∅
3: while ωα /∈ domain(α) ∧ Pωα(φα)
4: α→ α[ωα 7→ (>, φα)]
5: return α

tion ∅ to a comprehension function α, and gradually build up a
better approximation by adding realizers of ∃xPn(x) whenever we
find them. Eventually, the program terminates at a stage where ei-
ther ωα ∈ domain(α), and by definition α1(ωα) is a realizer of
∃xPωα(x), or ωα /∈ domain(α) and ¬Pωα(φα).

This way of building approximations to a comprehension func-
tion is by no means new: algorithms of this form underlie Hilbert’s
epsilon substitution method, are studied by Avigad in [3] where
they are known as update procedures, and are essential to the
learning-realizability of [2]. The novelty here is that it forms an
instance of a general framework for obtaining learning-based real-
izers for choice functions via the ND interpretation. Interestingly,
this solution in the case of Σ0

1-CA was briefly considered by Spec-
tor as an alternative to bar recursion in [17, 12.1]. According to the
posthumous footnotes of Kreisel, Spector planned to extend this to
solve more general instances of double negation shift, as we have
done to an extent here. Sadly, it is not clear precisely what Spec-
tor’s intentions were as he died before he was able to carry them
out.

7. Bar recursion and ‘forgetful’ learning
Spector did, however, give a full computational interpretation to
the DNS using bar recursion. We conclude the article by showing
that, underneath the complex syntax, simple cases of bar recursion
produce limits of a special kind of learning procedure which forget
everything that they have learned above the point that is being
updated. This section is the most technically involved of the paper,
and casual readers not already familiar with bar recursion may
prefer to skim over the details of the section up until 7.1, where
analogously to Section 6.1 we illustrate the main points by looking
at the simple case of Σ1-CA.

As mentioned earlier, Spector’s realizer for comprehension
principles was obtained by realizing the D-interpretation of the
full double negation shift. The interpretation is given as follows:

∀n¬¬∃x∀y|An|xy → ¬¬∃α∀n, y|An|αny
;∃L∀n, ξ|An|Lnξξ(Lnξ) → ∀ω, φ∃α|Aωα|

α(ωα)
φα

;∀L, ω, φ∃n, ξ, α(|An|Lnξξ(Lnξ) → |Aωα|
α(ωα)
φα).

In his landmark paper, Spector witnessed this last line by using the
bar recursive functional BRL,ω,φ : X∗ → XN defined as (see
Notation 2.1)

BRL,ω,φ(s) =

{
ŝ if ω̂(s) < |s|
BRL,ω,φ(s ∗ ys) otherwise,

where ys :=X L|s|(λx . φ(BRL,ω,φ(s ∗ x))). He demonstrated
thatα := BRL,ω,φ(〈〉), n := ωα and ξ := λx.φ(BRL,ω,φ([α](n)∗
x)) satisfy the equations

α(ωα) = Lnξ and φα = ξ(Lnξ)

thus solving the functional interpretation of DNS. We do not go any
further into the details of this general solution of DNS (for these the
reader is directed to e.g. [10, 13]). Rather we try to link everything
to the previous section and focus on the underlying algorithmic
meaning of the resulting realizer for ¬¬∀nAn, in cases where the
premise of DNS is realized by a simple kind of learning procedure,
namely

Lanξ := lim Lnξ [an]

for
Lnξ := (Tn(−, ξ(−)), ι, ξ,⊕n)

for some decidable predicate Tn on X × Y , operation ⊕n and a :
XN. Note that this is more restrictive than the learning algorithms
of the previous section, but is still general enough to include Σ1-CA
as a very simple case. In addition we assume that Lnξ reduces with
respect to some well-founded order ≺n, and thus we can express
Lanξ as a ≺n-recursive function i.e. Lanξ = ln,ξ(an) where ln,ξ
is defined by

ln,ξ(x) :=

{
x if Tn(x, ξ(x))

ln,ξ(x⊕n ξ(x)) otherwise.

We claim that for La of this form, the realizer BRL
a,ω,φ(〈〉) is the

limit of a learning procedure, which we define now. We first need
some preliminary definitions.
Definition 7.1. Let s : X∗ be a finite sequence, a : XN an infinite
sequence and ω : XN → N a functional. Define Ns,a,ω to be the
least n ≥ |s| such that

ω̂(s ∗ 〈a|s|, . . . , an−1〉) < n

and define
sa,ω := s ∗ 〈a|s|, . . . , aNs,a,ω−1〉

The point Ns,a,ω always exists for continuous ω, and as shown in
e.g. [14] is definable in E-HAω + (BR).

8 2016/5/10

Definition 7.2. Let the interval [m,n) denote the set {m, . . . , n−
1} if m < n and ∅ otherwise. Given a decidable predicate P (n)
and finite X ⊂ N let µ̄n ∈ X . P (n) denote the greatest n ∈ X
such that P (n) holds, and just 0 if no such n exists.
Definition 7.3. Given a collection of predicates Tn(x, y) onX×Y
together with a collection of operations ⊕n : X × Y → X which
partially define Ln as above, for each m ∈ N define the learning
algorithm

L∞,ma,ω,φ := (Goodma,ω,φ, D
m
a,ω,φ, E

m
a,ω,φ,⊕a)

of type X∗,N× Y,XN parametrised by a : XN, ω : XN → N and
φ : XN → Y as

(a) Goodma,ω,φ(s) := ∀n ∈ [m, |sa,ω|) Tn((sa,ω)n, φ̂(sa,ω));
(b) Dm

a,ω,φs := ŝa,ω;
(c) (Ema,ω,φ)0s := µ̄n ∈ [m, |sa,ω|) . ¬Tn((sa,ω)n, φ̂(sa,ω));
(d) (Ema,ω,φ)1s := φ̂(sa,ω);
(e) s⊕a,ω(n, y) := [sa,ω](n)∗((sa,ω)n⊕ny) if n < |sa,ω| else 〈〉.
Theorem 7.4. Let Lanξ := ln,ξ(an) for l as defined above (with
respect to some Tn,⊕n). Then for any infinite sequence a, the limit
of L∞,0a,ω,φ[〈〉] (w.r.t. the same Tn, ⊕n) exists and we have

lim L∞,0a,ω,φ[〈〉] = BRL
a,ω,φ(〈〉)

In particular, the realizer of ¬¬∀nAn given by Spector’s bar re-
cursion in this case is just λω, φ.lim L∞,0a,ω,φ[〈〉].

Proof. The proof consists of a single instance of the following
variant of bar induction:

∀βX
N
∃NB([β](N)) ∧ ∀s(∀xB(s ∗ x)→ B(s))→ B(〈〉),

which is classically valid for any B by the axiom of dependent
choice. We use it with B(s) defined as the formula

∀a(the limit of L∞,|s|a,ω,φ[s] exists and is equal to BRL
a,ω,φ(s)).

The theorem then follows directly fromB(〈〉). Thus we need to es-
tablish the two premises of bar induction. Because the parameters
ω and φ remain fixed throughout, we omit these from L∞,ma,ω,φ and
its components from now on.

(i) ∀β∃NB([β](N))

Take some infinite sequence β. Then assuming we are working in
a model of E-HAω + (BR) such as the continuous functionals,
there exists some N such that ω̂([β](N)) < N . In this case
GoodNa ([β](N)) is trivially true, since [β](N)a,ω = [β](N) and
thus [N, |[β](N)a,ω|) = ∅, and therefore

lim L∞,Na [[β](N)] = ̂[β](N)a,ω = ̂[β](N) = BRL
a

([β](N)),

the last equality following from the defining equation of BRL
a

(s)
for ω̂(s) < |s|. This establishes B([β](N)).

(ii) ∀s(∀xB(s ∗ x)→ B(s))

Fixing s, we can assume that ω̂(s) ≥ |s|, for if ω̂(s) < |s| then we
have lim L∞,|s|a [s] = ŝ = BRL

a

(s) by exactly the same reasoning
as with the case (i) above. We now come to the core of the proof,
which is to show that for fixed a : XN we have

lim L∞,|s|a [s ∗ x] exists and is equal to BRL
a

(s ∗ l|s|,ξ(x)))︸ ︷︷ ︸
Qa(x)

for all x, with
ξ := λx . φ(BRL

a

(s ∗ x)).

Note that the learning procedure in Qa(x) is L∞,|s|a and not
L∞,|s∗x|a , and so this is not the same as proving B(s ∗ x)! We
prove Qa(x) by induction on x with respect to the ordering ≺|s|.
We fix x and assume ∀x′ ≺|s| xQa(x′).

Let (ui), (vi) : (X∗)N be, respectively, the learning procedures
L∞,|s|a [s ∗ x] and L∞,|s∗x|a [s ∗ x]. By the main bar induction hy-
pothesis B(s ∗ x) we can assume that (vi) has a limit point vj and
that

D|s∗x|a (vj) = ̂(vj)a,ω = BRL
α

(s ∗ x). (10)
We claim that for all i ≤ j

(a) ui = vi, and
(b) [(ui)a,ω](|s|+ 1) = [(vi)a,ω](|s|+ 1) = s ∗ x.

We use a side induction from i = 0 to i = j. For the base case we
clearly have u0 = s ∗ x = v0 and [(s ∗ x)a,ω](|s| + 1) = s ∗ x
by definition. Now assume that (a) and (b) hold for i < j. Since vi
is not a limit point, we must have ¬Good|s∗x|a (vi), which implies
there is some k ∈ [|s ∗ x|, |(vi)a,ω|) such that

¬Tk(((vi)a,ω)k, φ̂((vi)a,ω)).

But since ui = vi then this k is also the greatest in [|s|, |(ui)a,ω|)
satisfying

¬Tk(((ui)a,ω)k, φ̂((ui)a,ω)),

and thus ¬Good|s|a (ui) also holds with E|s|a (ui) = E
|s∗x|
a (vi) =

(k, φ̂(ui)a,ω). Therefore

ui+1 = ui ⊕a E|s|a (ui) = vi ⊕a E|s∗x|a (vi) = vi+1.

Moreover, since |ui+1| = (E
|s|
a)0(ui) + 1 = k+ 1 > k > |s| and

((ui)a,ω)|s| = x we must also have

[(ui+1)α,ω](|s|+1) = [ui+1](|s|+1) = [(ui)α,ω](|s|+1)=s∗x
the last step using the side induction hypothesis (b) for ui. This
proves the claim. Now, since vj is a limit point we haveGood|s∗x|a (vj)
and thus since uj = vj

Good|s|a (uj)↔ T|s|(((uj)a,ω)|s|, φ̂((uj)a,ω)).

But by our claim (a), (b) for i = j we have

((uj)a,ω)|s|
(b)
= x

and

φ̂((uj)a,ω)
(a)
= φ̂((vj)a,ω)

(10)
= φ(BRL

a

(s ∗ x)) = ξ(x) (11)

And thus
Good|s|α (uj)↔ T|s|(x, ξ(x)).

There are two cases to consider: Either T|s|(x, ξ(x)) holds and thus

lim L∞,|s|a [s ∗ x] = ̂(uj)a,ω
(a)
= ̂(vj)a,ω

(10)
= BRL

a

(s ∗ x) (12)

or ¬T|s|(x, ξ(x)), in which case E|s|a (uj) = (|s|, φ̂((uj)a,ω))
11
=

(|s|, ξ(x)) and thus

uj+1 = uj ⊕a E|s|a (uj)

= [(uj)ω,a](|s|) ∗ (((uj)ω,a)|s| ⊕|s| ξ(x)))

(b)
= s ∗ (x⊕|s| ξ(x))

Now x′ := x⊕|s| ξ(x) ≺|s| x since ¬T|s|(x, ξ(x)) and therefore

lim L∞,|s|a [s ∗ x] = lim L∞,|s|a [uj+1] = lim L∞,|s|a [s ∗ x′]
so by the induction hypothesis Qa(x′) we obtain

lim L∞,|s|a [s ∗ x′] = BRL
α

(s ∗ l|s|,ξ(x′)). (13)

9 2016/5/10

Thus together with (12) we have

lim L∞,|s|a [s ∗ x] =

{
BRL

a

(s ∗ x) if T|s|(x, ξ(x))

BRL
a

(s ∗ l|s|,ξ(x⊕|s| ξ(x))) otherwise

= BRL
a

(s ∗ l|s|,ξ(x)).

This completes the auxiliary induction step, and so we have estab-
lished that ∀xQa(x), and therefore in particular Qa(a(|s|)) i.e.

lim L∞,|s|a [s ∗ a(|s|)] = BRL
a

(s ∗ l|s|,ξ(a(|s|)))

= BRL
a

(s ∗ La|s|ξ)

= BRL
a

(s)

the last equality following from definition of ξ and the defining
equation of BRL

a

for ω̂(s) ≥ |s|. All that remains is to show that

lim L∞,|s|a [s] = lim L∞,|s|a [s ∗ a(|s|)] (14)

and we’re done, since then lim L∞,|s|a [s] = lim L∞,|s|a [s ∗ a(|s|)] =
BRL

a

(s), and since a was arbitrary this establishes B(s), and
we’re done with the second bar induction premise. But (14) is
easy (though tedious) to prove. Since ω̂(s) ≥ |s| we must have
sa,ω = (s ∗ a(|s|))a,ω and thus since Good|s|a (t), D

|s|
a (t), E|s|a (t)

and t⊕a (n, y) depend only on ta,ω we have either

lim L∞,|s|a [s] = D|s|a (s) = D|s|a (s∗a(|s|)) = lim L∞,|s|a [s ∗ a(|s|)]

in the case thatGood|s|a (s) (equivalentlyGood|s|a (s∗a(|s|))) holds,
or otherwise

lim L∞,|s|a [s] = lim L∞,|s|a [t] = lim L∞,|s|a [s ∗ a(|s|)]

for t = s⊕a E|s|a (s) = (s ∗ a(|s|))⊕a E|s|a (s ∗ a(|s|)).

7.1 Interpreting Σ1-CA, revisited
Let An :≡ ∃x, b∀y(Pn(x)∨b ¬Pn(y)) as in Section 6.1. It is easy
to check that ∀n¬¬An is realized by L∅nξ = ln,ξ(⊥,0) with

ln,ξ(b, x) =

{
(b, x) if b = ⊥ → ¬Pn(ξbx)

(>, ξbx) otherwise,

(denoting ∅ = λn.(⊥,0) as before) and thus by Spector’s result the
ND interpretation of¬¬∀nAn can be given by λω, φ.BRL

∅,ω,φ(〈〉).
But by Theorem 7.4 we have BRL

∅,ω,φ(〈〉) = lim L∞,0∅,ω,φ[〈〉] for
Tn((b, x), y) :≡ b = ⊥ → ¬Pn(y) and (b, x) ⊕n y := (>, y).
Assuming the convention 0B×X = (⊥,0X), it is not to difficult to
show that s∅,ω as in Definition 7.1 is just the sequence s∗〈0, . . . ,0〉
of length Ns, for

Ns :=

({
|s| if ω̂(s) < |s|
ω̂(s) + 1 otherwise

)
= max{|s|, ω̂(s) + 1}.

Using this, we can unwrap all the definitions (we do not give the
details here, though again this is all fairly straightforward) and see
that the underlying learning algorithm is given as in Algorithm 4,
where we use the notation n /∈ domain(s) :≡ (sn)0 = ⊥ as in
Section 6.1. It is highly illuminating to compare this with Algo-

Algorithm 4 ∀ω, φ∃α(Pωα(α1(ωα)) ∨α0(ωα) ¬Pωα(φα))

1: input ω, φ
2: s = 〈〉
3: while ∃n < max{|s|, ω̂(s) + 1} . n /∈ domain(s)∧Pn(φ(ŝ))
4: s→ [ŝ](n) ∗ (>, φ(ŝ)) for the greatest such n
5: return α := ŝ

rithm 3. The basic idea of starting with an empty approximation to

a comprehension function and updating with realizers for ∃xPn(x)
is the same, but the manner in which it is done is completely dif-
ferent. In particular, when updating with a realizer at point n, all
realizers for Pm(x) with m > n are forgotten.

Acknowledgments
I am grateful to the anonymous referees for their many useful
comments and corrections.

References
[1] F. Aschieri. Learning, Realizability and Games in Classical Arith-

metic. PhD thesis, Universita degli Studi di Torino and Queen Mary,
University of London, 2011.

[2] F. Aschieri and S. Berardi. Interactive learning-based realizability for
Heyting arithmetic with EM1. Logical Methods in Computer Science,
6(3), 2010.

[3] J. Avigad. Update procedures and the 1-consistency of arithmetic.
Mathematical Logic Quarterly, 48(1):3–13, 2002.

[4] J. Avigad and S. Feferman. Gödel’s functional (“Dialectica”) inter-
pretation. In S. R. Buss, editor, Handbook of Proof Theory, volume
137 of Studies in Logic and the Foundations of Mathematics, pages
337–405. North Holland, Amsterdam, 1998.

[5] U. Berger. A computational interpretation of open induction. In
F. Titsworth, editor, Proceedings of the Nineteenth Annual IEEE Sym-
posium on Logic in Computer Science, pages 326–334. IEEE Com-
puter Society, 2004.

[6] T. Coquand. A semantics of evidence for classical arithmetic. Journal
of Symbolic Logic, 60:325–337, 1995.

[7] V. de Paiva. The Dialectica Categories. PhD thesis, University of
Cambridge, 1991. Published as Technical Report 213, Computer
Laboratory, University of Cambridge.

[8] M. Escardó and P. Oliva. Selection functions, bar recursion and
backward induction. Mathematical Structures in Computer Science,
20(2):127–168, 2010.

[9] K. Gödel. Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunktes. dialectica, 12:280–287, 1958.

[10] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their
Use in Mathematics. Monographs in Mathematics. Springer, 2008.

[11] A. Kreuzer. Proof mining and Combinatorics : Program Extraction
for Ramsey’s Theorem for Pairs. PhD thesis, TU Darmstadt, 2012.

[12] D. Normann. The continuous functionals. In S. Abramsky, S. Arte-
mov, R. A. Shore, and A. S. Troelstra, editors, Handbook of Com-
putability Theory, volume 140 of Studies in Logic and the Founda-
tions of Mathematics, pages 251–275. North Holland, Amsterdam,
1999.

[13] P. Oliva. Understanding and using Spector’s bar recursive interpre-
tation of classical analysis. In A. Beckmann, U. Berger, B. Löwe,
and J. V. Tucker, editors, Proceedings of CiE’2006, volume 3988 of
LNCS, pages 423–234, 2006.

[14] P. Oliva and T. Powell. On Spector’s bar recursion. Mathematical
Logic Quarterly, 58:356–365, 2012.

[15] P. Oliva and T. Powell. A constructive interpretation of Ramsey’s the-
orem via the product of selection functions. Mathematical Structures
in Computer Science, 25(8):1755–1778, 2015.

[16] H. Schwichtenberg. Dialectica interpretation of well-founded induc-
tion. Mathematical Logic Quarterly, 54(3):229–239, 2008.

[17] C. Spector. Provably recursive functionals of analysis: a consistency
proof of analysis by an extension of principles in current intuitionistic
mathematics. In F. D. E. Dekker, editor, Recursive Function Theory:
Proc. Symposia in Pure Mathematics, volume 5, pages 1–27. Ameri-
can Mathematical Society, Providence, Rhode Island, 1962.

10 2016/5/10

