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Abstract

We introduce a new, demand-driven variant of Spector’s bar recursion in the spirit of the Berardi-
Bezem-Coquand functional of [4]. The recursion takes place over finite partial functions u, where
the control parameter ω, used in Spector’s bar recursion to terminate the computation at sequences
s satisfying ω(ŝ) < |s|, now acts as a guide for deciding exactly where to make bar recursive updates,
terminating the computation whenever ω(û) ∈ dom(u). We begin by exploring theoretical aspects
of this new form of recursion, then in the main part of the paper we show that demand-driven bar
recursion can be directly used to give an alternative functional interpretation of classical countable
choice. We provide a short case study as an illustration, in which we extract a new bar recursive
program from the proof that there is no injection from N → N to N, and compare this with the pro-
gram that would be obtained using Spector’s original variant. We conclude by formally establishing
that our new bar recursor is primitive recursively equivalent to the original Spector bar recursion,
and thus defines the same class of functionals when added to Gödel’s system T.
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1 Introduction

In 1962 C. Spector extended Gödel’s functional, or Dialectica, interpretation of classical arithmetic [13] to
full classical analysis by proving that the functional interpretation of the negative translation of countable
choice, and hence full arithmetical comprehension, could be realized by a novel form of recursion which
has come to be known as Spector’s bar recursion [24]. Since then, this seminal work has been extended
in several ways, and in particular a number of novel variants of bar recursion have been devised to give
computational interpretations to classical analysis in new settings, to the extent that bar recursion, in
one form or another, is one of the most recognisable methods of giving a computational interpretation
to mathematical analysis.

Spector’s original aim was to extend Gödel’s proof of the relative consistency of Peano arithmetic to
classical analysis. For this purpose, bar recursion is very well suited, allowing us to elegantly and easily
expand the soundness of the Dialectica interpretation to incorporate the double negation shift and thus
classical countable choice. However, in recent decades applications of proof interpretations such as the
Dialectica interpretation and modified realizability have moved away from foundational concerns and
towards the more practical issue of extracting computational content from proofs. In line with this shift
of emphasis comes an increasing interest in how the modes of computation assigned to non-constructive
principles behave.

∗Corresponding author: Email. powell@mathematik.tu-darmstadt.de, Phone. (+49)06151-16-22844, Address. Fach-
bereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, Darmstadt, 64289, Germany
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From this perspective, it could be argued that traditional bar recursion is not necessarily the best
method of interpreting countable choice principles. The defining characteristic of Spector’s bar recursion
is that it carries out computations over some well-founded tree of finite sequences s, where the value at
each node s can only depend on the immediate children s ∗ x of that node. One can think of Spector
bar recursion as performing a depth-first search on well-founded trees. But it often happens that the
values computed at several nodes of this tree are irrelevant for computing the desired approximation to
the choice sequence, and one would like to avoid such unnecessary computations.

The purpose of this paper is to introduce a new, demand-driven alternative to Spector’s bar recursion,
in which the order of the recursive calls is not fixed but rather directly controlled by its parameters. We
first focus on recursion-theoretic issues, in particular giving an intuitive explanation of why our recursor
exists in standard continuous models. We then prove that our new form of recursion is capable of
realizing the Dialectica interpretation of countable choice, and moreover argue that (from an algorithmic
viewpoint) it can be superior to Spector’s original bar recursion because the manner in which it constructs
approximations to choice sequences is much more sensitive to its environment. We illustrate this with an
example in which we extract realizers from the classical proof that there is no injection from N→ N to
N. In this case the program based on our demand-driven recursion has a much more intuitive behaviour
than that based on Spector bar recursion, and significantly outperforms the latter on a small sample of
concrete inputs. Finally, we calibrate the computational strength of this new variant of bar recursion
relative to Spector’s original definition, showing that despite the algorithmic differences in extracted
programs, the two forms of bar recursion are in fact primitive recursively interdefinable, and thus our
recursor exists in all the usual models of Spector’s bar recursion.

Our variant of bar recursion is in some ways similar to the realizer of countable choice proposed by
Berardi et al. in [4], now often called the BBC-functional. In both cases the recursion is carried out
in a ‘symmetric’ rather than a fixed sequential manner. However, the BBC-functional belongs to the
world of realizability, which typically uses much stronger forms of recursion to interpret choice principles
than Spector bar recursion (see [8, 12, 20]). Moreover, the BBC-functional itself has a highly complex
behaviour, its demand driven execution coming at the expense that each entry in its output is computed
via a completely independent recursion. Our bar recursor is very different in this respect, as it retains a
‘memory’ of what has already been computed, and simply relaxes the order in which the computation
occurs. We discuss the BBC-functional in more detail in Section 5.3.

1.1 Preliminaries

The basic formal theory we work over is fully extensional1 Heyting arithmetic E-HAω in all finite types
(and its classical variant E-PAω), whose quantifier-free fragment is Gödel’s system T of primitive recursive
functionals (see [16, 25] for full details). The finite types T are typically defined using the following
inductive rules

T ::= N | X × Y | X → Y

We expand these basic types with some standard ‘definable’ types, including the unit 1 and Boolean
B = {0, 1} types, finite sequence types X∗ and co-product types X + Y . We consider partial sequences
N⇀ X to be objects of type N→ X + 1, where 1 denotes an ‘undefined’ value.

Finally, we consider one slightly non-standard type: the type X† of finite partial functions, that is
partial sequences N ⇀ X defined at only finitely many points. This type can be easily simulated as in
[5] by (N×X)∗, in which the partial function that takes values x0, . . . , xk−1 at arguments n0, . . . , nk−1
is encoded as the sequence 〈(n0, x0), . . . , (nk−1, xk−1)〉, although to minimise syntax we treat X† as
primitive and avoid any further details of how it can be precisely encoded using the usual types.

Relative to a suitable encoding for X† there exists a computable functional dom: X† → N∗ which
for each finite partial function u encodes its finite domain as a sequence of natural numbers (if u is
encoded in the type (N × X)∗ as described above this functional would simply be the first projection
of the sequence, quotiented by equality). In general, for both partial and finite partial sequences u we
write dom(u) ⊆ N to denote the domain of u, and write n ∈ dom(u) whenever u is defined at n. We can
assume that membership of dom(u) is a decidable predicate (i.e. recursive in u).

1As it is well-known, the Dialectica interpretation does not validate full extensionality. The system we are describing
here, however, is the one we use to verify the bar recursive interpretation of countable choice, and also for our inter-
definability results.
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We write x : X or xX to signify “x is an object of type X”, and sometimes write Y X for the type
X → Y . In addition to the basic constructors for dealing with the finite types, E-HAω contains variables
and quantifiers for all types, the predicates =B and =N and corresponding axioms for equality over base
types, induction over arbitrary formulas, combinators which allow us to carry out λ-abstraction, and
primitive recursors RX for each type which satisfy

Ry,zX (0) =X y

Ry,zX (n+ 1) =X zn(Ry,zX (n)).

In particular, the recursor of type N allows us to carry out definition by cases, and also assign charac-
teristic functions to all quantifier-free formulas of E-HAω. Note that we choose to write Ry,zX (n) instead
of the more common RX(y, z, n). This is simply a notational separation between the parameters that
remain fixed throughout the recursion, namely y and z, and the parameter over which the recursion
takes place, namely n. We follow a similar convention when defining bar recursion schemes below.

Finally, higher-type equality =X for arbitrary X is defined inductively in terms of =N, and is treated
as fully extensional via the axioms

∀fX→Y , xX , yX(x =X y → f(x) =Y f(y)).

We will often require extensions of E-HAω/E-PAω with various principles, notably both the axioms ACN,X
of countable choice and DC of countable dependent choice, which are defined by

ACN,X : ∀nN∃xXAn(x)→ ∃fN→X∀nAn(f(n))

and
DCX : ∀nN, xX∃yXAn(x, y)→ ∃fN→X∀nAn(f(n), f(n+ 1))

respectively, where A is an arbitrary formula in each case. We denote by ACN and DC the general axiom
schemata (ACN,X) and (DCX) where X ranges over arbitrary finite types.

1.2 Notation

We make use of the following notational conventions:

• Finite sequence constructors. For s : X∗, |s| denotes the length of s. We use 〈x0, . . . , xn−1〉 : X∗ to
denote the finite sequence constructor. Hence, we write 〈〉 for the empty sequence and 〈x〉 for the
singleton sequence containing only x.

• Finite sequence concatenation. Given two finite sequences s, t : X∗ we write s ∗ t for their concate-
nation. For a finite sequence s : X∗ and an object x : X we often write s ∗ x for s ∗ 〈x〉. We also
write s ∗ α : XN to denote the concatenation of the finite sequence s : X∗ with an infinite sequence
α : XN.

• Initial finite sequence. Given an α : XN we write [α](n) = 〈α(0), . . . , α(n − 1)〉 : X∗ for the finite
initial segment of length n of the infinite sequence α.

• Finite partial function constructors. We use ∅ : X† for the finite partial function with empty
domain, and (n, x) : X† for the finite partial function defined only at point n with value x.

• Ordering of finite partial functions. Given two finite partial functions u, v : X† we write u v v if
the domain of v contains the domain of u; and u and v coincide on the domain of u. If the domain
of u is strictly contained in the domain of v we will write u < v.

• Merging finite partial functions. Given two finite partial functions u, v : X† we write u ⊕ v to denote
the “union” of the two partial functions, where we give priority to the values of u when u and v
are both defined at some common point. Given finite sequences s, t : X∗ we also write s ⊕ t since
we can think of s, t : X∗ as finite partial functions of a particular kind.
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• Canonical extensions. The term 0X : X denotes the some inductively defined “zero object” of
each type X, used as a canonical representative of X – we use the convention that 0X∗ = 〈〉 and
0X† = ∅. The canonical extension ŝ : XN of the finite sequence s : X∗ is defined by ŝ(i) = si for
i < |s| and else ŝ(i) = 0X . The canonical extension û : XN of a finite partial function u : X† is
defined analogously. Given a function ω : XN → R we also talk about its canonical extension, and
write ω̂ for the function ω̂(s) = ω(ŝ) so that ω̂ can be either of type X∗ → R or X† → R. The
type of ω̂ will be clear from the context.

• Partial application. As a generalisation of currying, given a function ω : XN → R and an s : X∗,
we write ωs : XN → R for the function defined by ωs(α) = ω(s ∗ α).

• Bounded search. Given any decidable predicate P (i) on N, the term µi ≤ n . P (i) returns the least
i ≤ n satisfying P (i), if it exists, or returns n otherwise.

1.3 Spector’s bar recursion

The defining equation of Spector’s general bar recursor BRX,R is given by

BRφ,b,ωX,R (sX
∗
) =R

{
b(s) if ω(ŝ) < |s|
φs(λx

X .BRφ,b,ωX,R (s ∗ x)) otherwise

where the parameters have type φ : X∗ → (X → R)→ R, b : X∗ → R and ω : XN → N and X, R range

over arbitrary types. Just as we did with Ry,zX (n), we also write BRφ,b,ωX,R (s) instead of the more common
BRX,R(φ, b, ω, s), so as to highlight the parameter s over which the recursion takes place. In fact, we will
often omit the parameters φ, b, ω from the superscript of BR when there is no danger of ambiguity.

The parameter ω acts as a ‘control’ for BRφ,b,ωX,R (s), whose role is to ensure that at some point the
recursive calls stop. Therefore Spector’s bar recursor is well-founded only if the control parameter
eventually satisfies ω̂(s ∗ 〈x0, . . . , xN−1〉) < |s|+N (recall that we use the abbreviation ω̂(t) = ω(t̂)) for
each sequence of recursive calls s, s ∗ 〈x0〉, s ∗ 〈x0, x1〉 . . . . We call this requirement Spector’s condition,
which can be formulated more precisely as

SpecX : ∀ωX
N→N∀αX

N
∃n(ω̂([α](n)) < n).

As demonstrated by Howard using a trick2 attributed to Kreisel, Spec must be valid in any model of bar
recursion.

Proposition 1.1 (Howard/Kreisel [14]). E-HAω + (BR) ` Spec.

For this reason, BR is not well-defined in the full type structure of all set-theoretic functionals, since
Spec is clearly not valid in this structure. However, it is well known to exist in most continuous type-
structures (such as the Kleene/Kreisel continuous functionals [15, 17, 25]), and even in the type structure
of strongly majorizable functionals [9], which contains non-continuous functionals.

Just as normal primitive recursion forms a computational analogue of induction, bar recursion can
be viewed as a computational analogue of the principle of bar induction, which is well-known to be
(classically) equivalent to dependent choice,

BI : ∀αX
N
∃nP ([α](n)) ∧ ∀tX

∗
(∀xXP (t ∗ x)→ P (t))→ P (〈〉).

Here P is some predicate over finite sequences.
To see, on an informal level, why bar recursion exists in continuous models, we first note that such

models all satisfy the following sequential continuity principle:

Cont : ∀ωX
N→N, αX

N
∃N∀β([α](N) =X∗ [β](N)→ ω(α) =N ω(β)).

From this we can easily derive Spec: if N is a modulus of continuity on ω and α then ω̂([α](n)) < n holds

for n := max{N,ω(α) + 1}. Now, to show that BRφ,b,ωX,R (s) defines a total object for total arguments φ,
b, ω and s, we argue by bar induction on the predicate

P (t) ≡ BRφ,b,ωX,R (s ∗ t) is total.

2We use a variant of Kreisel’s trick in the proof of Proposition 2.8 further below.
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Given an infinite sequence α : XN it is clear by Spec that ω̂(s ∗ [α](n)) < |s|+n for some n and therefore
BRφ,b,ω(s∗ [α](n)) = b(s∗ [α](n)) is total. Clearly the bar induction step ∀tX∗(∀xXP (t∗x)→ P (t)) holds

and thus we obtain P (〈〉) and therefore totality of BRφ,b,ωX,R (s). A broadly similar but somewhat more
involved application of bar induction proves that BR exists in the majorizable functionals (see [9, 16]).

To summarise, the basic idea behind Spector’s bar recursion is that any sequence of recursive calls
made by BR eventually hits a bar s at which the condition ω(ŝ) < |s| holds and therefore BR(s) is
assigned a value b(s). These values propagate backwards along the tree of recursive calls ensuring that
BR is defined everywhere.

2 A demand-driven variant of Spector’s bar recursion

One can view Spector’s bar recursion as just one instance of a more general form of backward recursion
in which the main argument is some partial function with finite domain (for Spector a finite sequence
s), and recursive calls are made by extending the domain of this argument (for Spector extending the
sequence with one element s ∗ x). From this perspective it seems that bar recursion is quite constrained
in that the domain of its input is always an initial segment of the natural numbers. This has two obvious
disadvantages. Firstly, the implicit dependence on the ordering of the natural numbers makes it unclear
how to generalise BR to carry out recursion over partial functions on discrete structures which do not
come equipped with a natural ordering. Secondly, adherence to sequentiality means that precise values
of the control functional ω are never required: all that matters is whether or not ω(ŝ) < |s|, or in other
words, whether or not ω(ŝ) is within the domain of already computed values. Thus when we consider
that in terms of program extraction the parameter ω is typically some realizing term extracted from a
lemma in a proof, Spector’s bar recursor lacks sensitivity in that it ignores precise information from its
proof-theoretic environment.

It is natural, then, to ask whether there is alternative to bar recursion which still terminates on inputs
u with ω(û) in the domain of u, but which searches for these points in a more flexible way, and takes
into account information provided by ω. This is the idea behind our variant of bar recursion, which we
call symmetric bar recursion. The symmetric bar recursor sBRX,R is given by the defining equation

sBRφ,b,ωX,R (uX
†
) =R

{
b(u) if ω̂(u) ∈ dom(u)

φu(λxX . sBRφ,b,ω(u⊕ (ω̂(u), x))) otherwise

where now the parameters have type φ : X† → (X → R)→ R, b : X† → R and ω : XN → N. Recall that
the operation ⊕ indicates the extension of the partial function u with one more piece of information,
analogous to the extension of finite partial functions in the defining equation of BR. The crucial difference
is that this extension can potentially take place at any point n ∈ N\dom(u), and so we are no longer
restricted to making recursive calls in a sequential fashion. However, this additional freedom requires us
to carefully justify the totality of sBR, as its recursive calls are not easily seen to be well-founded. In
Definition 2.6 below we give a corresponding symmetric bar induction principle which can be used to
reason about sBR. First we need the following important definition.

Definition 2.1 (Finite ω-threads of u : X† or α : XN). Given ω : XN → N and u : X†, the ω-thread of u
of length i is the finite partial function {u}ω(i) : X† inductively defined as

{u}ω(0) := ∅

{u}ω(i+ 1) :=

{
{u}ω(i)⊕ (nω,i, u(nω,i)) if nω,i ∈ dom(u)

{u}ω(i) otherwise

where nω,i := ω̂({u}ω(i)). Note that when either nω,i ∈ dom({u}ω(i)) or nω,i /∈ dom(u), we would have
{u}ω(j) = {u}ω(i) for all j ≥ i. Entirely analogously, define the ω-thread of α of length i, also denoted
{α}ω(i) : X†, as

{α}ω(0) := ∅
{α}ω(i+ 1) := {α}ω(i)⊕ (nω,i, α(nω,i))

where nω,i := ω̂({α}ω(i)).
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Remark 2.2. In what follows we will frequently just write {u}(i) when ω is clear from the context.

Definition 2.3 (ω-threads). Let ω : XN → N. We say that a finite partial function u : X† is a ω-thread if
u = {u}ω(|dom(u)|). This can be expressed formally by the decidable predicate

Sω(u) :≡ ∀n(n ∈ dom(u)→ n ∈ dom({u}ω(|dom(u)|))).

The following lemma shows that for all i, n ∈ dom({u}ω(i)) implies that {u}ω(i)(n) = u(n), and
hence Sω(u) ⇔ u = {u}ω(|dom(u)|). The intuition here is that ω works as a control function that
dictates the location of the next bar recursive call. Thus ω-threads are just partial functions that have
been constructed using ω as a control functional.

Lemma 2.4. Suppose that nω,i is defined as in Definition 2.1. A finite partial function u satisfies Sω(u)
(i.e. is a ω-thread) iff for all i ≤ |dom(u)|,

{u}ω(i) = (nω,0, x0) ⊕ (nω,1, x1) ⊕ . . . ⊕ (nω,i−1, xi−1)

for xj = u(nω,j), where the nω,j are all distinct and all lie in dom(u). In particular

Sω(u)⇒ u = {u}ω(l) = (nω,0, x0) ⊕ . . . ⊕ (nω,l−1, xl−1)

where l = |dom(u)|.

Proof. For one direction, assume Sω(u) and set l := |dom(u)|. We use induction on i ≤ l. If i = 0 then
{u}ω(0) = ∅ by definition. Now for i < l assume that {u}ω(i) = (nω,0, x0) ⊕ . . . ⊕ (nω,i−1, xi−1) for
distinct nω,j . If either nω,i 6∈ dom(u) or nω,i ∈ {nω,0, . . . , nω,i−1} then, by the definition of the ω-thread
of u, we would have that {u}ω(i) = {u}ω(i + 1) = . . . = {u}ω(l), and hence i = |dom({u}ω(i))| =
|dom({u}ω(l))| < l, contradicting Sω(u). Therefore, we must have nω,i ∈ dom(u)\{nω,0, . . . , nω,i−1} and

{u}ω(i+ 1) = (nω,0, x0) ⊕ . . . ⊕ (nω,i−1, xi−1) ⊕ (nω,i, xi)

for xi = u(nω,i), where the nω,j are all distinct and belong to dom(u). The other direction is straightfor-
ward: If {u}ω(l) = (nω,0, x0) ⊕ . . . ⊕ (nω,l−1, xl−1) for distinct nω,j then dom({u}ω(l)) = l = dom(u).
But since {u}ω(l) is only defined at points where u is defined, and at those points they hold the same
value, it means that u = {u}ω(l), i.e. Sω(u).

Example 2.5. Define u := (1, 1) ⊕ (2, 2) ⊕ (3, 3) so that u is the partial identity function defined at 1, 2, 3.

1. Let ω(α) := max{α(0), α(1), α(2)} + 1. We have that nω,0 = ω̂(∅) = max{0, 0, 0} + 1 = 1 and
thus {u}ω(1) = (1, 1), and similarly nω,1 = max{0, 1, 0} + 1 = 2, {u}ω(2) = (1, 1) ⊕ (2, 2), and
nω,2 = max{0, 1, 2}+ 1 = 3, {u}ω(3) = (1, 1) ⊕ (2, 2) ⊕ (3, 3) = u. Hence, u is a ω-thread.

2. On the other hand, for ψ(α) := max{α(0), α(1), α(2)} we have nψ,0 = 0 /∈ dom(u) and thus
{u}ψ(i) = ∅ for all i, so u is not a ψ-thread.

Definition 2.6. Let us write ∀u ∈ Sω A(u) as an abbreviation for ∀u(Sω(u) → A(u)). The principle of
symmetric bar induction sBI is given by

sBI : ∀ωX
N→N

(
∀αX

N
∃nP ({α}ω(n)) ∧ ∀u ∈ Sω([ω(û) /∈ dom(u)→ ∀xXP (u⊕ (ω(û), x))]→ P (u))→ P (∅)

)
where P is an arbitrary predicate on X†.

Theorem 2.7. E-PAω + DC ` sBI.

Proof. Fix some ω and suppose for a contradiction that the premises of sBI are true but ¬P (∅). The
second premise of sBI is classically equivalent to

∀u ∈ Sω(¬P (u)→ [ω(û) /∈ dom(u) ∧ ∃x¬P (u⊕ (ω(û), x))]).

Hence, by dependent choice, there exists a sequence u0, u1, . . . of finite partial functions, together with a
sequence x0, x1, . . . of elements of X, satisfying

u0 = ∅ and ui+1 = ui ⊕ (ni, xi)

6



with ni = ω̂(ui) /∈ dom(ui). Clearly each ui is a ω-thread, i.e. Sω(ui). Moreover, by construction we have
that ¬P (ui) holds for all i. Now, by classical countable choice there exists a function α : XN satisfying

α(n) :=

{
ui(n) where i is the least such that n ∈ dom(ui), if it exists

0X otherwise.

Let us first show by induction on i that {α}ω(i) = ui, for all i. First, {α}ω(0) = ∅ by definition. Assuming
that {α}ω(i) = ui we have ω̂({α}ω(i)) = ω̂(ui) = ni, and therefore {α}ω(i+1) = {α}ω(i) ⊕ (ni, α(ni)) =
ui ⊕ (ni, α(ni)). Now by construction ni /∈ dom(ui) and ni ∈ dom(ui+1). Thus α(ni) = ui+1(ni) = xi
and therefore {α}ω(i+ 1) = ui+1. That concludes the proof that {α}ω(i) = ui.
By the first premise of sBI there exists some n such that P ({α}ω(n)), which implies P (un), contradicting
the assumption that ¬P (ui) holds for all i.

Intuitively, symmetric bar recursion is well-founded only if every sequence of recursive calls eventually
arrives at some u satisfying ω̂(u) ∈ dom(u). Put formally, this statement forms a symmetric analogue of
Spec, namely

sSpecX : ∀ωX
N→N∀αX

N
∃n(ω̂({α}ω(n)) ∈ dom({α}ω(n))).

We can in fact express the relationship between the recursor sBR and the logical principle sSpec in more
concrete terms by adapting Proposition 1.1 from [14]: namely we can prove that sSpec must be valid in
any model of E-HAω + sBR, which we do in Proposition 2.8 below. Conversely, in Theorem 2.11 we use
the fact that sSpec is satisfied in the model Cω of total continuous functionals to justify the existence of
sBR in this model.

Proposition 2.8. Define the term θω,α in E-HAω + (sBR) with free variables α : XN and ω : XN → N by

θω,α(uX
†
) =

{
0 if ω(û) ∈ dom(u)

1 + θω,α(u ⊕ (ω(û), α(ω(û)))) otherwise.

Then, provably in E-HAω + (sBR), we have ω̂({α}ω(n)) ∈ dom({α}ω(n)) for some n ≤ θω,α(∅).

Proof. Fix α : XN and ω : XN → N. Let βi := θω,α({α}ω(i)). By definition of θω,α we have

βi =

{
0 if ω̂({α}ω(i)) ∈ dom({α}ω(i))

1 + β(i+ 1) otherwise.

First note that, by the definition of β, we have

(∗) βi 6= 0 iff ω̂({α}ω(i)) 6∈ dom({α}ω(i)).

By induction on i, using (∗), it is easy to show

∀i(∀j ≤ i (βj 6= 0)→ ∀j ≤ i (βj = 1 + β(j + 1))).

By another induction on i, using the above fact, we obtain

∀i(∀j < i (βj 6= 0)→ β0 = i+ βi).

Therefore, setting i = β0 we have

∀j < β0(βj 6= 0)→ β0 = β0 + β(β0).

Therefore either β(β0) = 0, or ∃j < β0(βj = 0), i.e. ∃j ≤ β0(βj = 0). Using (∗) we have

∃j ≤ β0(ω̂({α}ω(j)) ∈ dom({α}ω(j))).

That concludes the proof since β0 = θω,α({α}ω(0)) = θω,α(∅).
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2.1 Relating Spec and sSpec

We now make our first link between symmetric bar recursion and Spector’s bar recursion via their
corresponding axioms sSpec and Spec.

Theorem 2.9. E-HAω + sSpecX×B ` SpecX

Proof. Given α : XN and ω : XN → N we need to produce a point n such that ω̂([α](n)) < n. Recall that
B = {0, 1} is the type of Booleans. Define α̃ : (X × B)N and θ : (X × B)N → N in terms of α and ω as

α̃(n) := 〈α(n), 1〉,

θ(β) := µi ≤ ω(λk.π0(βk))(π1(βi) =B 0)

where π0 : X×B→ X and π1 : X×B→ B are the two projections, and µ is the bounded search operator.
Intuitively, we are using the booleans to indicate whether a position is ‘defined’ (i.e. equal to 1) or not.
Hence, the functional θ returns the first undefined position of β which is bounded by ω(λk.π0(βk)), or
just 0 if no such position is found. By sSpec there exists some N such that

(i) θ̂({α̃}θ(N)) ∈ dom({α̃}θ(N)).

Without loss of generality let N be the least such value. We will show that ω̂([α](N)) < N . To do this,
we first claim that

(ii) ∀m ≤ N(dom({α̃}θ(m)) = {0, . . . ,m− 1}) and ∀m < N(ω̂([α](m)) ≥ m).

The proof of (ii) is by induction on m. If m = 0 the claim is trivial. Now assume that (ii) holds for m.
For the first part, suppose that m < N . Then by the induction hypothesis we have

θ̂({α̃}θ(m)) = θ(〈α(0), 1〉, . . . , 〈α(m− 1), 1〉, 〈0, 0〉, 〈0, 0〉, . . .)
= µi ≤ ω̂([α](m))(i ≥ m)

= m

,

using that m < N and thus ω̂([α](m)) ≥ m by the second induction hypothesis. Therefore by definition
we have {α̃}θ(m+ 1) = {α̃}θ(m) ⊕ (m, α̃(m)), and thus dom({α̃}θ(m+ 1)) = {0, . . . ,m}.
For the second part, suppose for a contradiction that m < N but ω̂([α](m)) < m. Then by the first part
we have

θ̂({α̃}θ(m)) ≤ ω̂([α](m)) < m

which would imply that θ̂({α̃}θ(m)) ∈ {0, . . . ,m− 1}, contradicting the assumed minimality of N .
Therefore we have established (ii), and setting m = N we have dom({α̃}θ(N)) = {0, . . . , N − 1}. By (i),

this of course implies that θ̂({α̃}θ(N)) < N , and unwinding the definition θ we obtain

N > θ̂({α̃}θ(N)) = µi ≤ ω̂([α](N))(i ≥ N).

If ω̂([α](N)) ≥ N then the unbounded search would select N . So we must have that ω̂([α](N)) < N .

Theorem 2.10. E-PAω + ACN,X + SpecX† ` sSpecX .

Proof. Let α : XN and ω : XN → N be given. We must find n such that ω̂({α}ω(n)) ∈ dom({α}ω(n)).
Using ACN,X and classical logic we can define the sequence of indices (in)n∈N as

in :=

{
i where i is the least such that n ∈ dom({α}ω(i)), if such i exists

0 if no such i exists.

Using (in)n∈N we can then define the sequence α̃ : (X†)N as

α̃(n) := {α}ω(in.)

Note that α̃ represents a characteristic function in the following sense:

(∗) n ∈ dom(α̃(n))⇔ ∃i(n ∈ dom({α}ω(i)))

Next, we primitive recursively define the ‘diagonalisation’ function d : (X†)N → (X + 1)N by
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d(β)(j) :=X+1

{
β(k)(j) for least k ≤ j such that j ∈ dom(β(k))

undefined if no such k ≤ j exists.

Finally, we define the functional θ : (X†)N → N by

θ(β) := ω̂(d(β)).

Now, applying SpecX† to θ and α̃ obtain a number N such that

(i) θ̂([α̃](N)) < N .

Let im be the maximum number in the set {i0, . . . , iN−1}. We claim that im is our desired witness, i.e.
ω̂({α}ω(im)) ∈ dom({α}ω(im)). First, let emb(·) : X† → (X+1)N denote the embedding of finite partial
functions into the type of arbitrary partial sequences. We prove that

(ii) d̂([α̃](N)) = emb(α̃(m)).

We consider two cases:
If j /∈ dom(d̂([α̃](N))) then by definition of d we have that ¬∃k ≤ j(j ∈ dom( ̂[α̃](N)(k))). We consider a
further two cases. If j < N then j /∈ dom(α̃(k)) for all k ≤ j, which in particular implies j /∈ dom(α̃(j))
and thus by (∗) we get j /∈ dom({α}ω(im)) = α̃(m). If j ≥ N then j /∈ dom(α̃(k)) for all k < N , which
in particular implies j /∈ dom(α̃(m)).

If j ∈ dom(d( ̂[α̃](N))) we know that j ∈ dom(α̃(k)) for some k ≤ j (with k < N) and d̂([α̃](N))(j) =
α̃(k)(j) = α(j), and since ik ≤ im we have α̃(k) v α̃(m) and thus α̃(m)(j) = α(j), which concludes the
proof of (ii).
Therefore, using our usual abbreviation nω,k = ω̂({α}ω(k)), we obtain that nω,im < N as follows:

nω,im = ω̂({α}ω(im)) = ω̂(emb({α}ω(im))) = ω̂(emb(α̃(m)))
(ii)
= ω̂(d( ̂[α̃](N))) = θ( ̂[α̃](N))

(i)
< N.

Now, to prove the main result, suppose for a contradiction that nω,im /∈ dom({α}ω(im)). Then by the
definition of {α}ω(i) we have nω,im ∈ dom({α}ω(im + 1)), and moreover im + 1 is the least such index
and we have inω,im

= im + 1. But by maximality of im for the set {i0, . . . , iN−1} and the fact that
nω,im < N we have im ≥ inω,im

= im + 1, a contradiction.

In section 5 we expand the ideas in the proofs of Theorems 2.9 and 2.10 to show that the recursors
BR and sBR themselves are primitive recursively equivalent. This in particular implies the following:

Theorem 2.11. The Kleene/Kreisel continuous functionals Cω are a model of sBR.

Proof. In Theorem 5.2 we show that there is a term in T :≡ E-HAω+sBI+BR which satisfies the defining
equation of sBR provably in T . Making use of this inter-definability result, the theorem follows directly:
By Theorem 2.7, we can reduce sBI to DC over E-PAω, and thus T can be reduced to E-PAω +DC+BR.
But it is well-known (see e.g. [25]) that Cω is a model of E-PAω+DC+BR, and therefore we can conclude
that sBR exists in Cω.

However, since the proof of Theorem 5.2 is rather intricate, and we wish to make the present section
self-contained, we present here a more direct domain-theoretic argument for the existence of sBR in Cω.
It is a standard result [10] that the total continuous functionals Cω are just the extensional collapse of
the partial continuous functionals Ĉω. Now sBR can be easily defined in Ĉω as the least fixpoint Φ of its
recursive defining equation, since Ĉω has the property that all recursive functionals Z → Z have a fixed
point p : Z. Now it is well-known that all total continuous functionals ω, α satisfy Spector’s property
Spec, and thus adapting Theorem 2.10 to the total continuous functionals, we have that sSpec also holds
for all total ω, α. We can then prove that the fixpoint Φ is a total function using sBI, which is also
valid in continuous models since as shown in Theorem 2.7 it follows directly from DC. Suppose that the
parameters φ, ω and b and an argument v of Φ are total, and let

P (uX
†
) :≡ Φ(v ⊕ u) is total.

Then by sSpec on the total functional ψ(α) := ω(v ⊕ α) we have that ∀α∃n(ψ̂({α}ψ(n)) ∈ dom({α}ψ(n))).
By the definition of ψ this implies

∀α∃n(ω̂(v ⊕ {α}ω(n)) ∈ dom(v ⊕ {α}ω(n)))
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and hence ∀α∃nP ({α}ω(n)), the first hypothesis of sBI. For the second hypothesis of sBI, we assume
that for u ∈ Sψ we have ψ(û) /∈ dom(u) → ∀xXP (u ⊕ (ψ(û), x)), and aim to prove that Φ(v ⊕ u) is

total. If Φ(v ⊕ u) was not total then obviously we would have that ψ̂(u) /∈ dom(v ⊕ u), which implies

ψ̂(u) /∈ dom(u). But in this case ∀xP (u ⊕ (ψ̂(u), x))) implies that λx.Φ(v ⊕ u ⊕ (ω̂(v ⊕ u), x)) is total,
and thus so is Φ(v ⊕ u). Therefore since both premises of sBI hold, we can conclude P (∅) i.e. Φ(v) is
total.

3 The Dialectica interpretation of countable choice

In the following sections we assume that the reader is broadly familiar with Gödel’s Dialectica interpre-
tation and its role in the extraction of computational content from proofs – details of which can be found
in e.g. [3, 16] – although we make an effort to keep the main flow of ideas as self-contained as possible.

Recall that the Dialectica interpretation translates each formula A in the language of some theory
T to a quantifier-free formula |A|xy in some ‘verifying’ functional theory S, where x and y are (possibly
empty) tuples of variables of some finite type. The idea is that A is (classically) equivalent to ∃x∀y|A|xy ,
and that the interpretation T → S is sound if whenever T ` A we can extract a realizer t for ∃x so
that S ` |A|ty. When T is a classical theory, one typically precomposes the Dialectica interpretation
with a negative translation in order to obtain soundness, a combination normally referred to as the ND
interpretation.

The Dialectica interpretation was conceived by Gödel in the 1930s, and published much later in a
seminal paper of 1958 [13] in which it was shown that Peano arithmetic can be ND interpreted into the
system T of primitive recursive functionals in all finite types. In fact it is not too difficult to lift Gödel’s
soundness proof to the higher-type theory WE-PAω + QF-AC of weakly-extensional Peano arithmetic
with the quantifier-free axiom of choice (see [16] for details). On the other hand, for the addition of
computationally non-trivial choice principles, such as the axiom of countable choice ACN, for arbitrary
formulas, the primitive recursive functionals no longer suffice for soundness of the interpretation. In fact,
over WE-PAω countable choice is strong enough to derive the full comprehension schema

CA : ∃fN→X∀n(f(n) = 0↔ A(n))

and so the theory WE-PAω+QF-AC+ACN is already capable of formalising a large portion of mathematical
analysis, and is thus considerably stronger than Peano arithmetic. Nevertheless, just a few years after
Gödel’s paper, Spector [24] proved that one could indeed extend the Dialectica interpretation to full
classical analysis provided we add bar recursion to system T.

3.1 The countable choice problem

Spector’s main idea can be appreciated from a completely abstract perspective, independently of the full
details of the Dialectica interpretation. Spector observed that in order to extend the ND interpretation
to WE-PAω + QF-AC + ACN, it suffices to find some way of realizing the Dialectica interpretation of the
double negation shift:

DNS : ∀n¬¬B(n)→ ¬¬∀nB(n).

Now, suppose that the Dialectica interpretation of B(n) is |B(n)|xy where x : X and y : Y are tuples of
variables of the appropriate type. Then the Dialectica interpretation of DNS is given by

|DNS|f,p,nε,q,ω = |B(n)|εnpp(εnp)
→ |B(ωf)|f(ωf)qf .

In other words, to solve the Dialectica interpretation of DNS, for each given formula B one must produce
realizers f : XN, p : X → Y and n : N in terms of the parameters ε : N → (X → Y ) → X, q : XN → Y
and ω : XN → N satisfying |DNS|f,p,nε,q,ω . Spector approached this by tackling a stronger problem, namely
to solve the underlying system of equations

ωf = n

fn = εnp

qf = p(εnp)

(1)
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in f , p and n. Indeed, given any solution f, p and n for the system of equations above, we have that

|B(n)|εnpp(εnp)
→ |B(ωf)|f(ωf)qf

is logically true. One might wonder what the precise relation is between these constructed functionals
f, p, n and the actual axiom of countable choice

ACN,X : ∀nN∃xXAn(x)→ ∃fN→X∀nAn(f(n)).

Although the precise connection goes through the ND-interpretation, a helpful intuition is that although
we cannot effectively construct the functional f witnessing ACN,X , it is possible to construct an approx-
imation to f which is correct at a given point n. But that point n is not fixed, but is only known once
we have constructed f itself, via the control functional ω. It is the breaking of this circularity that is the
job of bar recursion3.

We call the equations (1) Spector’s equations, and the issue of solving them the countable choice
problem. It is clear that a solution Spector’s equations is also a realizer for DNS, even independent of
the formula B, and thus to extend the ND interpretation to classical analysis it suffices to find a general
solution to the countable choice problem. In the following two sub-section we present both Spector’s
solution to the countable choice problem and a new solution based on the symmetric bar recursor.

3.2 Spector’s bar recursive solution

Spector’s classic solution to the countable choice problem was to use the general bar recursion BR to
construct a term Φε,q,ωX in the parameters ε, q and ω of the problem, which satisfies the defining equation

Φε,q,ωX (s) =X∗ s ⊕

{
〈〉 if ω(ŝ) < |s|
Φε,q,ωX (s ∗ as) otherwise.

where as := ε|s|(λx.q̂(Φ
ε,q,ω
X (s ∗ x))). Actually Spector’s defines a slightly different (but equivalent)

variant of Φε,q,ωX (s), but precise details are not particularly relevant here (see e.g. [19]).

Theorem 3.1 ([24]). Define
t :=X∗ Φε,q,ωX (〈〉)
pi :=X→Y λx.q̂(Φε,q,ωX ([t](i) ∗ x))

where i < |t| in the second equation. Then for all 0 ≤ i < |t| we have

ti = εipi

q̂t = pi(εipi).
(2)

Proof. This is a standard induction argument see e.g. [16, 18].

Corollary 3.2. Define t and pi in the parameters ε, q and ω as in Theorem 3.1. Then f := t̂, n := ωf ,
and p := pn solve Spector’s equations (1).

Proof. The proof essentially reduces to verifying that ω(t̂) < |t|. The result then follows directly from
Theorem 3.1 and the equations (2). A sketch of the argument is as follows. Note that Φ(s) is an extension
of s and hence |Φ(s)| ≥ |s|. One first shows that if t = Φ(〈〉) then Φ(〈〉) = Φ(t). Hence, if ω(t̂) ≥ |t| we
would have that Φ(t) = t⊕Φ(t ∗ at) and thus |t| = |Φ(〈〉)| = |Φ(t)| = |t⊕Φ(t ∗ at)| = |t⊕ (t⊕ at ∗ . . .)| ≥
|t ∗ at| = |t|+ 1, a contradiction.

3.3 A symmetric solution

We now present our alternative solution to the countable choice problem which is based on our symmetric
bar recursor sBR instead of the usual Spector recursor BR. Our first step is to define a symmetric version

3For more intuition on Spector’s bar recursion, the interpretation of countable choice and Spector’s equations see [18].
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of the special recursor Φε,q,ωX (s), which takes parameters ε, q and ω of the same type as those in for Φ,
but whose input and output are now finite partial functions:

Ψε,q,ω
X (uX

†
) =X† u ⊕

{
∅ if nu ∈ dom(u)

Ψε,q,ω
X (u ⊕ (nu, au)) otherwise

where nu = ω(û) and au = εnu
(λx.q̂(Ψε,q,ω

X (u ⊕ (nu, x))). We note without proof that Ψ is indeed
definable from sBR:

Proposition 3.3. The functional sBRφ
ε,q,ω,λα.α,ω
X,X†

(u), where

φε,q,ωu (pX→X
†
) :=X† u ⊕ p(εω(û)(λx.q̂(p(x)))),

satisfies the defining equation of Ψε,q,ω
X (u), provably in E-HAω.

Our construction and verification of a solution to Spector’s equations now broadly follows, but is
somewhat more intricate than, the usual approach for Spector’s standard bar recursion. Recall the
notion of a ω-thread from Definition 2.3.

Lemma 3.4. Assume u is a ω-thread4. Let v := Ψε,q,ω
X (u).Then

v = Ψε,q,ω
X ({v}ω(i)) (3)

for all |dom(u)| ≤ i ≤ |dom(v)|.

Proof. By induction on i.
For i = |dom(u)| we claim that {v}ω(i) = u. By a separate easy induction on j ≤ |dom(u)|, one can
show that whenever u v v and Sω(u) then {u}ω(j) = {v}ω(j) for all 0 ≤ j ≤ |dom(u)|. Now in this case
u v v by definition, and thus setting j = |dom(u)| we have {v}ω(|dom(u)|) = u.
Now, for the main induction step, assume that (3) is true for some |dom(u)| ≤ i < |dom(v)|. Because i is
strictly smaller than |dom(v)| it must be the case that n{v}ω(i) := ω̂({v}ω(i)) /∈ dom({v}ω(i)). Therefore,
by the defining equation of Ψ we obtain

v
I.H.
= Ψ({v}ω(i)) = {v}ω(i) ⊕Ψ({v}ω(i) ⊕ (n{v}ω(i), a{v}ω(i))) = Ψ({v}ω(i) ⊕ (n{v}ω(i), a{v}ω(i))).

The last equality above holds because by definition {v}ω(i) v Ψ({v}ω(i) ⊕ (ni, a{v}ω(i))) and thus {v}ω(i)
can be absorbed by the latter term. Now, observing that

a{v}ω(i) = Ψ({v}ω(i) ⊕ (n{v}ω(i), a{v}ω(i)))(n{v}ω(i)) = v(n{v}ω(i))

we have v = Ψ({v}ω(i) ⊕ (n{v}ω(i), v(n{v}ω(i)))) = Ψ({v}ω(i + 1)), which completes the induction step.

Theorem 3.5. Define
v :=X† Ψε,q,ω

X (∅)
pi :=X→Y λx.q̂(Ψε,q,ω

X ({v}ω(i) ⊕ (ni, x)))

where in the second equation i < |dom(v)| and ni = ω̂({v}(i)). Then for all 0 ≤ i < |dom(v)| we have

v(ni) = εni
pi

q̂(v) = pi(εni
pi).

(4)

Proof. By Lemma 3.4 we have that v = Ψ({v}ω(i)) for all 0 ≤ i ≤ |dom(v)|. Using this fact, we can show,
analogously to the proof of Lemma 3.4, that ni = ω̂({v}ω(i)) /∈ dom({v}ω(i)) for any 0 ≤ i < |dom(v)|.
Therefore

v(ni) = Ψ({v}ω(i))(ni) = ({v}ω(i) ⊕Ψ({v}ω(i) ⊕ (ni, a{v}ω(i))))(ni) = a{v}ω(i).

4Here the restriction Sω(u) on u is merely a convenience as opposed to a necessity, allowing us to smoothly import the
notation from Definition 2.1.
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But by the definitions of au and pi we have

a{v}ω(i) = εni(λx.q̂(Ψ({v}ω(i) ⊕ (ni, x)))) = εnipi.

Put together these establish the first equation of (4). For the second we have, once more using Lemma
3.4, that for any 0 ≤ i < |dom(v)|:

q̂(v) = q̂(Ψ({v}ω(i+ 1))) = q̂(Ψ({v}ω(i) ⊕ (ni, v(ni))) = pi(v(ni)),

and thus by the first equation we have q̂(v) = pi(εni
pi).

Corollary 3.6. Define v and pi in the parameters ε, q and ω as in Theorem 3.5. Let k < |dom(v)| be
such that nk = ω̂(v). Then f := v̂, n := nk, and p := pk solve Spector’s equations (1).

Proof. First we must show that the index k is well-defined. By an easy induction similar to all those in
the preceding proofs, we can show that for 0 ≤ i ≤ |dom(v)| we have

{v}ω(i) = (n0, v(n0)) ⊕ . . . ⊕ (ni−1, v(ni−1))

for distinct nj , where as always nj = ω̂({v}(j)). In particular we have Sω(v) and thus v = {v}(|dom(v)|).
Now, since ω̂(v) /∈ dom(v) would imply that |dom(v)| = |dom(Ψ({v}(|dom(v)|)))| > |dom(v)| we must
have ω̂(v) ∈ dom(v) i.e. ω̂(v) = nk for some k < |dom(v)|. The solution is now easily verified:
n = nk = ω̂(v) = ω(f) by definition, and by the equations (4) we have f(n) = v(nk) = εnk

(pk) = εn(p)
and qf = q̂(v) = pk(εnk

pk) = p(εnp).

To summarise, so far in this section we have outlined Spector’s well-known reduction of the problem of
realizing the extension of the ND interpretation of classical analysis to that of solving the set of equations
(1). We then recounted his standard bar recursive solution to these equations, and followed this with
a novel solution using a new, symmetric variant of bar recursion. So what is the essential difference
between these two approaches?

Spector’s solution to the countable choice works by computing finite sequences s such that f = ŝ
forms a solution to the last pair of equations in (1) for all n < |s|, terminating once we have such a
sequence which in addition satisfies ω(ŝ) < |s|, thus allowing us to incorporate the first equation. This
method eventually succeeds as long as we are working in a model in which Spec holds, ensuring well-
foundedness of the underlying computation tree. However, while the solution given by bar recursion is
elegant in its simplicity, from an algorithmic perspective it is potentially inefficient, precisely because
solutions are always computed for the last two of Spector’s equations for all n < |s| whereas we only
need these equations to hold for n = ω(ŝ).

Our method of constructing solutions to Spector’s equations uses a new recursor which constructs
finite partial functions u such that f = û forms a solution to the last pair of equations for all n ∈ dom(u),
where the set dom(u) is guided by the parameter ω. This means that, in stark contrast to Spector’s
method, we do not necessarily need to have computed solutions for the last equations for every n in some
initial segment of N, but only for certain values. While our solution is somewhat more complicated to
verify, and in particular is based on a form of recursion for which it is seemingly more difficult to prove
termination (cf. Section 2), from a purely practical perspective it is possible that it gives rise to much
more efficient programs.

Note that when we talk of efficiency, we are intuitively referring to intensional aspects of the recursors
- i.e. algorithms for them, rather than the recursors themselves. We could make this more formal by
considering a rewrite system defined by the recursive equations, and then the recursors could be compared
more precisely by counting the length of reduction sequences that arise when computing realizers.

However, because we are ultimately interested in how the recursors perform when actually imple-
mented on a computer, in the next section we take a slightly less abstract approach and examine the
performance of the Haskell programs defined by the recursors. We present a short and informal case
study in order to provide a concrete illustration of the differences between the two methods of program
extraction, our aim being to highlight that in practice realizers based on symmetric bar recursion compare
favourably to the traditional Spector bar recursion.
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4 Case study: No injection from N→ N to N
We illustrate the preceding theoretical results with a program extraction from the proof that there is no
injection from the function space N→ N to the natural numbers N. This theorem can be formalized as
a Π2-statement in the language of E-PAω, and moreover its standard proof by a diagonal argument can
be formalized using an instance of ACN,N→N.

This example was originally used by the first author in [18] in order to demonstrate the extraction
of programs from proofs using Spector’s bar recursor, and is a good candidate for a case study as it is
relatively straightforward without being completely trivial.

Theorem 4.1. E-PAω + ACN,N→N ` ∀H : NN → N ∃α, β : N→ N ∃i : N(αi 6= βi ∧Hα = Hβ).

Classical Proof. As a simple case of the law of excluded middle (also known as the drinker’s paradox)
we have

∀nN∃αN→N(∃β(Hβ = n)→ Hα = n). (5)

Applying ACN,N→N to (5) yields a functional f : N→ NN satisfying

∀n(∃β(Hβ = n)→ H(f(n)) = n). (6)

The map f produces for each n a function f(n) : N→ N such that whenever n is in the range of H, f(n)
maps to n. Now, define αH := λn.f(n)(n) + 1 and let iH := H(αH) and βH := f(iH). Then since iH is
in the range of H, by (6) we must have H(βH) = H(f(iH)) = iH = H(αH). But αH 6= f(iH) = βH .

It is an intriguing consequence of Spector’s ND interpretation of classical analysis that we are a
priori guaranteed to be able to convert the classical diagonal argument above into a semi-intuitionistic
proof, and directly construct (using bar recursion) explicit witnesses for αH , βH and iH as a function of
H. Moreover, Spector’s reduction of the ND interpretation of analysis to the countable choice problem
demonstrates that a realizer for Theorem 4.1 can be constructed primitive recursively in an arbitrary
solution to the equations (1). In particular, we can replace Spector’s bar recursion with an instance of
symmetric bar recursion to give an alternative procedure for refuting injectiveness.

Proposition 4.2. Any computable solution to Spector’s equations allows us to effectively extract wit-
nesses for α, β and i in Theorem 4.1.

Proof. A solution to Spector’s equations acts as a computational interpretation of an instance of ACN.
We must simply produce suitable parameters for these equations which correspond to the particular
instance of ACN,N→N used in the classical proof. First, we give a computation interpretation to the initial
instance of law of excluded middle via the term ε : N→ (NN → NN)→ NN given by

εn(pN
N→NN

) :=NN

{
0N→N if H(p(0)) 6= n

p(0) if H(p(0)) = n.
(7)

It is easy to verify that ε satisfies

∀n, p
(
H(p(εnp)) = n→ H(εnp) = n

)
, (8)

which is just the ND interpretation of (5). Now, a computable solution to Spector’s equations allows us
to effectively construct an f in q : (N→ NN)→ NN and ω : (N→ NN)→ N satisfying

H(q(f)) = ω(f)→ H(f(ωf)) = ω(f) (9)

using (8) and Spector’s equations (1). Therefore, defining q(g) := λn.g(n)(n) + 1 and ω(g) := H(q(g)),
the premise of (9) holds by definition and hence we obtain H(f(ωf)) = ω(f). Finally, setting αH := q(f)
and βH := f(ωf) we have HβH = HαH , but αH and βH differ at iH := ω(f).

In a general manner of speaking, the reason one is are able to convert the classical proof of Theorem
4.1 into a construction which computes α and β for any given H is that the solution of Spector’s equations
will typically only work in a subset of the full set-theoretic type structure. Solutions can be obtained, for
instance, if either continuity or majorizability is assumed (cf. [9, 23]), although Proposition 4.2 provides
a solution that is independent of the particular model one has in mind.

However, the exact computational process in calculating these witnesses will depend on our chosen
solution of Spector’s equations. We now briefly analyse the program which arises from choosing our
symmetric bar recursive solution in place of Spector’s original bar recursion.
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4.1 Numerical performance on sample input

We have implemented both Spector’s and our new variant of bar recursion in Haskell5. We ran several
tests in which we used both variants to compute counterexample functions αH and βH as described in
Proposition 4.2 for various concrete choices of H. To make things clearer, recall that

αH = q(f) βH = f(H(q(f)))

where f is some solution to Spector’s equations (1) in ε, q and ω, which are all defined as in the proof
of the Proposition. By Theorems 3.1 and 3.5 our counterexamples for the two forms of bar recursion are
given as follows:

Spector: αH = q̂(Φε,q,ω(〈〉)) βH = Φε,q,ω(〈〉)(iH) iH = H(q̂(Φε,q,ω(〈〉)))

Symmetric: αH = q̂(Ψε,q,ω(∅)) βH = Ψε,q,ω(∅)(iH) iH = H(q̂(Ψε,q,ω(∅))).

For each instance of H we calculated

(a) the domain size of the finite approximations Φ(〈〉) : (NN)∗ and Ψ(∅) : (NN)†, and

(b) the number of recursive calls triggered when computing iH together with the values of αH and βH
up to this point.

Of course, we could have chosen other benchmarks by which to compare the realizers, although we regard
this as being fairly representative of how we might want to use the realizer in practice. In any case our
only, modest aim in this section is to give an informal comparison between the two methods of program
extraction.

In the vast majority of natural cases we have considered the procedure based on symmetric bar re-
cursion outperformed that based on Spector’s bar recursion by a considerable margin. The interested
reader is encouraged to try their own examples using our source code to witness this for themselves.
However, we sketch a few representative examples here.

Example 1. Take the family of functionals Hn defined by

Hn(γN→N) = Πn−1
i=0 (1 + γi).

The table below indicates the domain sizes of Φ(〈〉) and Ψ(∅), and the number of recursive calls needed
to calculate iH and [αH ](iH + 1) and [βH ](iH + 1), for n ∈ {4, 5, 6}.

Spector (domain size / # recursive calls) Symmetric (domain size / # recursive calls)

n = 4 17 / 1140 1 / 12

n = 5 33 / 4650 1 / 12

n = 6 65 / 19154 1 / 12

This disparity in performance can be intuitively understood by computing on paper what each recursor
does. First, take the symmetric recursor. One can show that

ω̂(∅) = Hn(q(0N→N→N)) = Hn(λi.1) = Πn−1
i=0 (1 + 1) = 2n

and thus Ψ(∅) = Ψ((2n, a∅)) where

a∅ := ε2n(λx . q̂(Ψ((2n, x)))) =

{
0N→N if Hn(q̂(Ψ((2n,0)))) 6= 2n

q̂(Ψ((2n,0))) otherwise.

But since ω̂((2n,0)) = ω̂(∅) = 2n ∈ dom((2n,0)) = {2n} we see that Ψ((2n,0)) = (2n,0), and therefore
q̂(Ψ((2n,0))) = λk.1 and thus a∅ = λk.1. Now, it is easy to show that we also have

ω̂((2n, λk.1)) = Πn−1
i=0 (1 + 1) = 2n

5http://www.eecs.qmul.ac.uk/~pbo/code/bar/
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and thus the recursion terminates, yielding Ψ(∅) = Ψ((2n, λk.1)) = (2n, λk.1). Our counterexample are
then

αHn
= q̂((2n, λk.1)) = λk. if k = 2n then 2 else 1

βHn
= Ψ(∅)(Hn(αHn

)) = Ψ(∅)(2n) = λk.1

and it is easy to verify that these counterexamples indeed work. Moreover, in order to compute them
our symmetric bar recursor only needed to produce a finite partial function with one element, resulting
in a very quick algorithm.

In contrast, take Spector’s bar recursor. Entirely analogously to before we have

ω̂(〈〉) = Hn(q(0N→N→N)) = 2n

but now since the recursor is forced to compute sequentially we have Φ(〈〉) = Φ(〈a〈〉〉) where

a〈〉 := ε0(λx . q̂(Φ(〈x〉))) =

{
0N→N if Hn(q̂(Φ(〈0〉))) 6= 0

q̂(Φ(〈0〉)) 6= 0 otherwise.

Since ω̂〈0〉 = ω̂(〈〉) = 2n > |〈0〉| we have that Φ(〈0〉) = 〈0〉 ⊕ Φ(〈0, a〈0〉〉) and we must continue
by computing a〈0〉. Expanding the definition of a〈0〉 in terms of ε1 analogously requires a further
recursive call to Φ(〈0,0〉), and since once more ω̂〈0,0〉 = ω̂(〈〉) = 2n > |〈0,0〉| we have Φ(〈0,0〉) =
〈0,0〉 ⊕ Φ(〈0,0, a〈0,0〉〉) and so on. In fact, our recursor continues to make nested recursive calls in this
fashion until it reaches the list 〈0, . . . ,0〉 of size 2n, in which case one can compute that Φ(〈0 . . .0〉) =
〈0, . . . ,0, λk.1〉. Backtracking one finally obtains

Φ(〈〉) = Φ(〈0〉) = . . . = 〈0, . . . ,0︸ ︷︷ ︸
2n times

, λk.1〉.

Our counterexamples are then

αHn
= q̂(〈0, . . . ,0, λk.1〉) = λk. if k = 2n then 2 else 1

βHn
= Ψ(∅)(Hn(αHn

)) = Ψ(∅)(2n) = λk.1

which are exactly the same as those produced by the symmetric bar recursor. However, the algorithm
induced by the Spector recursor was forced to carry out a lengthy backtracking procedure along sequences
of length up to 2n+1, resulting in a much more complex computation.

If we adjust Hn to make it more complex still, for example

Hn(γ) = Πn−1
i=0 (1 + i)1+γi,

the disparity is even more extreme:

Spector Symmetric

n = 3 577 /2350 1 / 12

n = 4 577 /365700 1 / 12

Example 2. Now suppose Hn(γ) searches for a least point such that γi < γ(i+ 1):

Hn(γ) = least i ≤ n such that γi < γ(i+ 1), else n if none exist.

The corresponding data for n ∈ {3, 4, 5} is now:

Spector Symmetric

n = 3 4 / 316 4 / 52

n = 4 5 / 688 5 / 64

n = 5 6 / 1444 6 / 76
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In this case, both recursors terminate once they have computed a domain of size n, but Spector’s
recursor takes much longer. Once more, this behaviour has an intuitive explanation. Let us take n = 3
for simplicity, and define functions N→ N via the following notational convention, whereby

γ := [x0, x1, . . . , xk−1]

means that γi = xi for i < k and γi = 1 otherwise. Let’s first look at the symmetric recursor. We have

ω̂(∅) = H3(q(0)) = H3([1, 1, 1, 1]) = 3

since H3 is forced to return the ‘else’ clause, and therefore Ψ(∅) = Ψ((3, γ0)) where we write γ0 := a∅ =
ε3(λx . q̂(Ψ((3, x)))). The functional ε3 be expanded just as in the previous section, and analogously to
there we can check that q̂(Ψ((3,0))) = q̂((3,0)) = [1, 1, 1, 1] and thus γ0 = [1, 1, 1, 1]. Now we have

ω̂((3, γ0)) = H3(q̂((3, γ0))) = H3([1, 1, 1, 2]) = 2.

Thus Ψ((3, γ0)) = Ψ((3, γ0) ⊕ (2, γ1)) where γ1 := a(3,f0) = ε2(λx . q̂(Ψ((3, γ0) ⊕ (2, x)))). Now again
we can verify that q̂(Ψ((3, γ0) ⊕ (2,0))) = q̂((3, γ0) ⊕ (2,0)) = [1, 1, 1, 2] and thus f1 = [1, 1, 1, 2]. This
process continues until we obtain

Ψ(∅) = (0, [1, 2, 2, 2]) ⊕ (1, [1, 1, 2, 2]) ⊕ (2, [1, 1, 1, 2]) ⊕ (3, [1, 1, 1, 1]),

from which we read off αH3
= q̂(Ψ(∅)) = [2, 2, 2, 2] and βH3

= Ψ(∅)(3) = [1, 1, 1, 1], and it is clear that
these are valid counterexamples.

Entirely analogously, for general n we obtain

αHn = [2, 2, . . . , 2︸ ︷︷ ︸
n+ 1 times

] and βHn = [1, 1, . . . , 1︸ ︷︷ ︸
n+ 1 times

]

In the case of Spector’s bar recursion, it is clear that since we always have ω(f) = Hn(q(f)) ≤ n then the
recursor will output a finite sequence of length at most n, and so the domain of the bar-recursive output
is no bigger that that of symmetric bar recursion. However, as in the first example the computation
itself involves a much more intricate backtracking procedure, and this time also yields a slightly different
solution. By a somewhat tedious calculation (which the reader can try to reproduce themselves if they
want convincing of the complexity of Spector’s recursion!) one obtains for e.g. n = 3

Φ(〈〉) = 〈[1, 2, 1, 1], [2, 1, 2, 1], [2, 2, 1, 2], [2, 2, 2, 1]〉

yielding solutions αHn = [2, 2, 2, 2] and βHn = [2, 2, 2, 1] and analogously for general n:

αHn = [2, 2, . . . , 2︸ ︷︷ ︸
n+ 1 times

] and βHn = [2, 2, . . . , 2︸ ︷︷ ︸
n times

, 1]

However, due again to its insistence of making recursive calls sequentially, Spector’s recursor takes much
longer to compute these solutions, as is clear from the table.

Summary. Naturally, this section remains very informal given that we have only provided a couple of
examples to illustrate the difference between programs obtained using our recursor and those obtained
via the traditional Spector bar recursor. Moreover, it is not the case that the symmetric recursor always
produces a more efficient algorithm than the Spector – it is not too hard to come up with a somewhat
contrived Hn for which a sequential bar recursion is clearly better. Take, for example

Hn(γ) =


greatest i ≤ n(γ(i) = 1) if it exists, else n if γ(0) = γ(1) = 2

0 if γ(0) = 1 ∧ γ(1) = 2 or γ(0) = 2 ∧ γ(1) = 1

1 otherwise.

Here the sequential computation associated with Φ means that the first clause in the case distinction is
never triggered, so that Φ always returns a sequence of length 2. On the other hand, Ψ ends up with a
finite partial function of size n, and so its cost is proportional to n.
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Nevertheless, the fact that such a H exists does not necessarily detract from our symmetric bar
recursion being a useful alternative to Spector’s bar recursion in practice. In particular, when using
our realizer as, for instance, a building block for a more complex realizing term arising from a classical
proof that uses Theorem 4.1 as a lemma, it is reasonable to assume that H will take the form of a fairly
natural recursive function, and the authors conjecture that in many such cases symmetric bar recursion
will drastically outperform Spector’s bar recursion.

On top of this, due to the fact that it often avoids unnecessary backtracking, we believe that our
symmetric recursor will often give rise to programs that are more natural and easier to understand from
an algorithmic perspective. In particular, we conjecture that there are close links between the symmetric
bar recursive interpretation of choice over sequences law of excluded middle for Σ1-formulas (of which
the instance of ACN here is an example) and the learning procedures for PA + EM1 described in [1].

However, we leave any further analysis to future work. For now, our main achievement has been to
devise an interesting symmetric alternative to Spector’s bar recursion, which appears to us more sensible
and natural for the purpose of program extraction, and in a small number of test cases drastically
outperforms the latter.

5 Equivalence of BR and sBR

In this section we prove that the recursion schemata BR and sBR are actually primitive recursively
equivalent. This is the most technical part of the paper, but is entirely self-contained and is not at all
necessary in order to understand the preceding sections. The most difficult direction – the definability of
sBR from BR – can be carried out in E-HAω + sBI and hence (by Theorem 2.7) in E-PAω +DC, and thus
as an immediate consequence we prove that sBI exists in any model of E-PAω + DC which also validates
BR. In particular, sBI exists in both the Kleene/Kreisel total continuous functionals (as stated earlier in
Theorem 2.11) but also the strongly majorizable functionals.

5.1 BR is definable from sBR

Defining BR from sBR is somewhat easy. The basic idea is that BRX,R can be defined from a single
instance of sBRX×B,R of (essentially) the same type, in which the symmetric control functional ω̃ is
designed to be ‘stubborn’ and always search for the least undefined point to update, thereby simulating
Spector’s bar recursion. When we view the finite sequence s : X∗ as a finite partial function s : X†, we
have that the domain of s is an initial segment of N. So we can use sBRX×B,R with a control function ω̃
that looks for the smallest number which is not in that initial segment, therefore mimicking the behaviour
of BR. It might look like this requires an unbounded search, but in fact, the original control function ω
provides a bound for the search.

Theorem 5.1. BRX,R is primitive recursively definable from sBRX×B,R, provably in E-HAω + sBR.

Proof. Suppose we are given parameters φ : X∗ → (X → R) → R, b : X∗ → R and ω : XN → N for
BRX,R. Then there is a term Φφ,b,ω primitive recursive in sBRX×B,R that satisfies the defining equation

of BRφ,b,ωX,R . Recall that we identify B with the set {0, 1}, taking 0B := 0, and thus 0X×B ≡ 〈0X , 0〉.
Define the map η : X∗ → (X × B)† by

(ηs)(n) :=

{
〈sn, 1〉 if n < |s|
undefined otherwise,

so that dom(ηs) = {0, 1, . . . , |s|− 1}; and conversely the map η′ : (X×B)† → X∗ by |η′u| = N + 1 where
N is the maximum element of dom(u), and

(η′u)i :=

{
π0(u(i)) if i ∈ dom(u)

0X otherwise

where π0 : X × B→ X is the first projection. Note that η′ηs = s for all s : X∗. Now, define parameters
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φ̃, b̃ and ω̃ for sBRX×B,R by

ω̃(α(X×B)N)
N
:= µi ≤ ω(π0α)((π1α)(i) =B 0)

b̃(u(X×B)
†
)
R
:= b(η′u)

φ̃u(pX×B→R)
R
:= φ[π0û](ω̃(û))(λx

X .p(〈x, 1〉))

where πiα denotes the projection of the sequence α i.e. (πiα)(n) := πi(α(n)). We claim that

∆φ,b,ω(s) := sBRφ̃,b̃,ω̃X×B,R(ηs)

satisfies the defining equation of BRφ,b,ωX,R (s). To prove this, first note that

(i) π0(η̂s) =XN ŝ, and

(ii) π1(η̂s)(i) =B 1, for i < |s| and 0 otherwise,

follow directly from the definition of η and the fact that 0X×B = 〈0X , 0〉. Therefore

(iii) ω̃(η̂s) = µi ≤ ω(π0(η̂s)))(π1(η̂s)(i) =B 0)
(i)
= µi ≤ ω(ŝ)(π1(η̂s)(i) = 0)

(ii)
=

{
ω(ŝ) if ω(ŝ) < |s|

|s| if ω(ŝ) ≥ |s|.

Since dom(ηs) = {0, . . . , |s| − 1} point (iii) above implies the equivalence

(iv) ω(ŝ) < |s| ⇔ ω̃(η̂s) ∈ dom(ηs).

Therefore, if ω(ŝ) < |s| then ω̃(η̂s) ∈ dom(ηs) and hence

∆(s) = sBRφ̃,b̃,ω̃X×B,R(ηs) = b̃(ηs) = b(η′ηs) = b(s).

If ω(ŝ) ≥ |s| then ω̃(η̂s) = |s| /∈ dom(ηs) and hence

∆(s) = sBRφ̃,b̃,ω̃X×B,R(ηs)

= φ̃ηs(λ〈x, b〉X×B. sBR(ηs⊕ (|s|, 〈x, b〉)))

= φ[π0(η̂s)](ω̃(η̂s))(λx . sBR(ηs⊕ (|s|, 〈x, 1〉)))
(i)
= φ[ŝ](|s|)(λx . sBR(ηs⊕ (|s|, 〈x, 1〉)))

= φs(λx . sBR(η(s ∗ x)))

= φs(λx .∆(s ∗ x))

where for the penultimate equality one easily verifies that ηs⊕ (|s|, 〈x, 1〉) = η(s ∗ x).

5.2 sBR is definable from BR

A similar idea, however, does not seem to work in the opposite direction, since Spector’s bar recursion is
inherently less flexible than symmetric bar recursion. Instead, to define sBRX,R we resort to an instance
of Spector’s bar recursion of a strictly higher type, and the resulting construction is somewhat more
intricate.

Theorem 5.2. sBRX,R is primitive recursively definable from BRX†×(X†→(X→R)),R, provably in E-HAω+
sBI + BR.

We break up the proof of Theorem 5.2 into several steps. The basic idea behind our construction is as
follows: a finite partial state u in the computation of sBR is represented by a finite sequence of pairs su
in our instance of BR. For each n, the value su(n) will have type X† × (X† → (X → R). If n ∈ dom(u)
then the first component of su(n) contains a smaller “state” u′ v u that was present when point n was
updated, and if n /∈ dom(u) then the second component of su(n) contains a continuation that allows us
to make bar recursive calls on updates of the state at any point in the future allowing us to simulate the
behaviour of sBR. First, we need some definitions.
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Definition 5.3. Suppose u, v : X† and x : X. Then [u](n) ∗ x ⊕ v : X† denotes the finite partial function
given by

([u](n) ∗ x ⊕ v)(i) =


u(i) if i < n

x if i = n

v(i) if i > n.

So dom([u](n) ∗x ⊕ v) = (dom(u)\{n, . . .})∪{n}∪ (dom(v)\{0, . . . , n}). Next, let us introduce the type
abbreviation Y :≡ X† × (X† → (X → R)), and define the ‘diagonal’ functional d : Y ∗ → X† by

d(s)(j) :=

{
(π0si)(j) for least i ≤ |s| such that i < j and j ∈ dom(π0si)

undefined otherwise.

The function d returns a particular kind of ‘union’ of the finite partial functions π0si, where in the event
that the π0si are defined at j for more than one index i ≤ j, the value at the least index is chosen.
Because s is a finite sequence the resulting partial function d(s) must also have finite domain. Similarly,
define an infinitary diagonal function d∞ : Y N → XN by

d∞(α)(j) :=

{
(π0αi)(j) for least i ≤ j such that j ∈ dom(π0αi)

0X otherwise.

This function d∞ returns a similar union of the infinite sequence of partial functions π0αi, returning
a partial function with potentially infinite domain, and then embedding this partial function in XN by
assigning the canonical value 0X to undefined elements.

The main step in our proof of Theorem 5.2 will be to show that BR defines a slightly altered form of
sBR, which only accepts ω-threads as input. As we show in Lemma 5.12 this restriction is inessential –
however, it makes the verification slightly easier to work with and hence we adopt this variant for now.

Lemma 5.4. Let ΘX,R be the following variant of sBR,

Θφ,b,ω(uX
†
) =


0R if ¬Sω(u)

b(u) if ω(û) ∈ dom(u)

φu(λx.Θφ,b,ω(u ⊕ (ω(û), x))) otherwise

(10)

where the parameters have the same type as those for sBR, namely φ : X† → (X → R)→ R, b : X† → R
and ω : XN → N. Then ΘX,R is primitive recursively definable from Spector’s bar recursion BRY,R for
Y :≡ X† × (X† → (X → R)), provably in E-HAω + BR.

Proof. Suppose we are given parameters φ, b and ω for Θ. We define parameters φ̃, b̃ and ω̃ for BRY,R
in terms of φ, b and ω. We begin with φ̃, which is given by

φ̃sY ∗ (pY→R)
R
:=

{
p(〈d(s),0X†→(X→R)〉) if |s| ∈ dom(d(s))

p(〈d(s), λvX
†
, xX .p(〈[d(s)](|s|) ∗ x ⊕ v,0X†→(X→R)〉)〉) otherwise.

As will become clear below, p plays the role of a continuation: If d(s) is not defined at |s|, it initiates a
nested recursive call to variants of d(s) of the form [d(s)](|s|) ∗ x ⊕ v, which are identical to d(s) for all
arguments i < |s| but are now defined at point |s| with value x. For the parameter b̃, define

b̃(sY
∗
)
R
:=

{
b(d(s)) if ω̂(d(s)) ∈ dom(d(s))

φd(s)(π1(ŝω̂(d(s)))(d(s))) otherwise.

Note that this is well typed since ŝ : Y N, and thus ŝω̂(d(s)) : Y and π1(ŝω̂(d(s))) : X† → (X → R), which
implies that π1(ŝω̂(d(s)))(d(s)) : X → R. For the final parameter, let

ω̃(αY
N
)

N
:= ω(d∞(α)).
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We now define a sequence of finite sequences su,i : Y
∗ for u : X†, primitive recursively in BRφ̃,b̃,ω̃Y,R , as

su,0 := 〈〉

su,i+1 :=

{
[su,i](ni) ∗ 〈ui+1,0X†→(X→R)〉 if ni < |su,i|
su,i ∗ 〈d(su,i), f

i
|su,i|〉 ∗ . . . ∗ 〈d(su,i), f

i
ni−1〉 ∗ 〈ui+1,0〉 otherwise

where we use the abbreviations ui := {u}ω(i) and ni := ω̂(ui), and the functions f in are defined using
course-of-values recursion as

f in :=

{
λwX

†
, xX .BRφ̃,b̃,ω̃Y,R ([su,i+1](n) ∗ 〈[d(su,i)](n) ∗ x ⊕ w,0〉) if n /∈ dom(d(su,i))

0X†→(X→R) otherwise.
(11)

While the definition of su,i+1 may seem circular, in that f in uses su,i+1, it is well-defined by course-of-
values recursion along the length of su,i+1 because f in = π1(su,i+1(n)), and to define this we only require
knowledge of [su,i+1](n) i.e. su,i+1(m) for m < n, and for the base case f i|su,i| is defined in terms of

[su,i+1](|su,i|) = su,i.
Now, let su := su,|dom(u)|, so that su : Y ∗. It is easy to see that |su,i+1| = ni + 1 for arbitrary i, which
means that in particular |su| = n|dom(u)|−1 + 1 whenever |dom(u)| > 0. We claim that Θ defined from
BR as

Θ(u) :=

{
0R if ¬Sω(u)

BRφ̃,b̃,ω̃Y,R (su) otherwise
(12)

satisfies the equation (10). The rest of the section contains the lemmas needed to verify this claim.

The claim that Θ as defined in (12) satisfies equation (10) clearly holds in the case that ¬Sω(u), so
from now on we assume that Sω(u) is true.

The following lemma is not a deep result at all, and can be intuitively seen by inspecting the definition
of su,i. However, due to the syntactic complexity of the underlying definitions, its proof is rather long.

Lemma 5.5. d(su,i) = ui, for all i ≤ |dom(u)|.

Proof. By induction on i. If i = 0 the result is trivial, since d(su,0) = d(〈〉) = ∅. The induction step
is not much more difficult, but involves a deal of tedious verification to perform rigorously. Suppose
the lemma holds for some i < |dom(u)|. There are two main cases to deal with: either ni < |su,i| or
ni ≥ |su,i|.
In the first case we have su,i+1 = [su,i](ni) ∗ 〈ui+1,0〉. Then for j < ni we have by definition

d(su,i+1)(j) = (π0(su,i+1)i′)(j) for least i′ ≤ j such that j ∈ dom(π0(su,i+1)i′), else undefined

= (π0(su,i)i′)(j) for least i′ ≤ j such that j ∈ dom(π0(su,i)i′), else undefined

= d(su,i)(j)

I.H.
= ui(j)

= ui+1(j)

where we use the fact that (su,i+1)i′ = (su,i)i′ for i′ ≤ j < ni, and in the last equality that ui(j) = ui+1(j)
fo j < ni. Using similar reasoning, for j ≥ ni we have

d(su,i+1)(j) =


(π0(su,i+1)i′)(j) for least i′ < ni such that j ∈ dom(π0(su,i+1)i′)

(π0(su,i+1)ni
)(j) if j ∈ dom(π0(su,i+1)ni

)

else undefined

I.H.
=


ui(j) for least i′ < ni such that j ∈ dom(π0(su,i)i′)

ui+1(j) if j ∈ dom(ui+1)

else undefined

= ui+1(j).

21



For the last equality we use the fact that j ∈ dom(ui) implies j ∈ dom(ui+1) and ui(j) = ui+1(j).

For the second main case ni ≥ |su,i| we have su,i+1 = su,i∗〈d(su,i), f
i
|su,i|〉∗ . . .∗〈d(su,i), f

i
ni−1〉∗〈ui+1,0〉,

and the argument proceeds as in the first case: for j < ni we have (expanding the definition of d)

d(su,i+1) =


(π0(su,i)i′)(j) for least i′ ≤ j such that i′ < |su,i| and j ∈ dom(π0(su,i)i′)

d(su,i)(j) if |su,i| ≤ j and j ∈ dom(d(su,i))

else undefined

I.H.
=


ui(j) for least i′ ≤ j such that i′ < |su,i| and j ∈ dom(π0(su,i)i′)

ui(j) if |su,i| ≤ j and j ∈ dom(ui)

else undefined

= ui(j)

= ui+1(j).

where for the last equality we use that ui(j) = ui+1(j) for j ≤ ni. For j = ni, it is easy to see that
d(su,i+1)(ni) = ui+1(ni), since by our assumption Sω(u) we know that ni /∈ dom(ui) and thus the least
i′ ≤ ni such that ni ∈ dom(π0(uu,i+1)i′) is i′ = ni.

Lemma 5.6. d(su) = u.

Proof. Recall that we are assuming Sω(u). We have d(su) = d(su,|dom(u)|)
L5.5
= u|dom(u)|

L2.4
= u.

Lemma 5.7. d∞(ŝu) = û, and hence ω̃(ŝu) = ω(û).

Proof. Recall that we assume an encoding of the type X† such that 0X† ≡ ∅, and hence 0Y =

〈0X† ,0X†→(X→R)〉. It is clear from this that d∞(ŝ) = d̂(s) for arbitrary s : Y ∗. Hence, by Lemma

5.6 we have d∞(ŝu) = d̂(su) = û and hence ω̃(ŝu) = ω(d∞(ŝu)) = ω(û), by the definition of ω̃.

Lemma 5.8. Let i ≤ |dom(u)|. Then if n /∈ dom(ui) and n < |su,i| then π1((su,i)n) = fkn where k is
the least number such that ∀j ∈ {k, . . . , i− 1}(nj > n).

Proof. Induction on i. If i = 0 then the claim is trivial since |su,0| = 0. Suppose that the lemma is
true for i < |dom(u)|. Then as in the proof of Lemma 5.5 there are two main cases corresponding to
ni < |su,i| or ni ≥ |su,i|.
In the first case, suppose that n /∈ dom(ui+1) and n < |su,i+1| = ni + 1. Then since n 6= ni (since
ni ∈ dom(ui+1)) we must have n < ni. By ui < ui+1 we have n /∈ dom(ui). Moreover, by our
main case assumption that ni < |su,i| we can assume that i > 0 (else we would have |su,i| = 0),
and thus by definition |su,i| = ni−1 + 1, and so ni ≤ ni−1. By the assumption Sω(u) this can be
strengthened to ni < ni−1. Therefore we also have n < |su,i| and by the induction hypothesis obtain
that π1((su,i)n) = fkn where k is the least such that ∀j ∈ {k, . . . , i − 1}(nj > n). Since ni > n, we
have π1((su,i+1)n) = π1((su,i)n) = fkn , for the same k, which moreover satisfies the stronger property
∀j ∈ {k, . . . , i}(nj > n).
For the second case, suppose again that n /∈ dom(ui+1) and n < |su,i+1| = ni, which as in the first case
we can strengthen to n < ni. As in the first case we can also infer that n /∈ dom(ui). There are two
subcases to deal with. Either n ≤ ni−1 and hence n ≤ |su,i|, and so by the induction hypothesis we have
π1((su,i+1)n) = π1((su,i)n) = fkn where k is the least such that ∀j ∈ {k, . . . , i− 1}(nj > n). Then by the
main case assumption we obtain ni−1 +1 ≤ ni and hence n < ni−1 < ni, and thus k satisfies the stronger
property ∀j ∈ {k, . . . , i}(nj > n). Or, in the second subcase n ≥ ni−1 we have π1((su,i+1)n) = f in.
We clearly have ∀j ∈ {k, . . . , i}(nj > n) for i = k since this reduces to ni > n which we have already
established. To see that k = i is the least such k, observe that for any k < i we would need ni−1 > n,
which contradicts the premise of the second subcase.

Lemma 5.9. If n 6∈ dom(u) and n < |su| then π1((su)n) = fkn , where k is the least such that ∀j ∈
{k, . . . , |dom(u)| − 1}(nj > n).

Proof. This is a direct corollary of Lemma 5.8, setting i = |dom(u)| and using u|dom(u)| = u (Lemma
2.4), and recalling that su := su,|dom(u)|.
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Lemma 5.10. Assuming ω̃(ŝu) ≥ |su| we have

BRφ̃,b̃,ω̃Y,R (su) =

{
b(u) if ω(û) ∈ dom(u)

φu(λx.BRφ̃,b̃,ω̃Y,R (su⊕(ω(û),x))) otherwise.

Proof. Suppose that ω̃(ŝu) ≥ |su| (and Sω(u) as in the previous results). Define the sequences ts,m, for
m ≥ |su|, by course-of-values recursion as

ts,m :=Y ∗ su ∗ 〈u, g|su|〉 ∗ . . . ∗ 〈u, gm−1〉

where gk is inductively defined as

gk :=

{
λw, x.BR(ts,k ∗ 〈[u](k) ∗ x ⊕ w,0〉) if k /∈ dom(u)

0 otherwise.

As before, let n = ω̃(ŝu) = ω(û). We prove by induction on m that BR(su) = BR(ts,m) for |su| ≤ m ≤
n+ 1. This is true by definition for m = |su|, so assuming it is also true for arbitrary m < n+ 1 we have

BR(su)
(IH)
= BR(ts,m)

(∗)
= φ̃ts,m(λz . BR(ts,m ∗ z))

def. φ̃
=

{
BR(ts,m ∗ 〈d(ts,m),0〉) m ∈ dom(d(ts,m))

BR(ts,m ∗ 〈d(ts,m), λw, x . BR(ts,m ∗ 〈[d(ts,m)](m) ∗ x ⊕ w,0〉)〉)) otherwise

(∗∗)
=

{
BR(ts,m ∗ 〈u,0〉) m ∈ dom(u)

BR(ts,m ∗ 〈u, λw, x . BR(ts,m ∗ 〈[u](m) ∗ x ⊕ w,0〉)〉)) otherwise
def. gm

= BR(ts,m ∗ 〈u, gm〉)
= BR(ts,m+1)

where (∗) follows from ω̃(t̂s,m) = ω(d∞(t̂s,m)) = ω(û) = n ≥ m, with the second equation justified by a
simple argument along the lines of Lemma 5.7 (i.e. d∞ already pick up u in su, and cannot acquire any
additional elements since the first component of (t̂s,m)k for k > |su| can only be u or 0). Equality (∗∗)
uses d(ts,m) = u, which is proved similarly. By induction we have that BR(su) = BR(ts,n+1). But

ω̃(t̂s,n+1) = ω(d∞(t̂s,n+1)) = ω(û) = n < n+ 1 = |ts,n+1|

and therefore
BR(su) = BR(ts,n+1)

= b̃(ts,n+1)

=

{
b(u) if n ∈ dom(u)

φu(λxX .(π1(ts,n+1)n)(u)(x)) otherwise.

The second equality follows by expanding the definition of b̃(ts,n+1), observing as above that d(ts,n+1) = u
and recalling that n := ω(û). All that remains to show is that (π1(ts,n+1)n)(u)(x) = BR(su ⊕ (n,x)) for
n = ω(û) /∈ dom(u). This can be shown as

(π1(ts,n+1)n)(u)(x) = gn(u)(x)
n/∈dom(u)

= BR(ts,n ∗ 〈[u](n) ∗ x ⊕ u,0〉)
= BR(ts,n ∗ 〈u ⊕ (n, x),0〉)
= BR(su ⊕ (n,x))

where for the last equality we have (as observed above) su ⊕ (n,x),|dom(u)| = su, and since n ≥ |su| we
have, expanding the definition of su ⊕ (n,x),|dom(u)|+1 and gm,

su⊕(n,x) := su⊕(n,x),|dom(u)|+1 = su ∗ 〈u, g|su|〉 ∗ . . . ∗ 〈u, gn−1〉 ∗ 〈u⊕ (n, x),0〉

and therefore su ⊕ (n,x) = ts,n ∗ 〈u ⊕ (n, x),0〉.
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Lemma 5.11. Θ as defined in (12) satisfies equation (10).

Proof. We only need to consider inputs u that satisfy Sω(u), for which we have Θ(u) = BRφ̃,b̃,ω̃Y,R (su). Let

us consider the two main cases in the definition of BRφ̃,b̃,ω̃Y,R :

(I) If ω̃(ŝu) < |su| then BRφ̃,b̃,ω̃Y,R (su) = b̃(su). Let n = ω(û) = ω̃(ŝu) (the last equality following from
Lemma 5.6). Consider two further subcases:

(Ia) If n ∈ dom(u) then ω(d̂(su)) ∈ dom(d(su)) by Lemma 5.6. Hence, by definition of b̃ we have
b̃(su) = b(d(su)) = b(u).

(Ib) If n 6∈ dom(u) then ω(d̂(su)) 6∈ dom(d(su)), again by Lemma 5.6, and we have

b̃(su) = φu(λx.(π1(ŝu)n)(u)(x))
(∗)
= φu(λx.Θ(u⊕ (n, x))),

where for the first equality we use Lemma 5.6 while step (∗) is proved as follows. By Lemma 5.9,
noting that the premises of the lemma are precisely the assumptions of cases (I) and (Ia), we have

(π1(ŝu)n)(u)(x)
n<|su|

= (π1(su)n)(u)(x) = fkn(u)(x)
n/∈dom(u)

= BR([su,k+1](n) ∗ 〈[vk](n) ∗ x ⊕ u,0〉)
(13)

where k is the least index such that ∀j ∈ {k, . . . , |dom(u)| − 1}(nj > n). Now, we have

[vk](n) = [d(su,k)](n)
L5.5
= [uk](n)

(†)
= [u](n)

where the last equality follows by observing that u is obtained from uk by updating the latter at
points nk, . . . , n|dom(u)|−1, but since nj > n in this range it is clear that uk(i) = u(i) for i < n.
Thus [vk](n) ∗x ⊕ u = u⊕ (n, x). In addition, using again that nj > n for all j > k and examining
definition of su,i it is easy to see that [su,k+1](n) = [su](n). Therefore

(π1(ŝu)n)(u)(x)
(13)
= BR([su](n) ∗ 〈u⊕ (n, x),0〉)
(i)
= BR([su⊕(n,x),|dom(u)|](n) ∗ 〈u⊕ (n, x),0〉)
(ii)
= BR(su⊕(n,x))

= Θ(u⊕ (n, x))

where (i) follows since the ω-thread of u⊕ (n, x) will coincide with the ω-thread of u up to point
n, and thus by extension su,i will coincide with su⊕(n,x),i for i ≤ |dom(u)|. For (ii) we have

su⊕(n,x) := su⊕(n,x),|dom(u)|+1

= [su⊕(n,x),|dom(u)|](n) ∗ 〈u⊕ (n, x),0〉
(14)

where in the second equality we expanded the definition of su⊕(n,x),|dom(u)|+1, observing that
su⊕(n,x),|dom(u)| = su,|dom(u)| = su and

ω̂({u⊕ (n, x)}ω(|dom(u)|)) = ω̂(u) = n < |su| = |su⊕(n,x),|dom(u)||.

For the last equation we used the simple fact that Sω(u)⇒ Sω(u⊕ (n, x)) for n = ω(û) /∈ dom(u).

(II) Assuming ω̃(ŝu) ≥ |su| we have, by Lemma 5.10, that Θ(u) := BRφ̃,b̃,ω̃Y,R (su) satisfies equation (10),
again using that Sω(u)⇒ Sω(u⊕ (n, x)) for n /∈ dom(u), and thus Θ(u⊕ (n, x)) = BR(su⊕(n,x)).

Putting both cases together we have that Θ as defined in (12) satisfies equation (10).

All that remains to be shown is that the restricted version Θ is equivalent to the full version.

Lemma 5.12. sBRX,R is primitive recursively definable from ΘX,R, provably in E-HAω + (Θ) + sBI.
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Proof. For some arbitrary input v (not necessarily satisfying Sω(v)) we define sBRφ,b,ω(v) := Θφv,bv,ωv

(∅)
where

φvu(pX→R) =R

{
b(v ⊕ u) if ω(v ⊕ û) ∈ dom(v)

φv ⊕ u(p) otherwise

bv(u) =R b(v ⊕ u)

ωv(α) =N ω(v ⊕ α).

We prove that Θφv,bv,ωv

(∅) = sBRφ,b,ω(v) by sBI on the predicate

P (u) ≡ Θ(u) = sBR(v ⊕ u)

relative to the functional ωv. First observe that Θ is sufficient to define the bound θω,α(∅) of Lemma
2.8, since θω,α(∅) only makes recursive calls on ω-threads. Therefore provably in E-HAω + (Θ), for all
α : XN there exists a least n such that ω̂v({α}ωv (n)) = ω̂(v ⊕ {α}ωv (n)) ∈ dom({α}ωv (n)). In this case
{α}ωv (n) ∈ Sωv and therefore

Θ({α}ωv (n)) = bv({α}ωv (n)) = b(v ⊕ {α}ωv (n)).

But since ω̂v({α}ωv (n)) ∈ dom({α}ωv (n)) implies ω̂v({α}ωv (n)) ∈ dom(v ⊕ {α}ωv (n)) we also have
sBR(v ⊕ {α}ωv (n)) = b(v ⊕ {α}ωv (n)). For the induction step, for any u ∈ Sωv we have, expanding Θ
and its parameters:

Θ(u) =

{
bv(û) if ωv(u) ∈ dom(u)

φvu(λx . Θ(u ⊕ (ωv(û), x)) otherwise

=


b(v ⊕ u) if ω(v ⊕ û) ∈ dom(u)

b(v ⊕ u) if ω(v ⊕ û) ∈ dom(v)

φv ⊕ u(λx . Θ(u ⊕ (ω(v ⊕ û), x)) otherwise

=

{
b(v ⊕ u) if ω̂(v ⊕ u) ∈ dom(v ⊕ u)

φv ⊕ u(λx . Θ(u ⊕ (ω̂(v ⊕ u), x)) otherwise

In the second case, setting m = ω̂(v ⊕ u) = ωv(û), since u ⊕ (m,x) ∈ Sωv and m /∈ dom(u) we can
assume as induction hypothesis ∀xP (u ⊕ (m,x)) and thus

Θ(u ⊕ (m,x)) = sBR(v ⊕ [u ⊕ (m,x)])

= sBR([v ⊕ u] ⊕ (m,x))

the first equality following from the bar induction hypothesis, and the last from m /∈ dom(v), and hence
Θ(u) = sBR(v ⊕ u). This establishes the premise of sBI, from which we obtain P (∅), which completes
the proof.

We are now able to prove the main result of the section.

Proof of Theorem 5.2. By Lemma 5.4 a term satisfying the defining equations of ΘX,R is primitive re-
cursively definable from BRX†×(X†→(X→R)),R, therefore by Lemma 5.12, sBR is also primitive recursively
definable from BRX†×(X†→(X→R)),R, provably in E-HAω + BR + sBI.

5.3 The BBC functional and further interdefinability results

We conclude this section by putting the interdefinability results in context and taking a closer look at
how the symmetric bar recursor compares to functionals from the world of realizability, particularly its
symmetric cousin the BBC (Berardi-Bezem-Coquand) functional.

The BBC functional was first defined in [4] in order to give a realizability interpretation to countable
choice which has a very natural game-theoretic interpretation (see Section 7 of that paper). Its defining
equation is

BBCX,R(uX
†
) =R φu(u⊕ λn.εn(λx.BBCX,R(u⊕ (n, x))).
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This functional has been studied in more detail by Berger [5, 6] and by the second author in [21, 22]. A
notable restriction of the BBC functional is that it only gives rise to a total continuous functional when
the output type R is restricted to being a base type (whereas sBRX,R is defined for arbitrary X and R).
The proof of totality of BBC given in [5] is of a similar flavour to the domain-theoretic justification of
symmetric bar recursion given here in the proof of Theorem 2.11, although there a weak form of Zorn’s
lemma is required, whereas we use sSpec and our variant of bar induction over ω-threads.

The curious reader is directed to aforementioned works if they wish to learn more about the BBC
functional. We mention it here as it is the form of recursion most closely related to our symmetric
bar recursor, in that it also takes as an input a partial function u : X† and makes recursive calls over
domain-theoretic extensions of this input. Therefore it is natural to ask how the two modes of recursion
compare.

The combined works of several authors [7, 8, 12, 21] has led to the classification up to primitive
recursive definability of essentially all forms of recursion used to interpret choice principles. The result
is that these recursors fall into two main classes: Those equivalent to Spector’s original bar recursion,
and those equivalent to the BBC functional (this group includes the more widely used modified bar
recursion, together with Berger’s open and update recursors [6]). The former class is strictly weaker
than the latter, in the sense that any functional of the latter class can primitive recursively define any
functional of the former, but not vice-versa. The reason for this is that the former group are all S1-S9
definable in the total continuous functionals, while the latter are not. For details of all this, the reader
is directed to the papers mentioned above, but for now we simply observe that we are already able to
clarify the relationship between symmetric bar recursion and the BBC functional from the perspective
of interdefinability: the main results of this section prove that symmetric bar recursion belongs to the
weaker class of recursors as it is equivalent to Spector’s bar recursion, and is therefore strictly weaker
than the BBC functional.

There is also a key qualitative difference between the algorithms which underlie the two forms of
recursion. The the defining equation of the BBC functional, both of the variables n and x fall under the
scope of a λ-abstraction. What this means is that when we want to compute BBC(u), it is possible that
we will make recursive calls on extensions u ⊕ (n, x) of u for a range of values of n /∈ dom(u). On the
other hand, symmetric bar recursion only makes recursive calls on extensions of the form u ⊕ (ω̂(u), x)
i.e. at a specific point determined by the functional ω. Thus the recursion carried out by sBR takes place
along a tree whose branches are ω-threads (as defined in Section 2), whereas the recursion carried out
by BBC takes place over a tree whose branches can consist of arbitrary sequences of updates. Therefore
despite the obvious cosmetic similarity between sBR and BBC, symmetric bar recursion is in this sense
more far closely related to normal bar recursion, which also is restricted to updates at a particular point,
in this case only extensions s ∗ x of finite sequences s.

The efficiency of BBC relative to the other forms of recursion in its class, such as modified bar
recursion or the more recent implicit product of selection functions [12], is still very much unknown, and
it could well be the case that the additional λ-abstraction over the variable n could in fact give rise to
realisers vastly more complex to those built from the sequential forms of recursion. However, we leave
such questions to future research.

6 From Countable Choice to Discrete Choice

In this final section we show how our move from BR to sBR opens the door to extending bar recursion to
more complex types, thus leading to a computational interpretation of a wider class of choice principles.
Up until now, we have considered bar recursion over either finite sequences or finite partial functions:
in other words over objects of type N → X + 1 with finite support. It is natural ask whether we can
further generalise bar recursion to take as input objects of type D → X+1 with finite support, for some
suitable class of indexing types D.

It is clear that for such a bar recursor to be well-defined we require equality on D to be decidable, and
moreover for well-foundedness we require that the stopping condition ω(û) ∈ dom(u) is eventually reached
for u with sufficiently large domain. This first condition is already highly restrictive: in PAω decidability
of equality is only guaranteed for types of lowest level. However, it has been shown by Escardó [11] that
in the Kleene-Kreisel continuous functionals, decidability of equality can be established for a wider class
of types.
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Definition 6.1 (Escardó [11]). Inductively define the discrete and compact types by

discrete ::= B | N | discrete× discrete | compact→ discrete

compact ::= B | compact× compact | discrete→ compact.

This terminology is based on the fact that the space CX of Kleene-Kreisel continuous functionals of
type X is discrete under the usual (quotient of the) Scott topology whenever X is a discrete type, and is
compact whenever X is a compact type. Several properties of discrete and compact types are established
in [11], including the fact that for arbitrary discrete X the space CX is both computably enumerable
and has decidable equality6 (this is striking given that the discrete types contain genuine higher-types
such as BN → N). Moreover, by a standard topological argument one can extend the usual sequential
continuity property for functionals on infinite sequences to the following principle:

Cont[D] : ∀ωX
D→D, αX

D

∃S ⊂ D∀β(∀d ∈ S(α(d) =X β(d))→ ω(α) =D ω(β)),

where S is a finite subset of the discrete type D.
From now on let D range over discrete types. Let X†D denote the type of finite partial functions

from D to X, i.e. partial functions u : D ⇀ X with finite domain. We define sBR[D] where D ranges
over discrete types by

sBR[D]φ,b,ωX,R (uX
†D

) =R

{
b(u) if ω̂(u) ∈ dom(u)

φu(λx . sBR[D]φ,b,ω(u⊕ (ω(û), x))) otherwise

where u : X†D and ω : (D → X) → D. Note that sBR as defined in Section 2 is just sBR[N]. This
generalised form of bar recursion is well-defined in the continuous functionals since equality on D is
decidable, and therefore the constructions (̂·) : X†D → XD and ⊕ : X†D → (D × X) → X†D are still
continuous (which would not be the case for e.g. D = N→ N).

Moreover, the recursor sBR[D] is well founded by Cont[D]: Suppose that sBR(u) is not total for some
total input u. Then by classical dependent choice we can construct a sequence recursively by u0 := u
and ui+1 := ui ⊕ (di, xi), where for each i we have

(i) di = ω̂(ui) /∈ dom(ui) (ii) sBR(ui) is not total.

By classical countable choice define α : D → X + 1 by α(d) := xi if d = di for some i, and undefined
otherwise. Then by Cont[D] there exists a finite subset S ⊂ D such that ω(α) = ω(β) whenever
α(d) = β(d) for all d ∈ S. Now since α is the domain-theoretic limit of the ui, there is some index
I such that uI(d) = α(d) for d ∈ S, and therefore dI = ω̂(uI) = ω(α). Now by definition we have
dI ∈ dom(uI+1), and so in particular dI ∈ dom(α). It is clear that dI /∈ S, since by (i) we have
dI /∈ dom(uI) but dI ∈ dom(α), contradicting the definition of I. But then uI+1 = uI on S, and
therefore dI+1 = ω(α) = dI and hence dI+1 ∈ dom(uI+1), a contradiction.

This constitutes an informal argument that sBR[D] is a well-defined, total continuous functional, and
so by an entirely analogous procedure to the case of sBR[N], one can construct f and p in sBR[D] which
satisfy the appropriate generalisation of Spector’s equations:

ωf =D d

f(ωf) =X εdp

qf =Y p(εdp).

As a result, we gain a computational interpretation of the following axiom of discrete choice:

ACD,X : ∀dD∃xXA(d, x)→ ∃fD→X∀dA(d, fd).

We remark that, as shown in [11], the set CD is recursively enumerable for any discrete type D, and
so can be encoded in the usual type of natural numbers N. Therefore in theory we could have defined
both sBR[D] and the analogous generalisation BR[D] of Spector’s bar recursion (where the points of D

6However, equality may not be primitive recursively decidable as in PAω : for non-trivial discrete types one must appeal
to the so-called infinite product of selection functions (see [11] for details).
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are ordered relative to their encoding in N) in terms of sBR[N] and BR[N] respectively. However, this
reduction to the base level would of course rely explicitly on the encoding of CD into N on the meta-level,
which is not guaranteed to be primitive recursive. To avoid this extra layer of complexity, and to define
the generalised recursor directly seems only possible for the symmetric recursor sBR[D], as Spector’s bar
recursion relies inherently on the underlying ordering of the natural numbers, and is therefore prime-facie
undefined for higher level discrete types on which no natural total ordering exists.

Note that whereas in the main part of the paper, the proposed benefits of our symmetric recursor
lay in its intensional aspects – notably the efficiency of its underlying algorithm – here it is its purely
extensional properties, namely that its defining equation does not assume any ordering on D, that are
found to be useful.

7 Conclusion

We have introduced a variant of bar recursion that, unlike Spector’s bar recursion, carries out recursive
calls in symmetric manner, as dictated by the control parameter. We have shown that this symmetric
recursor exists in the usual models of bar recursion, such as the Kleene-Kreisel continuous functionals,
and is in fact primitive recursively equivalent to Spector’s bar recursion. We then showed that Spector’s
equations, a solution to which is sufficient to give a Dialectica interpretation to the negated axiom of
countable choice, can be solved with a special case of symmetric bar recursion, analogously to Spector’s
original bar recursive solution. We compared concrete realizers obtained from the classical proof that
there is no injection from NN → N using both variants of bar recursion, and demonstrated that our new
method of extracting programs from proofs in classical analysis performs dramatically more efficiently
in many cases.

Our work fits in to the much broader program of adapting and refining traditional proof theoretic
techniques so that they are better suited to their role in modern proof theory - in our case taking a
well-known method of proving the consistency of classical analysis and altering it so that it becomes
better suited as a tool for extracting programs from proofs. However, concrete applications of program
extraction using symmetric bar recursion are currently restricted to the single case study given here, and
we believe that these others more attention in the future.

In addition to the extension of bar recursion to discrete choice principles sketched above, it would be
particularly interesting to investigate the procedural behaviour of symmetric bar recursion, which seems
much more natural than Spector’s bar recursion and has close links to both the update procedures of
Avigad [2] and the learning-based realizers of Aschieri et al. [1]. Making this relationship precise could
lead to a much better understanding of the relationship between proof interpretations like the Dialectica
interpretation and more direct learning-based interpretations of classical logic.
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